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Abstract

We consider the skew Howe duality for the action of certain dual
pairs of Lie groups (G1,Gz2) on the exterior algebra A(C™ ® CF) as
a probability measure on Young diagrams by the decomposition into
the sum of irreducible representations. We prove a combinatorial ver-
sion of this skew Howe for the pairs (GLn, GLk), (SOz2n+1,Pinak),
(Sp2n, Sp2r), and (Oz2n, SOk) using crystal bases, which allows us
to interpret the skew Howe duality as a natural consequence of lat-
tice paths on lozenge tilings of certain partial hexagonal domains. The
G1-representation multiplicity is given as a determinant formula using
the Lindstrom—Gessel-Viennot lemma and as a product formula using
Dodgson condensation. These admit natural g-analogs that we show
equals the g-dimension of a Gz-representation (up to an overall factor
of q), giving a refined version of the combinatorial skew Howe duality.
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Using these product formulas (at ¢ = 1), we take the infinite rank
limit and prove the diagrams converge uniformly to the limit shape.

Keywords: limit shape, skew Howe duality, crystal basis, lozenge tiling,
z-measure, Krawtchouk ensemble

1 Introduction

The study of multiplicity-free actions of reductive dual pairs of groups has
been very fruitful, and is now usually called Howe duality [1]. The most well-
known of such dualities is the (GL,, GLy) duality from the action of GL,, X
GLj on the symmetric space S ((C” ® (Ck). This duality generalizes Schur—
Weyl duality (see, e.g., [1, Sec. 2.4]), which is described combinatorially by
the Robinson—Schensted—Knuth (RSK) algorithm, which bijectively maps a
multiset with elements in {1,...,n} x {1,...,k} to a pair of semistandard
(Young) tableaux of the same shape A. The semistandard tableaux encode the
GL,, x GLy, action and irreducible highest weight representation V() by using
Kashiwara’s crystal bases [2, 3] (see also [4, 5] and the relation with coplactic
operators [6, Ch. 5]).

This duality is related to the most famous result in asymptotic representa-
tion theory, the Vershik—Kerov—Logan—Shepp limit shape [7, 8]. We can embed
the regular representation of Sj into S* ((Ck ® (Ck) by using two-line repre-
sentation of the permutations. RSK then bijectively maps a permutation of k
elements to a pair of standard Young tableaux of the same shape A. Since there
are more permutations of k than partitions of k, the image of uniform random
permutations under RSK defines the famous Plancherel probability measure
on partitions of k. This measure has the probability of A given by the ratio
of the square of f*, the number of standard Young tableaux of shape ), and
k!. We can reinterpret this using representation theory (over C) as the regu-
lar representation has dimension k! and decomposes into all of its irreducible
representations S* with multiplicity equal to dim S*. For S}, irreducible mod-
ules S* are the Specht modules, where )\ ranges over all partitions of k with
dim S* = f*. Hence, the Plancherel measure is given by

A\2 im A\2

In the limit & — oo, the Plancherel measure is concentrated on the Vershik—
Kerov—Logan—Shepp limit shape computed in [7, §].

Next, Schur—Weyl duality is described as the decomposition of commuting
actions of Sj, and GL, on (C™)®*. In the paper [9], S.V. Kerov used Schur-
Weyl duality! to construct a similar measure on Young diagrams X of size k

n [9] the group SU,, was considered, but the complexification is GL,, and this does not change
the dimension of the irreducible representations.



Springer Nature 2021 BTEX template

Skew Howe duality and limit shapes 3

as
dim $* - dim Vg, (\)
- :

SW
)\ =
/J'nk( ) n

We can see this formula through RSK by embedding (C")®* into S*(C" ®
C)by v @ - Qv — v1 @ ey + -+ + vp @ ex, where {e1,...,e,} is the
standard basis of C*. In the limit n,k — oo such that k/n — const, the
Vershik—Kerov-Logan—Shepp limit shape is recovered.

Returning back to our (GL,,GLy) duality, we note that the symmetric
space is infinite dimensional, so it does not allow an immediate measure on
partitions. If we restrict to S™(C" ® CF) or so that the degree of e; € C" to
be at most m, we can define two probability measures on Young diagrams of
size m or with A; < m (or A is contained in a min(n, k) x m rectangle) as

(m) o dim VGLH()\) dim VGLk ()\) Om o dim VGL ( )dim VGLk( )
/‘L7L7]<;()_ k+ _1 9 N“nk()‘)_ .
m a+b+c

a=1b=0c

The measure u( k) has appeared in [10] in relation to Johansson’s result [11]

on the Krawtchouk ensemble. The latter measure ,uD"f is related to the arc-

tic circle limit shape of lozenge tilings of a hexagon [12-16] (see also [17]) by
applying RSK, taking the corresponding pair of Gelfand-Tsetlin (GT) pat-
terns, and joining them together to form a plane partition inside of a n xm x k
box (see, e.g., [18, Ch. 7]; the number of plane partitions in a box is due to
MacMahon [19, 20]) and projecting. In order to get the full symmetric space
we can take the refined data of the characters instead of taking dimensions,
we obtain a well-defined probability measure by the Cauchy identity of Schur
functions

Z SA(xl,...,xn)sA(yl,...,yk):HH%. (1.1)

£(A)<min(n,k) i=1j=1

When n, k — 0o, we obtain the famous Schur measure on partitions [21, 22].

Another variant of Howe duality is skew Howe duality [1, Thm. 4.1.1],
where there is a multiplicity-free action of a pair of Lie groups (G1,G2) on the
exterior algebra A\ (C" ® (C*)*). This is usually proven with the use of the
Schur duality, and we have the multiplicity-free decomposition

A (€& (C)) =P Ve,(V) @ Ve, V),
A

where X is the conjugate of the complement diagram of A inside an n x k
rectangle. One key advantage of the exterior algebra over the symmetric alge-
bra is that it is finite dimensional, which allows us to introduce a probability
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measure on diagrams

dim Vg, (A) - dim Ve, (X
k() = G (A )W G (X))

The exterior algebra can be also seen as a tensor power (/\ (C")®k7 and thus
skew Howe duality can be used to provide multiplicity formulas for a tensor
power decomposition

(A (C”) EBMk Ve, (),

where M*()\) = dim Vg, (X/). Hence, if the multiplicity of V(A) in V®* for some
G'1-representation V equals the dimension of the irreducible G-representation
V(X/), then we call this combinatorial skew Howe duality. Moreover, the prob-
ability measure becomes pi, 1(\) = 27" M*(\)dim V()\). For skew Howe
duality over other fields, see also [23, 24].

We look at some known examples at the level of characters, all of which
give rise to character measures on partitions. We first consider the case of
(G1,G32) = (GLy,,GLy,), which can be proven using a variation of RSK [25]
(called dual RSK in [18, Ch. 7]) showing pairs of semistandard Young tableaux
of shape A and )\ are in one-to-one correspondence with the n x k matrices of
zeros and ones, yielding the dual Cauchy identity:

n k
Z sal@1y s xpn)sn (Y, -, Yk) = HH 14+ zy;).
=1 :

ACkn

Here we used Vg, (A I)* ~ Vir, (V) up to a shift of the determinant represen-
tation (¢f. [1, Thm. 4.1.1]). This has been applied to the random matrix theory
with computing the correlations of characteristic polynomials of the unitary
group [26] with generalizations to other random matrix ensembles given in [27].

Panova and Sniady [28] considered the analog of uiﬁﬂ), where they consider the

exterior power \" ((C" ® Ck ) with the corresponding probability measure

dim Vg, (A) - dim Vg, (Xl)

(o)

for the diagrams of m boxes in the n x k rectangle. They compute the limit
shapes for the limit n, k,m — oo, % — const, 7 — const by reformulating
the problem in terms of the representations of permutation group as the level

lines of the limit shape for plane partitions presented in [29].

p () =
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G1 GLyp SO2p41,k even SO2p41,k odd Spa, Oa2y

Go GLyg Piny, Spr—1 Spak SOk

Table 1 The combinatorial skew Howe duality obtained for V®*,

For (Span, Spak), this yields the following character identity first due to
King [30] with later proofs due to Jimbo and Miwa [31] and Howe [1]:

n k
Span s _ _
DA @ e )X (e = [T @27 +u+97h). (12)
ACkn i=1j=1

This also has an RSK-like proof [32-34] and has been applied to random matrix
theory in [35]. The case (G, Spar) was examined in Heo and Kwon [36], which
recovers (1.2) and other identities such as [36, Eq. (1.4)]. Proctor [37] also pro-
vides proofs of numerous character identities, including skew Howe dualities,
using the reflection method. An RSK-type algorithm has also been used for the
orthogonal group by Sundaram [38]. Generalizations of some of these identities
are known, such as using Macdonald polynomials [39, p. 329], Koornwinder
polynomials [40], and an extension of continuous ¢-Hermite polynomials [41].

In the present paper, we first examine the pairs (GL,,GLyg),
(SOs2p+1, Pinag), (Span, Spak), and (Oa,, SOi) and prove a natural g-analog
of combinatorial skew Howe duality. We begin by looking at the multiplicity
MP¥(X) of V()) inside V¥ where V is the following representation for the
group Gi:

GL,: V= \C", the exterior algebra of the natural representation;
S02,41: V is the spinor representation;
Span: V= \ C?", the exterior algebra of the natural representation;
SOs,: V is the sum of the two nonisomorphic spinor representations, which is
irreducible as an Os,, representation.

Our proof uses the crystal basis and the nonintersecting lattice paths approach
formulated in [42] to write M¥()\) as certain determinants of binomial coef-
ficients or Catalan triangle numbers using the Lindstrom—Gessel-Viennot
(LGV) lemma [43, 44]. Next, we take a natural g-deformation of these deter-
minants and use Dodgson condensation to transform the determinant formulas
for the multiplicities into product formulas with g-integers, which when ¢ =1
is similar to those in the work of Kulish, Lyakhovsky, and Postnova [45, 46].
Again using the LGV lemma, we show that the g-analogs of our determinant
formulas give dim, V(X/), the g-dimension of the irreducible Gs-representation.
Taking ¢ = 1, we obtain the combinatorial skew Howe duality. We summarize
our results in Table 1. We remark that the cases for SOn when k is an odd
power is not a skew Howe duality in the sense we have described above as
it does not come from a decomposition of an exterior algebra. However, this
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can be described as a type of Howe duality and our product formulas do not
depend on the parity of k.

While the g-analog of combinatorial skew Howe duality was previously
known from specializing the aforementioned character formulas, our proofs are
new with more of a direct representation theory application. Furthermore, the
g-analogs of the determinant formulas are generally new, even for the case ¢ =
1, and the product formulas are entirely new except for ¢ = 1 for G; = SOz, 41
in [45-47]. For (GL,,,GLy,), the determinant formula was previously obtained
in [48] purely combinatorially as a number of certain lattice path, and the
g-analog was independently shown by Cigler [49, Thm. 8]. In both of these
cases, the connection to the representation theory was not established. In [45,
46], the case (SO2p41, Pingg) was derived without noticing the importance of
skew Howe duality. Determinant multiplicity formulas for (SOay,+1, Pingg) and
(Span, Spax) were shown in [42] also without noticing the skew Howe duality.
In all of these cases, the g-analog of these formulas were not known.

Let us discuss the dependence on the parity of k for the decomposition
for V(An)@”C of the spin representation for SOs,11. We note that there is an
alternating form on V' (A,,), which means the tensor power can embed in an
orthogonal or symplectic space depending on the parity of k£ by building a
symmetric or alternating form, respectively. Thus, we have an action of Pinj or
Spr—1, respectively, since they preserve a symmetric or alternating form (see
also [1]). There is also an RSK-type algorithm that recovers the corresponding
character identities [37, (D2B,), (B;C,)] due to Benkart and Stroomer [50].
An analogous RSK-type algorithm for the Oy, spinor was given by Okada [51].
We also note that tensor powers of spin representations has been examined by
Rowell and Wenzl [52, Lemma 2.1].

We also provide a natural interpretation of the appearance of lattice paths
as they have an innate description with lozenge tilings of a certain half hexag-
onal domain. Indeed, lozenge tilings of the half hexagon naturally correspond
to GT patterns that arise to describe the representations of G Ly, which also
correspond to the lattice paths describing dim, V' (\’). By taking a different set
of paths, we recover the lattice paths that we used to compute the multiplic-
ity of V(X). Joining this to be the full hexagon with side lengths alternating
between k and n and a seam down the middle encoding A, we recover our
GL,, x GLy probability measure (up to the normalization factor of 27%). The
other dual pairs arise from imposing extra symmetries on the hexagon from the
symmetries on GT patterns described by Proctor [53], which have also been
considered by Bufetov and Gorin [54, Sec. 3.2]. Similarly, many of the represen-
tations we consider can be seen as arising from A C™ from the branching rule
from the inclusion G; — GL,,. We are using a refined version of the skew Howe
duality for G1 = SOs,,4, arising from the relation (1 + p)V®2? = A\ C*+P,

The second part of this paper is dedicated to our novel asymptotic results
on the limit shapes of generalized Young diagrams. We apply our product
formulas at ¢ = 1 to undertake the asymptotic analysis to compute the
limit shapes for the probability measure i, (A) introduced above in the limit
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n,k — oo,n/k — const. Since the exterior algebra can be seen as a tensor
power, we obtain new results on the asymptotic analysis of the tensor power
decomposition. The asymptotic analysis of the tensor power multiplicities and
corresponding probability measure was previously done for a fixed n and k&
going to infinity in [55, 56]. The asymptotics of the probability measure for
the tensor power 2k of spinor representation of SOs,11 for both n,k going
to infinity was considered in [57], where the convergence of generalized Young
diagrams to the limit shape was proven. In the present paper we demonstrate
that this result is a consequence of skew Howe duality for (SOq,41,Pingg),
derive the limit shapes for all the dual pairs (G1,G2) mentioned above and
prove the convergence of the diagrams to the limit shapes. This main asymp-
totic result is formulated as Theorem 5.1. This relies strongly on our product
formulas, which are well-suited to this asymptotic analysis. We discover that
the limit shapes of Young diagrams for the symplectic and orthogonal groups
are “halves” of the limit shape of the general linear group. This can be seen
as a reflection of the fact that the branching rule from GLy to Sps, and
SOy induces a symmetry in the combinatorics, such as the GT patterns (see,
e.g., [53]). Our limit shapes for (GL,,, GLy) are related to those of Panova and
Sniady [28] by noting

nk
_nk (PR (m
s = 3 2 ("o,
m=0

where our limit shape is their limit at m = ”7’“ We demonstrate that the
probability measure for the (GL,,GLy) skew Howe duality is given by the
Krawtchouk ensemble (cf. [58, Sec. 5]; Johansson [11] attributes the first
appearance of this ensemble to Seppéldinen [59]). The Krawtchouk ensemble
is a specialization [60] of the z-measure [61], and we show that the skew Howe
dualities for the series SOgp41, SPon, SO2, is a specialization of the BC z-
measure recently introduced by Cuenca [62] up to a sign and renormalization.
We also show that p, . equals the spectral measure [63—65] for a particular
extremal weight. We discuss these relationships more precisely in Section 5.6.

This paper is organized as follows. In Section 2, we recall basic facts on
skew Howe duality. In section 3, we provide a general background to the com-
binatorial methods that are employed in this paper. In Section 4, we derive
the multiplicity formulas, prove combinatorial skew Howe duality, and estab-
lish the connection to lozenge tilings. In Section 5, we derive the limit shapes
and prove the convergence of the diagrams to the limit shape. We discuss the
relation of the limit shapes to the insertion algorithms. In Section 6 we list
some open problems.
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2 Classical groups and skew Howe duality

2.1 Clifford algebras and orthogonal groups

To study the action of Lie groups on exterior algebras, we will first recall
basic facts about Clifford algebra from [68]. The Clifford algebra C(Q) =
Cliff (V, Q) associated to a finite-dimensional, complex, positive-definite inner
product space (V, Q) is defined as the quotient of the tensor algebra T(V) =
@D,—, Ve by the two-sided ideal of T(V) generated by the elements of the
form v @ v + 2Q(v, v) - Id. The natural Zs-grading of T(V') into even and odd
tensors induces a Zy-grading of the Clifford algebra C(Q) = Cv¢" @ (%, The
space V is also the subspace of C(Q). We let gl(V) := End(V) denote the Lie
algebra of all linear endomorphisms of V.

Let N = dimV. We have the special orthogonal Lie algebra son(C) =
son(Q) = C(Q)P, where C(Q)? is the (homogeneous) degree 2 elements of
C(Q) from the Z-filtration induced from the natural Z-grading on the tensor
algebra. Denote by Piny the subgroup of the group of all invertible elements
of C(Q) generated by the elements v € V such that v? = 1 (equivalently
Q(v,v) = 1). The group Piny is a two-fold cover of Oy, where Oy is the
orthogonal group of invertible linear maps of V' that preserve Q. We will denote
by Spin, the preimage of SOy under natural projection Piny — Op, which
is also equal to Piny NC(Q)¢¥*™. Note that the Lie algebra of Spiny and SOy
is isomorphic to soy, and V is the natural representation of soy.

Below we will consider when V' is even and odd dimensional separately.

2.1.1 The even dimensional case

Let V := C?", and we write V =V, @ V_, where V, has a basis {ey,...,e,}
and V_ has a basis {e_p,...,e_1}. Furthermore, we choose V; and V_ to be
maximal isotropic subspaces for Q).

We define S = AV_. The standard basis of S consists of the elements
e, N--- ANe;, with 49 < --- < 4,. There is a unique way, up to isomorphism,
to make S into a simple C(Q)-module. The decomposition V = V, @ V_
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determines an isomorphism of algebras [68]:
C(Q) = End(9).

Moreover, there is an isomorphism

c@ee = End A" V) & End( A" V)

that leads to an embedding of Lie algebras so0s,(C) C C(Q)*" =
gl(A°" V_)@g[(/\Odd V_). Hence, there are two representations of $05,,, which

we denote by
odd

st= A"V and 5T = A"V

These representations are the half-spin representations of sos, and their
highest weights are the fundamental weights A,, and A,,_1:

for even n: ST = Vg, (An—1) and S~ = Vi, (Ay),
for odd n: S7 = Vio,, (Ay—1) and ST = Vi, (A,).

Their sum A V_ = ST@S™ is called the spin representation of s03,. The vector
space S when regarded as Ping,-module is called the spinor Ping, -module.

2.1.2 The odd dimensional case

Let V = C?**! which we can decompose as V = V, @V, @ V_, where we
take V; and V_ to be maximal isotropic subspaces as before. Thus, we have
dim Vj) = 1, which can be described as the orthogonal complement, under the
inner product defined by @, of V @ V_. There is a unique up to isomorphism
structure of simple C(Q)**"-module on S = A V_. The decomposition V =
Vi @ Vp @ V_ determines an isomorphism of algebras [68]:

C(Q) = End (/\ V,) ® End (/\ V+) .
Moreover, there is an isomorphism
C(Q)**" = End ( A V,)

that leads to an embedding of Lie algebras 509,11 C C(Q)®"*" = gl(AV_) =
gl(.S). The representation S = A V_ is the irreducible representation of $09,,11
with highest weight A,,:

S=AV_ = Vaog,., (An).
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2.2 Skew Howe duality

In the paper [69], Roger Howe gives dual pairs of Lie groups and what are now
known as Howe correspondences. We will be interested in the following cases.
Let n, k be nonnegative integers and let (G1, G2) be one of the following pairs
of classical groups:

(GLTHGLIC)? (Sp?mSka), (SOQTHOQ]C)a (SOQTL-‘rlyPian)'

The skew Howe duality for the pairs (G1, G2) of classical groups above is given
in [70], where the corresponding G x Go-module is constructed explicitly. We
will follow notations from [70].

Denote by V' the natural Gi-module and by W the natural Gs-module.
Below we will consider the above mentioned pairs of groups separately. We will

denote by Vg, () the simple G;-module and by Vg, (X/) the simple Go-module.
We begin by considering the (GL,,, GLg)-case. For G; = GL,, the natural

module is V = C”. Similarly, for G = G Ly the natural module is W = CF.
Firstly, recall that skew Howe duality in (GL,,, GLy)-case

A€o @) = Avew) EBVGL NeVer, V), (21)

where Var, (A) and Vor, (A ) are irreducible modules of GL,, and GLj, corre-

spondingly and N is the conjugate of the complement diagram of A in the n x k
rectangle. The skew Howe duality decomposition (2.1) could also be viewed as
the decomposition of a GL,-module into irreducible submodules

(AV)" = Do, ) Ve, ) 2

Thus, the dimension of GL,-module that corresponds to the complement
diagram N can be seen as a tensor product decomposition multiplicity

MF(N) = dim Vg, V).
Consider (Spay,, Spak) case. We have
V=C*=v,aoV., W=C"=W,oW._,
such that dim V3 = n and V. are isotropic with respect to the preserved skew-

symmetric bilinear form, and similarly for W. The skew Howe duality implies
multiplicity free decomposition

N\C" e Ch) = AW e Ck) = @ Vepa, (\) @ Vip,, (V) (2.3)
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and could be viewed as the decomposition of a Sps,-module into irreducible

submodules
(/\ ) @ dlm VSP% )VSP2n ( )

For the other two pairs of groups, we can simplify the decomposition by
expressing the exterior algebra of standard representation in terms of funda-
mental representations. We will use the decomposition and notation given in
Section 2.1.

We consider the (SOsy,41, Pingg) case, which is

=C*=Vv,0V., =C"Ml =W, W, e W_.

The skew Howe duality implies multiplicity free decomposition

/\((C%H_1 & (Ck) = /\ W ® (Ck @ V502n+1 ® VPinZk (X,) (2'4)

It could be viewed as the decomposition of a SOs,,+1-module into irreducible

submodules
(/\ ) @dlm Ving,, (A ))VSOQWH(A)

Let us look closely at the left hand side of this decomposition. There exists an
isomorphism

/\W = /\ W_®& /\ Wo ® /\ Wi=2 (VSO271+1 (A”))®2

due to the fact that A Wy is two dimensional (recall dim Wy = 1) and

V50sm41 (A /\ W_ = /\ W,

is a spinor SOg,1-module. On the other hand, recall that the group Pingy
is a two-fold cover of the group Osp. Due to [71, Thm. 4.9], if A has exactly
k rows then the Osi-module is decomposable on restriction to SOs into the
direct sum of two inequivalent irreducible SOs;-modules, the dimension of
each being half that of original Ogx-module:

/

dim (Viing, (X)) = dim(Vo,, (X)) = 2dim(Vso,, (X)).

Therefore, this skew Howe duality implies a decomposition of a SOs,,+1-module
into irreducible submodules

®2k

2" (V502n+1 (A ) @lem VSOQk (AI))VSOQnJA ()‘) (25)

A
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Finally, consider the (SOsy,, Oak) case, where
=C*=v,0V_, W=C"=W,oW._,

The skew Howe duality [70] implies multiplicity free decomposition in
(SO2y,, Pingy,) case:

/\((C2n ® (Ck) — /\ W ® (Ck @ VSOzn ® VO% (X/), (26)

It could be viewed as the decomposition of a SOs,-module into irreducible
submodules

(AW)™ = @ 2dim(Veo,, (%) Vo, (V.
A

The exterior algebra of the standard representation of SOs,, decomposes as

AW=Aw_o AW, = AW

The spin module A W_ decomposes into even and odd parts:

/\ W /\even W /\odd W — VSOQ,L (An—l) P VSOZn (An)

Therefore, the skew Howe duality implies a decomposition of a sum of half
spin SO, fundamental modules into irreducible submodules

k
(V50s, (A1) @ Vs0s, (An)) @dlm V50, (X)) Vs, (A).

3 Combinatorics

We give the necessary background on partitions, tableaux, highest weight rep-
resentations, crystals, and the Lindstrém—Gessel-Viennot (LGV) lemma. Fix a
positive integer n. Denote [n] := {1,2,...,n}. Let g denote a finite-dimensional
simple Lie algebra of classical type (i.e., Cartan type ABCD) with indexing set
1, simple roots {«; }ic;, fundamental weights {A; }ic;, weight lattice P, simple
coroots {a;'}iei, and inner product (a;,af) = Cj; with [Cy]; jer the Car-
tan matrix. Let {¢;}_; denote the standard basis of (3Z)" with the standard
embedding of P.

A partition X is a weakly decreasing finite sequence of positive integers,
and we draw the Young diagram of A\ using English convention. We use the
standard identification of partitions with elements in the dominant weight
lattice PT. We denote

¢

4
A=, A= S"6 — DA..
=1

i=1
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the size and weighted size, respectively.
The g-analogs of numbers, factorials, and binomials are the standard

k
Kly=14q+-+d" K= []ml m[’f]q'

m=1

Following [42], we will also require the natural (Mahonian) g-analog of the
triangle Catalan number given by

[n+ kgl n—k+1],

Cnila) = Kl \[n + 1],

foralln > 0and 0 < k < n. We consider C, 1(¢q) =0ifn <0,k <0, or k > n.

3.1 Crystals

An crystal is a set B with crystal operators €, ﬁ B — BU{0}, for i € I, such
that for the functions

£i(b) := max{k | €¥b # 0}, ©;(b) := max{k | fFb # 0}, wt: B — P,
the relations
Gb=b <= b=fil, (wt(b), i) +€i(b) = pi(b)

hold for all ¢ € I and b,b" € B and forms the crystal basis as defined by Kashi-
wara [2, 3] of a Drinfel’d-Jimbo quantum group Ugy(g)-module. Our definition
is what is called a regular or seminormal crystal in the literature (see, e.g., [72]
for additional information on crystals). We call an element b € B highest weight
if &;b = 0 for all i € I. For any A € PT, there exists a unique crystal B(\) with
a unique highest weight element u) of weight A corresponding to the highest
weight irreducible representation V() [2, 3].

We can construct the tensor product of crystals By, ..., By as follows. Let
B =B, ®- -® By be the set By, x --- x By. We define the crystal operators
using the signature rule. Let b=br ®--- @by ®b; € B, and for i € I, we write

e — 44
S—— — —— —
wi(br)  ei(br) @i(br)  ei(b1)

Then by successively deleting any (+—)-pairs (in that order) in the above
sequence, we obtain a sequence

sigi(b) = e — e
#i(b) gi(b)
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called the reduced signature. Suppose 1 < j_,jy < L are such that b;_ con-
tributes the rightmost — in sig;(b) and b;, contributes the leftmost + in sig;(b).
Then, we have

eb=0br®@ - ®bj, 41 ®€bj, ®bj, 1@ X by,
fib=b,® @b 1®fibj ©b; 1@ Dby

If one of the factors in a tensor product is 0, then we consider the entire element
to be 0. For type A, the highest weight condition is the classical Yamanouchi
condition (see, e.g., [18]).

Remark 3.1. Our tensor product convention follows [72], which is opposite
of the tensor product rule used by Kashiwara [2, 3].

For two crystals By and By, a crystal morphism : By — By is a map
B U {0} — By U {0} with ¢(0) = 0 such that the following properties hold
forallbe By and i € I:

(1) TE6(8) € Ba, then wt (1)) = wt(b), & (6(8)) — £4(b), and ¢, (6(8)) = 21(b).
(2) We have (e;b) = €;¢(b) if 1(e;b) # 0 and €;(b) # 0.
(3) We have ¢(fib) = fiyo(b) if ¢(fib) # 0 and fi)(b) # 0.

An embedding (resp. isomorphism) is a crystal morphism such that the induced
map B; U {0} — By U {0} is an embedding (resp. bijection).

Next, we consider types B and D. Here we recall a specific realization of the
crystals for the spinor representations due to Kashiwara and Nakashima [73]
that is called the spinor crystal. This is B(A,) in type B, and B(A,_1) or
B(A,,) in type D,,, which has an underlying set {+, —}" with the additional
condition in type D,, that for (s1,...,s,) € B(Ag) we require [[;_, s; = —, +
if kK =n — 1,n respectively. The crystal operators are defined by

(o Sic1,+,— Siva,...) ifi<nand (s;8+1) = (—,+),
~ (..o, 8n—1,+) if i = n, type B, and s, = —,
ei(sla"'vsn): e .

(o0 Sn—2,+,+) if i = n, type Dy, and (8,1, 8n) = (—, —),

0 otherwise,

(. cySi1, —, T, Siga, .. ) if 7 <n and (Si, 5i+1) = (+, *),
~ () Sn—1,—) if i =n, type B, and s, = +,
fi(sla"'asn): oo

(..., Sn—2,—,—) if i = n, type D,, and (s,—1, S,)

0 otherwise.

1
wt(s1,...,8,) = 3 (s1€1 4 s262 + -+ + Spen),

We remark that these are distinct from the (reduced) signature described
above. An element (si,...,s,) will be written as tableaux whose shape is a



Springer Nature 2021 BTEX template

Skew Howe duality and limit shapes 15

Fig. 1 Crystals of the natural representation B(A1) of types Ay, and Cp.

half-width column of height n. For B(A,—1) in type D,, we consider the box at
height n as being a negative half-width box. This is consistent with the identi-
fication of Pt with partitions, and following English convention for tableaux,
the entry in the i-th row counted from the top in the tableau is s;.

3.2 The Lindstrom—Gessel—Viennot lemma

A wuseful tool for changing combinatorial information into a determinant for-
mula is the Lindstrom—Gessel-Viennot (LGV) Lemma [43, 44]. Let T' denote
an edge-weighted directed graph with weight function wt: V(') — R, for some
commutative ring R. Let u = (uy, ua, ..., ux) and v = (v1,va, ..., vx) be tuples
of vertices of I' for some fixed positive integer k. A family of nonintersecting
lattice paths (NILP) from u to v is a tuple (p1,pa,...,pr) of (directed) paths
in I'; where p; is a path from wu; to v; such that no two paths have a common
vertex. Let N (u, v) denote the set of all NILPs from u to v. Define the weight
of a path p = (91,72, ...,m¢), where n; € E(T'), and NILP p = (p1,p2,...,Dk)
to be

V4 k
wt(p) = Hwt(ai% wt(p) = Hwt(pi)-

Lemma 3.2 (LGV lemma [43, 44]) We have

k
det[ > Wt(p)] = > wi(p).
i,J

PEN (uq,v5) 1  PEN(uyv)

Two applications of the LGV lemma is used to compute the multiplicity
of V()) inside of V(A,,)®%* in type B, [42, Thm. 4.4] and V®* where V =
AV (A1), in type C,, [42, Thm. 4.12]. In both of these constructions, we are
working on a square grid with two types of steps

* E:(i,j) = (i+1,]),
® N:(i,j) = (6,5 +1).
The highest weight condition on the corresponding tensor product of crystals

is the nonintersecting condition on a family of lattice paths and that the paths
stay strictly below the antidiagonal.
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3.3 Tableaux and patterns

A semistandard tableau of shape M is a filling of the Young diagram of A with
positive integers such that rows are weakly increasing and columns are strictly
increasing. It is a classical fact that the set of all semistandard tableaux of
shape A with entries in {1, ..., n} parameterize a basis for the irreducible high-
est weight gl -representation V(). This can be shown by using the branching
rule gl,, | gl,,_;, which gives rise to Gelfand-Tsetlin (GT) patterns [74], which
are triangular arrays such that the top row is the partition A and satisfy the
local conditions

a>b>c.

Furthermore, there is a natural crystal structure on semistandard tableaux by
reading columns bottom-to-top from left-to-right and applying the signature
rule on the reading word realized as a tensor product of B(A;) [73]. The
bijection between GT patterns and semistandard tableaux is given by the i-th
row of the GT pattern is the shape of the tableau restricted to entries at most
i.

For sp,,,, a basis for V() is indexed by the set of King tableauz of shape
A [75], a semistandard tableau in the alphabet {1 <1 <2 <2< .-+ <n <7}
such that smallest entry in the i-th row is at least i. When A is a single
column (i.e., A = Ay, for some h € I), then the King tableaux agree with the
Kashiwara—Nakashima tableaux [73] (which has a crystal structure from the
reading word) by reordering the column, but this does not hold for general
shapes. This was described in terms of branching rules by Proctor [53, Thm 4.2]
using a version of GT patterns for gl,, ; first given by Kirillov [76]. These
GT patterns satisfy the symmetry that when reflected over the middle, we
obtain the negative pattern. So it becomes sufficient to consider only a half
GT pattern (and forgetting the middle column forced to be 0) as given in [53,
Thm 4.2], which we call a type C,, Proctor pattern. We remark that this half
pattern description was first given by Zelobenko [77]. Furthermore, we obtain
a King tableau from a type C,, Proctor pattern analogous to the gl,, case.

Next, we look at the analog of GT patterns for soy, again following [53]. We
can index the basis of V() by symmetric (in the sense above) gl _; patterns
except the middle column no longer has to be its own negative. Hence, we
obtain half patterns as before except the rightmost entries now can be positive
or negative, but other satisfy the inequalities with respect to their absolute
value. For N = 2n + 1, that is we are in type B,,, these near symmetric GT
patterns are in bijection with type C,, Proctor patterns except we can now
allow the rightmost entry to be in %Zzo by having an entry a < 0 going to
—a — % We call such a half pattern a type B, Proctor pattern. These are in
bijection with Sundaram tableaux [38], which are King tableaux with an extra
symbol oo that can only appear at most once in any single row. A half pattern
with the sign for N = 2n will be called a type D,, Proctor pattern.
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4 Combinatorial skew Howe duality

In this section, we will prove a combinatorial version of skew Howe duality.
Recall that this means that we show that the multiplicity of the representation
V()) inside of V®F for some G-representation V equals the dimension of
another representation V(i) for some other classical Lie group Ga. Our proofs
uses combinatorial identities involving crystal bases and NILPs, which we can
then express as a determinant. Therefore, we express our results in terms of
the corresponding Lie algebras. We can then describe this duality in terms
of lozenge tilings, where we are taking paths along two different directions.
Additionally, we give a g-deformation of the combinatorial skew Howe duality
in a number of cases, where we relate a natural g-deformation of our formula
with the ¢g-dimension of V(u).

The g-dimension of a highest weight irreducible g-representation V() is
given by

(A p,aY
dim, V() = dimg(3) = [] L—gttoe)
acedt

where ®* denotes the set of positive roots of g and p = > icr A is the Weyl
vector. We can also compute it using the principal gradation (see, e.g., [78,
S10.10]) on g by

)

1— q(Pvav>

dim, () = Z gzt dim V(A)a—s_ wia,-

wezl)

4.1 Multiplicity in type A

We begin with g = gl,, with taking the exterior algebra of the natural repre-
sentation V' = A V(A;) and compute the multiplicity of V' (\) inside of V®F.
To obtain the multiplicities for sl,,, we need to take the projection of the Z"*1
ambient space along the vector (1,1,...,1).

Proposition 4.1 Let g = gl,,, and let V.= AV (A1). Then the multiplicity of V()

in VOF s
n—1
‘ k—.i—z — det ' k+1
k+i—J—Ap_j i.i=0 J+ Ay

Proof We show that the multiplicity is equal to the number of NILPs on a square
grid with the initial points s; = (0, —%) and the terminal points at t; = (j+Ap—j, k—
J — An—j). We build a bijection as follows. Consider the (m + i)-th step on the path
p;. If the step is a horizontal step E, then there is an n — i appearing in the m-th
tensor factor from the right. Thus, a vertical step N does not contribute anything
to the m-th factor. It is straightforward to see that the nonintersecting condition
corresponds to the highest weight condition. Hence, the image is a highest weight
element, and the inverse map is clear. |

n—1

det (4.1)

,7=0
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Example 4.2. Counsider gl;, k¥ = 6, and A\ = (5,4,4,2,1). One such lattice
path and the corresponding highest weight element in V®¢ is

S0

S1

(o= [ee]e] -]

52

83

Sq

Corollary 4.3 Let \ denote the complement of X inside of an n X k rectangle. The
multiplicity of V(A) in VOk s equal to the number of semistandard tableauz of shape
A flagged by (fo,. .., fn—1), where fi =i+ 1+ Ap_y.

Proof The claim follows from the standard bijection between NILPs in a square grid
(e.g., rotated by m/2 counterclockwise from [18, Thm. 7.16.1]) and semistandard
tableaux. ]

Example 4.4. Consider the NILP from Example 4.2. Corollary 4.3 yields the
semistandard tableau

’OO\]OJ[\?»—*
| o N |~

Corollary 4.5 Let g = gl,,, and let V.= AV (A1). Let X denote the complement of
A inside of an n X k rectangle. The multiplicity of V(X) and V(X) in VOF gre equal.

Proof This follows by interchanging the roles of the horizontal and vertical steps
and noting that we get the same set of NILPs if we instead have the starting points
be s; = (n —i,—n) (that is, being along the bottom boundary instead of the left
boundary). O
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Another determinant formula for the multiplicity was given by Essam and
Goodman in [48, Eq. (53)] by applying the LGV lemma but instead only
considering the portion of the paths that are not fixed. Indeed, NILPs are
precisely the vicious walkers in [48]. In Example 4.2, this is the portion of the
NILP that is between the dashed lines.

We will prove that the natural g-analog of our determinant formula gives
a product formula of g-integers, which is a natural ¢-deformation of a result
coming from the Weyl character formula. We use the Dodgson condensation
method that is based off the Desnanot—Jacobi identity (see [79, Sec. 2.3]) to
give an inductive proof, which we briefly describe first. Let M be an n x n
matrix. For subsets A, B C [n], let M¥ denote the submatrix of M with
columns A and rows B removed. The Desnanot—Jacobi identity is

det M - det My = det My - det M, — det M{" - det M. (4.2)

Theorem 4.6 Let g =gl,,, and let V.= AV (A1). For a partition \ contained in an
n X k rectangle, define

n—1
A k+1
Mg (A) = det .
Ay i
914,5=0
Let a; = A\j + n —i. Then we have
n—1
H [k +m]q! x H [a; — ajlq
X[ m=0 1<i<j< Mo A~ SN
Mgt () =M= B = ¢! dimy (V') = ¢! dimg(X') € Z0[d],

n
[Tladq! [k +n —1—ailq!
=1

where dimg(v) is the q-dimension of V(v) for glj.. Moreover, M{*()\) is equal to the
multiplicity of V() in ek,

Proof We will be using the condensation method. Let M be the matrix for the
determinant M(‘JA()\). We note that removing the initial vertex un increases k by 1
and removing the terminal vertex vy, increases A; by 1 for all i. Thus, we can use
induction on n to write the minors in Equation (4.2) in terms of our product formula.
We note that ||\| = Z?:_ol i(k — Ap—;) for A a partition in an n X k rectangle. The
base case of n = 1 is trivial.

It is straightforward to see that the values {a;
minors. For the induction step, we have

}?2'11 do not change in each of the

n—1

H [k + 1+ m]q! x H lai — ajlq
1<i<j<n+1
n k)

H[ai]q![k +n— ailq!

i=1

det M) = g2i=1 =D (E=Anp1-) m=0
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n—1
[[Tr+mx [ lai—a]
det M? = gZizo i(k—Ans1-5) =0 1<i<j<ntl
n n+1 )
H [ailg![k +n — 1 —a;]q!
i=2
n—1
[[TE+1+mlx [ lai—asl
0 _ m (=) (k+1=Apy1-;) m=0 1<i<j<n+1
det My, =q 1 — ,
[ lailg!lk +n — ailg!
i=2
n—1
[Tk+mtx [T lai—al
nli(k—Apy1_i—1)m=0 1<i<j<n+1
det M(’)n = q~i=0 i( +1 ) — ,
H[az]q'[k: +n—1-— ai}q!
i=1
n—2
[TE+1+mlgtx [T lai—ajlg
0, 21— 1)(k—Aptp1—;) M=0 1<i<j<n+1
det MO’I”rLL = qu,l (7’ )( +1 ) - ,
[ladq! [k +n — ailq!
i=2

except My = 0 when A\; = k. Using Equation (4.2), we compute

0, n _ n 0
det M,(A) = det My - det M, — det My - det My,

0,n
det Mo’n
n
H [k +mlq! x H [a; — ajlq
_ IXl=k+xy m=0 1<i<j<n+1
-4 n+1

H [ai]q![k +n — ai]q!
i=1

X ([k+n—ant1lq — [k +n—ailq)

n
H [k +m]q! ¥ H la; — ajlq
N — m=0 1<i<j<n—+1 _
= qH)\H B n+1 = X qk+” “ar = antilq
H [ai]lq![k +n — ai]q!
i=1

as desired since

qHXH—k-*-qu-i-n—al q\lxl\+>\1+n—("+>\1) — ql\xll.

Therefore, the equality holds by induction on n.

For the second equality, we use the LGV lemma in two different ways to build
a bijection ¢, which we then will show is weight preserving up to the shift by ||A]|.
We first note that the determinant is equal to the sum over NILPs as in the proof
of Proposition 4.1, but we can weight the m-th vertical edges from the left by ¢™
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starting with m = 0. Indeed, this gives the g-binomial coefficient by using the well-
known description of

To construct a tableau corresponding to a term in dimg(u), we will construct a NILP
using the horizontal steps, but instead of vertical steps, we will use diagonal steps.

The NILP for dimg(p) is constructed by setting initial points 5; = (—i,¢) and
terminal points t; = (k — j 4+ pj,j — pj), where 1 < 4,5 < k. Note that since
uw= X/, the points fj and t;, correspond to all points along the diagonal from (0, k)
to (n + k, —n). For every NILP p from (s,t), we build p = (p;,...,D) from (8,t)
by having a diagonal step in p for each vertical step in p and connecting the result.
Indeed, the j-th diagonal step in p; corresponds to the i-th vertical step in p;_1,
where we take the choice to have the end of the diagonal step be the start of the
vertical step (so the top points touch).2 From the position of the starting points and
terminal points, we see that this map ¢ is a bijection. This is the case as the NILP
P is just a semistandard tableaux from the usual LGV lemma proof of the Jacobi—
Trudi formula, where the j-th diagonal step of p; on the m-th diagonal y = —z +m
corresponds to the (7, 7)-th entry being m in a tableau of shape p.

To show that ¢ is weight preserving, we note that us +— uy under this bijection
given above, which maps the weight ||X|| to weight 0. Next, we note that every time
we shift a vertical step right by 1, we move a diagonal step up by 1. Therefore,
under these shifts, the bijection is weight preserving (up to the shift by ||A||). Since
every semistandard tableau in V(i) can by obtained from u, by a sequence of shifts
(which simply changes some ¢ — i+ 1 in the tableau), we see this bijection is weight
preserving.

We can show the determinant equals dimg()\') similarly by instead taking the
starting points 5; = (n — 1+ 4, —i) and terminal points #; = (j — 1,j — 1 +n — A}).
The rest of the proof is similar with the j-th diagonal step in p; corresponds to the
(7 + i)-th horizontal step in p,_;. d

Example 4.7. We consider the NILP from Example 4.2. We have u = N =
(5,4,2,2,1,0). Under the bijection ¢ used to prove the second equality in

2The other choice would be to have the start of the diagonal step matching with the ends of
the vertical steps. This would make it so the initial step of each path from 5; — t; would be a
horizontal step rather than the last step.
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Theorem 4.6, we have

to
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We can describe the bijection ¢ used in the proof of Theorem 4.6 explicitly
in terms of the semistandard tableaux. For a semistandard tableau T, let
(T, the entry m in cell (i,j) goes to m + i — j in the cell (j,4). Clearly 1>
is the identity map (defined on the set of all semistandard tableaux). It is a
straightforward computation to see that the set given by Corollary 4.3 goes to
semistandard tableaux of shape X with the largest entry being k. Furthermore,
we have that 1 is ¢ translated to semistandard tableaux.

We remark that [48, Eq. (55)] is the ¢ = 1 version of our product formula for
the multiplicity in Theorem 4.6. An alternative proof at ¢ = 1 was given in [80,
Thm. 1], which could also be extended to the general ¢ case by taking the prin-
cipal specialization. Additionally, the equality ¢l* dimg(X') = ¢I* dimy(\)
is the g-analog of Corollary 4.5.

We describe another connection with a more classical enumeration prob-
lem attributed to Verner Hoggatt by Fielder and Alford [81]. The n-Hoggatt
triangle is the array of integers (Hgm, )o<m<k given by

bn (k) L(itn—1
Hyp=—-" i where by (k) = I | .
k by, (m)by, (k —m) e < n )

As first proven by Qiaochu Yuan (see [49, Sec. 3]), Hym equals the number of
semistandard Young tableaux with max entry k& with the shape of an n x m
rectangle by the hook-content formula. By Theorem 4.6 at ¢ = 1, we have the
following.

Corollary 4.8 Let § = ¢y +---4¢en € P for gl,,. The multiplicity of V(md) in VEF
equals Hy, ;.
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Corollary 4.5 then yields the symmetry Hyp, = Hy p—m [49, Eq. (3)]. Fur-
thermore, Theorem 4.6 gives a natural g-analog of the Hoggatt triangles, along
with determinant formulas for the entries and a connection with representation
theory from another perspective. That is, define the g-analog of the n-Hoggatt
triangle by

Him(q) = dimq((k - m)5/) = dim,(n™)
for gl;,. Consequently, from this perspective, Theorem 4.6 was recently proven
independently in the case A = md by Johann Cigler [49, Thm. 8|. For alter-
native proof, we can manipulate [82, Eq. (3.13)] for A = md to obtain the
g-analog of Hoggatt’s triangle given by [49, Eq. (22)].

Next we consider the projection to sl,, where all of the weights md +— 0.
Here, the multiplicity of V'(0) equals the n-Hoggatt sums: the rows sums of the
n-Hoggatt triangle. Alternatively, these are the diagonals of the generalized
Catalan number triangle as described in OEIS A116925 [83]. In particular,
the case of n = 3 yields a correspondence with Baxter permutations. The
multiplicities for sl,, can also be described by the (generalized) hypergeometric
series evaluation ,, Fy,—1(—n+1—k,...,—k; 2,...,n; (—1)™). For the ¢g-analog,
it is equal to

—ntl-k . . —k-1 _—k

n ,—(n+k—1)
nPn—1 2 qn 1 ; Qa(_l)n:| =2¢1 |:q 4 ;

7na_1n
g g ¢ ¢, (-1)

We thank Ole Warnaar for the simplification to using 2¢;.

4.2 Multiplicity in types BC

In this section, we consider the power of the spinor representation V (A, )®X
for SOg,41. We give a determinant formula and closed product formula for
the g-analog of the multiplicity of V(A) similar to the case for GL,, in the
previous section. When K = 2k + 1, this also equals the multiplicity of V()
inside of V¥ for Spa,,, where V = A V(A;). We recover the formula from [57,
Eq. (15)] and unify [42, Thm. 4.4, Thm. 4.12].

We start by considering the natural g-analog of the determinant formula
from [42, Thm. 4.4] for the multiplicity of V(X + pA,,) inside of V(A,,)®2k+P
where p = 0,1, in type B,;:

n

MPC N+ pAy) = det [Clagi,j) b(i.0)) ()] (4.3)

ij=1"
where

a(i,j)=2n—i—j+k+p+X, b(i,j) = j —i+k—\j.

We remark that the p = 1 is a straightforward extension of the p = 0 case.

Theorem 4.9 Let A be a partition inside an n X k rectangle.
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p=0: We have
k—1 B .
MECN) [T (e + 1) = ¢V dimg (X + wi),
a=1
where wy, = %(61 +---+ex) for type Dy, and dim, (Xl—kwk) 18 the g-dimension
of V(X/ + wy) in type Dy. Furthermore, MEBC () equals the multiplicity of
V() in V(An)®2* for type By, and MP(X) € Zxo[q].
p=1: We have
MPCA+ Ay) = ¢ dim, (X)) € Zso[q),

where dimg(X) is the g-dimension of V(X/) in type Cy. Furthermore,
MBC (X + A,) equals the multiplicity of V(A + Ay) in V(A,)®2kF for type
B, and V()\) in VEF for V.= AV (A1) in type Cy,.

Proof We first prove the p = 0 case. The multiplicity claim was proven in [42,
Thm. 4.4]. From [42, Thm. 3.8, Thm. 4.4], we have a bijection between the NILPs
and King tableaux. In [53, Thm. 8.1], the character of V(X/ + wy) is given by a pair
of a King tableau and a +-vector of length k£ — 1. When we look at the g-dimension,
this +-vector contributes a factor of

k—1

dimg(wp) = [ (¢° +1). (4.4)

a=1
Hence it remains to show that the bijection between NILPs and King tableaux is
weight preserving up to a shift by q”AH. This follows from noting that the ¢g-dimension
for the King tableau is formula [42, Thm. 3.8] with a slight modification to compute
the g-dimension by the i-th diagonal having weight ¢° and the shift by qHM'.

Now we consider the case when p = 1. As previously mentioned, the multiplicity
claim for type By is a straightforward extension of [42, Thm. 4.4], and type Chp
is proven in [42, Thm. 4.12]. Since the rightmost tensor factor has to be uy, , the
NILPs for the multiplicities in V(An)(g’%+1 are exactly those used to compute the
multiplicities in type Cy. Moreover, we note that these are precisely the same NILPs
used to compute the dimension of V(X/) of type Cf, by [42, Thm. 3.8]. This also holds
for the natural g-deformation and the result follows. |

We note that Equation (4.4) is almost the g-analog of 2¥ that comes from
the factor of 2 difference in dimension between A V(A1) and V(A,) ® V(A,).
The extra factor of 2, which would become the a = 0 factor in Equation (4.4),
comes from the order 2 symmetry of type D,,, which replaces the coefficient
of €, +» —eg. This can also be seen as coming from the fact we are using SOs,
rather than Os, to describe the crystals. Hence, this is the g-combinatorial
version of the Howe duality of (A V(A1))®" with SOay.

We can also obtain the following closed product formula using the
condensation method similar to the proof of Theorem 4.6.
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Theorem 4.10 Fizx positive integers k and n. Let \ be a partition contained inside
of an X k rectangle. Let a; = \j + (n — 1) + 1%;”. Then we have

H[QkerJr?i*?]q![?ai]qX H lai — ajlqlai + ajlq

x| =1 1<i<j<
MBC A+ phAn) = M =—— ; =20 .
11 {kﬂhaﬁ;”] ![k+n+ar;p} !
- 2 2
=1 q q
Theorem 4.10 for ¢ = 1 was proven using different techniques in [80,

Thm. 6], where our a; is their e; + 1. Their proof can be modified for the
general ¢ case by taking the principal specialization.

4.3 Multiplicity in type D

Now we consider the case for representations of SOg,. Let V. = V(A,—1) ®
V(Ay). The goal of this section is to compute the multiplicity of V() inside
of VK as a determinant and a product formula for the natural g-analog. We
continue our approach of giving a determinant formula via crystal bases and
the LGV lemma, but a little more care is needed because of the two types of
spinors involved. We relate our formula when K = 2k + 1 to a ¢-dimension
and conjecture that it is a g-dimension up to a simple ratio for K = 2k, which
is precisely the dimension of a representation when ¢ = 1.

For an element (s1,...,$,) in a spinor crystal in type D,,, we note that
the last sign s,, is uniquely determined by the product of the first n — 1 signs
S1 -+ Sp—1. However, since V is the direct sum of both spinors, we can freely
choose s;,, which uniquely determines which of the two summands the element
belongs to. Therefore, we can use the same identification as in type B, to
identify elements in V®2* with lattice paths in a square grid. However, for the
highest weight condition, we are not allowed to freely choose the sign for s,, nor
is it as simple as keeping the paths below the antidiagonal. We still want the
nonintersecting condition to be the translation of the highest weight condition
for all ¢ < n—1, so we can restrict ourselves to the rank 2 case withi =n—1,n.

In this case, we have four elements for (s,—_1, s,)

BN B B
-]

The first and second cases are highest weight elements, which pair with the
fourth and third cases respectively. Hence, we no longer require the path p,
to stay strictly below the antidiagonal, but there is some influence from p,,_;.
We fix the path p,_; and we then mirror the path from wu,_; across the
antidiagonal; i.e., we swap N <> FE steps.
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Lemma 4.11 Let B be the corresponding crystal of V' in type Da. All of the highest
weight elements in B®2k of weight A = cp—1€p—1 + cnen € PT are in bijection with
NILPs (pn—1,pn) in the grid with

e starting vertices u, = (0,0) and u,—1 = (—1,—1),

e terminal vertices v, = (k+cp, k—cp) and v,—1 = (k+1+cp_1,k—1—cp_1),
and

® p, does not intersect p,—1 reflected across the antidiagonal.

Proof We note that for any (sp—1,sn) € V there is a corresponding element obtained
by sending s, <> —sn, which applied to every factor translates to reflecting the
path py. Therefore, if there is an intersection, it is sufficient to consider the case
when the first intersection point is below the antidiagonal. The bijection between the
paths (pp—1, pn) and highest weight elements is the same as the type By case in [42,
Thm. 4.4]. This reflection is also a manifestation of the Dynkin diagram symmetry
that sends n — 1 <> n, so it is only sufficient to consider e,_1. Hence, the highest
weight condition corresponds to the nonintersecting condition and is proven similar
to [42, Thm. 4.4]. |

Next, we want to convert this to an honest NILP, which means we need
to remove the symmetric path p,_1. We do this by noting that every time
the path touches the antidiagonal, we have two choices. Therefore, we “fold”
the path p,, to stay below the antidiagonal but we still need to retain the fact
that we have two choices, which we encode by having two edges N.. We have
N correspond to the case when the previous step in the path was below the
antidiagonal and N_ when it was above antidiagonal. We note that reflecting
part of a path over the antidiagonal corresponds to interchanging E < N.
Hence, the number of these paths are in bijection with paths from (0,0) to
(x,y) on a square grid.

To make this precise in terms of the LGV lemma, let D denote the (infinite)
“grid” (directed graph) that consists of E: (i,7) — (i + 1,7) and N: (i,5) —
(4,7 +1) steps that do not have an endpoint on the antidiagonal (that is, either
endpoint has coordinates (4,%)) and two steps Ny : (i,i—1) — (7,¢) that end on
the antidiagonal. As a consequence, the directed paths must lie weakly below
the antidiagonal line of y = z.

Example 4.12. We demonstrate Lemma 4.11 when A = 0 with a pair of lattice

paths (p1,p2) in the symmetric and folded versions and the corresponding
highest weight element:

| 1~ EPEPREEEE
— — R ® .
-+ =
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Lemma 4.13 The number of paths from (0,0) to (x,y) on the grid D, where

necessarily x >y, s
T+y
Yy

Proof We unfold the path and the underlying graph to be on a square grid. O

Now we can prove a determinant formula and product formula for the
multiplicity.

Theorem 4.14 Let g = 502, and let V =V (Ap—1) ® V(An). Let p=0,1. Define
n—1
2(k+14)+p

MP O\ + pAy) := det
¢ At phn) kti—j—|Ansl

414,5=0

Then the multiplicity of V(A+pAnp—_1) and V(A+pAn) in Yy ®2k+D 4o MP(X+pAy).
Furthermore, we have

n
[[2k+2n—2i+plg! x  [] [a: —ajlolai +a5lq
- qHXH i=1 1<i<j<n

n

Mg (N)

€ Z>oldl,

[k+n717ai+g] ![k+n71+ai+g] !
11 214 214

1
(4.5)
where a; = X\j+n—i+ 5.

Proof The proof of the first claim is similar for the type By case from [42, Thm. 4.4].
Indeed, we note that we have the starting vertices u; = (—i, —i) and the terminal
vertices v; = (k+j+ |)\n—j| Jk—j— |>\n—j |) From Lemma 4.13 and the LGV lemma,
we see that the number of paths in this graph is equal to the determinant (4.14)
at ¢ = 1. From the definition of the crystal operators and the folded version of
Lemma 4.11, a NILP corresponds to a highest weight element read along diagonals,
where in the k-th path, the k-th entry is given by £ +— + and N +— —.

We can show the product formula for MqD(/\) by using the condensation method
similar to the proof of Theorem 4.6. To show MqD (M) € Z>olq], we apply the LGV
lemma. 0

Example 4.15. Consider the NILP from Figure 2. The corresponding highest
weight element is
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i
ST

Fig. 2 An example of an NILP on the grid D for type D4 and k = 6.

An alternative formulation of Theorem 4.14 was given by Grabiner and
Magyar [84, Eq. (47)]. For the case of V®2*+1 we can show the result is equal
to a g-dimension.

Theorem 4.16 Fix positive integers k and n. Let X be a partition contained inside
of a n X k rectangle. Then we have

MP (A + Ap) = ¢! dimg (X),

where dimq(xl) be the g-dimension of V(X/) in type By. Moreover, M (A + Ay)
equals the multiplicity of V(A + Ay) forn' =n —1,n in Y2kt

Proof The first claim follows from the analogous bijection between Sundaram
tableaux and NILPs as in the type By, case with King tableaux with the co entries in
the Sundaram tableaux being one of the choices N+ for the vertical steps. The fact
that this equals the multiplicity is analogous to the proof of Theorem 4.14. O

When we look at an even power of V', computations show that the deter-
minant is a simple ratio of the corresponding g-dimension, but we are unable
to prove this formula.

Conjecture 4.17 Fiz positive integers k and n. Let \ be a partition contained inside
of a n X k rectangle. Then we have

A1+k i .
¥ H a = J L dimg(V), (4.6)

where dimg (X/) be the g-dimension of V(X ) in type Dy.

We note that the ratio in Equation (4.6) is 2¥/2F = 1 at ¢ = 1. In the
sequel, we will show Conjecture 4.17 holds at ¢ = 1.
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4.4 Interpretation with lozenge tilings

We give a unified description for all of the combinatorial skew Howe duality dis-
cussed in this section using lozenge tilings. We realize the combinatorial skew
Howe duality by using the realization that lozenge tilings of a half hexagon
has three different paths that we can take. The lozenge tilings are naturally in
bijection with GT patterns, so they can be used to describe irreducible repre-
sentations of gl,,. This also accounts for the natural symmetry of Corollary 4.5.
The remaining cases then are based on imposing additional symmetries to the
lozenge tilings coming from [53] on GT patterns. These can be seen as mani-
festations of the branching rule from the natural embedding of g inside of gl .
These symmetries on lozenge tilings were discussed in [54, Sec. 3.2].

We begin by describing the lozenge tilings on a half hexagon. Fix a partition
u, and let a; = p; + k + 1 — i. We will be using the lozenge tiles R, G, B

Rl e

respectively. The region we will be tiling is a half hexagon H) with the top
and bottom sides having length n, the left side having length k, which means
the right side will have length n + k. We will place the B tiles along the right
boundary at heights a;, where they protrude outside of the region. Sometimes
we consider these B tiles to actually be triangles, so the result lies perfectly
inside the half hexagon. Lozenge tilings of H, are in bijection with GT pat-
terns, where for row £ in a GT pattern (,u(j))?:l, we place B tiles at heights

ugj) + k+1—14 in the j-th column from the right. It is a classical fact that this
uniquely determines a lozenge tiling as the B tiles can be seen as the tops of
cubes stacked in a corner, known as a plane partition in combinatorics (see,
e.g., [18]).

Now we can give an explanation of the two NILPs that appear in the
proof of Theorem 4.6. From an NILP that contributes to the multiplicity of
V(X), we obtain a lozenge tiling by considering p; to be a path starting from
the i-th position along left boundary from the bottom with every horizontal
(resp. vertical) step corresponding to an R (resp. G) tile. This also uniquely
determines the lozenge tiling as the only tiles missing must be B tiles. Next,
we can take paths in this lozenge tiling that avoid the R tiles, and this will
correspond to the paths p; with 5; being on the left at the i-th position from the
top with B (resp. G tiles) translating to horizontal (resp. diagonal) steps. This
yields the semistandard tableaux that gives the dimension of V(X/). Finally,
if we take the paths that in the lozenge tiling avoiding the G tiles, we obtain
the NILPs for the semistandard tableaux for V().

Example 4.18. We consider the semistandard tableau from Example 4.7,
which recall that n = 5 and k = 6. We see that it has the corresponding GT
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pattern and lozenge tiling of

Note that the path from s; — ¢; in the lozenge tiling that avoid the B tiles is the
path from s; — t; in Example 4.2 between the dashed lines. Furthermore, the
paths from 5; — t; in Example 4.7 correspond to the paths in the lozenge tiling
that avoids the R tile. The NILP that would correspond to a semistandard
tableau of shape A\’ come from taking the paths that avoid the G tiles.

We can realize the skew Howe duality in terms of lozenge tilings in a
different way. We allow ourselves to take only triangles along the middle of
a hexagon, so no B tile can cross the middle, with side lengths alternating
between m and n. Therefore, one side corresponds to the multiplicity of V()
in V®* for gl, as before. The other side we will consider as the representation
V(X) for gl from the GT pattern. Thus, this gives a natural combinatorial
description of Equation (2.2) and the skew Howe duality in (2.1).

Example 4.19. One tiling of a hexagon for n =5 and k = 6 with \ = 44421
representing the combinatorial skew Howe duality and their corresponding pair
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of GT patterns is

Next, we will interpret Theorem 4.9 in terms of lozenge tilings. In this
case for Spor, we want to impose a horizontal reflection symmetry to the
half hexagon, which further restricts us to the quarter hexagon. Indeed, this
requires that there are 2n steps on the left and 2k + 1 steps along the top and
bottom sides and along the middle are all B tiles. We now consider the middle
of the half hexagon to be the position 0 on the boundary (i.e., height 0), and
so this symmetry and indexing in terms of the corresponding GT patterns is
precisely those described for Spog. In particular, tilings of this quater hexagon
give the character for the corresponding sp,, representation by the natural
bijection with the type C} Proctor pattern.

We can translate this symmetry to the NILPs on the rectangular grid as
the lattice paths must stay below the antidiagonal. This means the NILP
corresponds to nonintersecting Dyck paths (which do not necessarily have to
end on the antidiagonal) and we obtain a determinant of triangle Catalan
numbers. Hence, the combinatorial skew Howe duality is simply taking two
different types of lattice paths on these lozenge tiling similar to the type A
case.

Example 4.20. We consider a tiling of the quarter hexagon for n = 4 with
k = 3 and the corresponding Proctor pattern and NILP from [42, Thm. 3.8,
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Thm. 4.12]:

3 2 0
3 1 0
2 1
2 0
2
1
\\ t3
U ta
— N
s N
J AN \\ tl
S92 N N
S1 - \‘\
\\ N t
Soﬂ AS 0

Note that if we think of the lozenge tiling as a stacking of boxes in the corner
with the B tiles at height 0 being the floor, the heights along the diagonals
are the diagonals of the Proctor pattern. It is easy to see this holds in general.

For Theorem 4.9 with V(A,,)®%* in type B,,, we cannot have full symmetry
of the (half) hexagon. Instead we consider lozenge tilings of the half hexagon
that are almost symmetric, where they are symmetric up to the middle row of
hexagons, which are then forced to be either

There are 2* such possible choices, where we take k — 1 of them to correspond
to the sign vector and the last to correspond to the parity (that is taking p+wy
or i+ wg—1). The remaining part of the lozenge tiling corresponds to the King
tableaux as in the case of a symmetric lozenge tiling. This choice is also the
difference between the type Cy and By, Proctor patterns allowing the rightmost
entries to be in £Z>¢. So we can realize our combinatorial skew Howe duality
as a full hexagon as for the gl, case with as much symmetry as possible.
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Example 4.21. We consider the quarter hexagon from Example 4.20, reflect
it vertically to a type C4 symmetric half hexagon, and then adjoin a type Bj
almost symmetric half hexagon:

Finally, we interpret Theorem 4.14 in terms of lozenge tilings similar to the
previous case. For the type D,, case, we have symmetry in the B tiles except
for the middle B tile, which is a direct translation of the Proctor pattern con-
dition [53, Thm. 7.2]. Note that this allows for a greater amount of asymmetry
than in a type B, lozenge tiling. The paths along such tilings avoiding the
B tiles precisely correspond to the unfolded NILPs. In fact, this shows that
Conjecture 4.17 holds at g = 1.

Theorem 4.22 Using the notation of Conjecture 4.17, we have
M (\) = dim V (p),

where V (u) is a representation of type Dy. In particular, Conjecture 4.17 holds at
qg=1.

5 Limit shapes of Young diagrams

In this section, we demonstrate how the limit shapes of the random Young
diagrams with respect to the probability measure from skew Howe duality,
see (5.1a) below, can be derived using the techniques of determinantal point
processes.

Here we demonstrate that the limit shapes for the classical Lie groups are
described by the same function, which is computed explicitly. Therefore we
need to use the parameters that are related in a certain way. Furthermore, let
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[ be such that n = 2] or n = 2] 4+ 1 depending on if n is even or odd. Recall
that skew Howe duality acts on the space A ((C” ® (C’“), which has a natural
action of the group GL,, x GL; and a multiplicity-free decomposition given
by (2.1). This space also has an action of the Clifford algebra as discussed
in Section 2 with an invariant subspace A ((C" ® (Ck). The invariant subspace
also has actions of

® SOg.1 X Pingy form =20+ 1,
® SOy X Oy, for n = 2[, and
® Spo; X Spoy for n = 21,

with multiplicity-free decompositions given by (2.4), (2.6), and (2.3), respec-
tively, using (generalized) Young diagrams for the corresponding Lie groups.
Let 1j,4(x) denote the indicator function, which is 1 if 2 € [a,b] and 0
otherwise.

Theorem 5.1 The decomposition of A (C™" ® C") gives rise to the probability
measure .,
dim Vgp,, (A\) - dim Var, \)

P (A) = ~onn . , (5.1a)

for the action of GLn x GL and, for k even, A\ ((C" ® (CK'/Q) gives rise to

. . ~/
im - dim
Mn,n/Q(A) = d VGl ()\2)7“:/12 VG2 (A ), (51b)
for the actions of SOg;11 x Ping forn = 2l+1, SO9; x Ok forn = 21, and Spa; x Spx
forn =2[.

Let fpn, denote the upper boundary of a Young diagram in a decomposition, rotated
and scaled by % as in Figure 3 and regarded as a function fn(z) of x € [0,c+1]. As
n — 00, K = 00, ¢ = limn koo % = const, the functions fn converge in probability
with respect to the probability measure (5.1) in the supremum norm ||-||co to the
limiting shape given by the formula

1+/I(172p(t)) dt ife>1,
f(x) = e (5.2)
1+/ (2p(t) — 1) dt ife<1,
0

where the limit density p(z) is written explicitly as

1 () _ 7 =
[—v/<,/d] (c+ 1)z +2¢ (c+ 17T+ 2¢
x) = —~—" |arctan | ——————— | + arctan | ————— ]|,
plz) 2m |: <(c—1)\/c—§2 (c=1)Ve—1z2
(5.3)
where T = x — 0'51, for (5.1a) and with a shifted argument p(a: + 0'51) such that

z € [0, CJQA] for (5.1b).

Note that the limit shape of the diagrams for the special orthogonal and
symplectic groups is a “half” of the limit shape for the general linear groups
(see Figures 9 and 10). The case ¢ = 1 corresponds to a constant solution
p(z) = 4, for x € [~1,1] and a triangular diagram \; = n — .
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The proof of the theorem is presented case by case in the following Sections
5.1, 5.2, 5.3, 5.4. We demonstrate the derivation of the limit shape in the
GL, x GL; Section 5.1.

5.1 Limit shape for (GL,,,GL;) skew Howe duality

For a partition A, we will use the coordinates a; := \; +n —i, which correspond
to the rotated diagram as demonstrated in the Figure 3. To derive the limit
shape (5.3), we write the probability measure in the form

M,k {az - n k H - aj)2 X H W(al)7 (54)
l

1<J

as the product of the square of the Vandermonde determinant and the product
of single variable dependent weights:

dimV,(A) - dim Vi,(X) ~ M*(X) dim V,,(\)
Hon, k(/\) 2nk = 2nk: =

n—1 n

(k+m)! 5 (k+n-—1)
ZEOZ’“m!(k—i—n—l)!x H (@i = a;) xil;[lai!(k—s—n—l—ai)!’

1<i<j<n
n—1 n
B (k+m)! 9 kE+n-—1
_Hka!(kJrnfl)!x H (@i = ;) XH a; ’
m=0 1<i<j<n i=1
(5.5)
where we have used the Weyl dimension formula
X=X g1
dim V,,(\) = Higy( — / ). (5.6)
HnL Om‘
In this form the probability measure i, x(a1,...,an,) is the measure for the

configurations of the Krawtchouk polynomial ensemble (¢f. [58, Lemma 5.1]),
since the weights are given by the binomial coefficients and the asymptotic
results of [85] can be applied. Nevertheless, we will see that the measures
pink/2(A) for Lie groups of series SOgz41, Spay, SO9 do not exactly coin-
cide with the Krawtchouk ensemble (see (5.28), (5.32), and (5.33)). Therefore,
in this subsection we present a method for derivation of the limit shape
for (GL,,GLy) that can then be applied with slight modifications to other
classical series of simple Lie groups in Sections 5.2, 5.3, 5.4.

We are interested in the limit n, k — oo such that lim% = ¢. In this case
GL, and GLj appear in the same way, so without loss of generality we can
assume that & > n. Rescale the coordinates as z; = 7 = Aitn=i and regard the
upper boundary of the rotated diagram as a piecewise-linear function f,(z),
so f)(x) = %1 for  # £,j € Z. To derive the limit shape it is convenient
to consider the diagram as a particle configuration with particle coordinates
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»
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Fig. 3 Rotated diagram for GLs5, coordinates a; = A\; + n — i correspond to the left
boundaries of the intervals, where the upper boundary as a function f,, is decreasing.

{z;}1,. Introduce the piecewise constant function p,(z) = (1 — f/(z)), that
is equal to zero on an interval of the length % if there is no particle in the left
boundary of the interval and is equal to 1 if there is a particle. Then p,(x) can
be called particle density. The convergence of the diagrams to the limit shape
leads to the convergence of particle density functions p, to a limit particle
density p(x), where the limit density p(z) is connected to a derivative of limit
function f(x) of the diagrams by the formula

F(@) = 1-20(a).

The limit shape can be recovered from the explicit expression for p(x) by the
formula

fl@)=1+ /030(1 —2p(1)) dt. (5.7)

It is more convenient to solve the variational problem for the limit density p(z).
The probability of a configuration {z;}"_; can be written as an exponent
of a functional J[p,]:

1

tn x({zi}) = Z exp(—n?J[p,) + O(nlnn)),
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where

c+1 c+1 c+1
Tlpu] = / / pn(@)pn(y) Inlz — |~ dx dy+ / pul) V(z) dx (5.8)

and the normalization constant Z,, does not depend on {z;}. We omit the com-
putation of the normalization constant and the estimate of the next order term
O(nlnn), which are straightforward and completely parallel to the computa-
tions for SO, 41 presented in [57, Lemmas 1,2]. The potential V(z) appears
from the use of Stirling formula for the factorials in Equation (5.5) and has
the form

Viz)=azlhz+ (c+1—-2)In(c+1—2x).

The minimizer is constructed explicitly in the following lemma.

Lemma 5.2 The minimizer of the functional (5.8) is given by the formula (5.3).

Proof If we shift the coordinates as T = = — % and introduce the function ppn (Z) =

pn(z), we can make the functional invariant with respect to the sign flip Z — —z:

el etl
J[pn]=/c+1 oy, Pr(@)pn(y) Injz —y| "dx dy
e 1 1 1 1
2
) N e D RE D

5.9
Now we need to find a minimizer in the class of the even functions p(z) such (tha‘)c
|p(z)| < 1 for any = with the normalization condition
o1
* (e) dx = 1. (5.10)

c+1
2

Assume that the minimizer p is supported on an interval [—a,a]. Taking the
variation by p and redefining the potential as V(z) = %V(z), we obtain an Euler—
Lagrange equation for x € supp p:

a
/ In|z — y|7lﬁ(y) dy + V(x) = const. (5.11)
—a

To write the solution we take the derivative of Equation (5.11) and arrive at the
electrostatic equilibrium condition

a ~

- / Py dy | V'(z) =0. (5.12)
L. Y-z

Then we denote the Hilbert transform of p(z) by

G(z) :=—i /a Ply). dy,

_aY— %



Springer Nature 2021 BTEX template

38 Skew Howe duality and limit shapes

which can be defined on any complex number z € C. In the sequel, we will have z
denoting a complex number and x being a real number. Note that G(z) is analytic
on C\ [—a,a] with limit values given by

.1 py) dy . 1/ y—xtic _
=lim > [ 2P i - [ LTI 54
Gx(o) <507 y— (z tie) <507 (y—a:)2+ap(y) Y

:—ip.v./%iﬂﬁ(mL

€
where we have used — v
m(x? 4 €2)

Gx(z) = +mp(x) +iV'(2),

so on the support of p(x) we have

— (z). Thus we arrive at

Gi(z)+G_(z)=2V'(z), =z€l—a,ad], (5.13)

and outside of [—a, a] the following conditions appear
Gi(z)—G_(z) =0, z ¢ [—a,a], (5.14a)
G(z) — 0, as z — 0o. (5.14b)

Now we have a Riemann-Hilbert problem for G(z), but the condition (5.13) is in
a non-standard form with the sum instead of a difference. We need to redefine G
in such a way as to obtain a standard problem that can be solved by the Plemelj
formula [86]:

G(z) == 7;(?&2.
Then we get
Gi@) -G ()= Ct@  G-@ _G@+CG-@_ 2V

(=), () (), (e
where the branch of the square root changes the sign crossing the real line

(\/xz—a2)+=—(\/$2—a2> , z € [—a,al.

+

The conditions (5.14) are preserved for G:
é+($) - é—(x) =0, z ¢ [~a,al,
G(z) =0 as z — 0o.

Then é(z) is a solution of the standard Riemann—Hilbert problem and is given by
the Plemelj formula

~ @ iV'(s) ds
6= = 2%” /—a (\/522— a2) (s — Z)’
+
_ V22 — a2 /“ ‘7’(3) ds .
T Joa (m)+<s_z)

To find the support of p, we need to consider the asymptotics of G(z) as z — co.
We expand the above expression into series:

G(z)_”"'(—l)/a‘7/(3)(1+j+~~)ds. (5.15)

™ z a(327a2>
+

G(2)
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Consider the first term in the series. For G(z) — 0 as z — oo we need to have

a !
/ _ V) -,
—a ( /o2 — az)
+
which is automatically satisfied since \7(:10) is an even function and ‘7/(3) is an odd
function. At the same time

Gy =i [PV ! [ty a0 ).

and comparing it to the second term in the series (5.15) we arrive at

a V'(s)s i
_71T/_G<\/S;’_7(12)+st:z. (5.16)

Taking the derivative of the potential V(z) and substituting it into Equation (5.16),
we get

=1 |s+(c+ /2‘
——— | ds=1. 5.17)
e e R e (
By taking a derivative, we can check that
/ N s+ (c+1)/2 ds
\/32—a2 S—(C+1)/2

— % ((2\/@_ \/m> log(c+ 1 — 2s)

+< (c+1)2 —4a2 -2 52—a2)10g(c+1+28)
f\/(c+1)274a210g (\/(C+1 *402\/7 2a° — 1))
+\/(c+1)2—4a210g (\/(c—i—l )2 — 4a2+/s2 — a2 — 2a% + (c + ))

—2(c+1)log ( s2 —a?+ s)) + const.

Substituting the integration limits we obtain the equation

2
cgl 1- 1—(2a> =1, (5.18)

c+1

which can be solved for ¢ > 1, and we obtain

a=+/c. (5.19)
We see that indeed a < cgl for ¢ > 1 and the solution p of the variational
problem (5.9) is given by the formula

Ve 1 1 C""l + In (&L —
o(r) == Re[G+ VT / (In ( s) ~In (% s)) ds
(\/32 — C)+ (s—x)
To compute the integral, we combine the logarithms the same way as we did in
Equation (5.17):

Y URCIC EDEITC L2 I S B

1
w2 —Ve Ve —s2(s — 1) —Jeve—s2(s—x) ™ "

c+1

ds.

=

2
s—&—cg
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Notice that the function
1

™

s—(c+1)/2
s+ (c+1)/2 ’
is the Hilbert transform of the indicator function 1[,(c+1)/2)(c+1)/2]. By using the
following well-known relation (see, for example, [87])

/ O:O ()3(s) / F(s)a(s) ds.

where f is a Hilbert transform of f and f € LP(R), g € L(R) with % + % =1, and
taking g = 1;_(c11)/2,(c+1)/2)> We obtain

(e+1)/2 _
/ f(s (C+1)/2‘ ds = 7/ (s) ds.
+(c+1)/2 —(e+1)/2
Thus, we need to compute the Hilbert transform for the function
1 1
1L iyel-veva,
fly) =™ Vy? —cly—=)
0 otherwise.

and then integrate it from —(c+1)/2 to (c+ 1)/2. In order to compute the integral
in the Hilbert transform f, we take the change of variables

2
and hence, we obtain
1 1
f(z):%/ﬁ ds _1(m‘m)_
™ _eve—s2(s—a)(s—z) T T—z

At last, we compute the integral

c+1)/2 1 1
o / (e+1)/2 2 ((xz)\/ZQC_ (xz)\/a:2c> dz:|.

Here again we can use the substitution (5.20) or find the indefinite integral in a
reference table of integrals such as [88] and obtain

plz) = —% [Im (log (m\/ﬂi—— (c+ )z + 2c)
+log (M\/ﬁﬂﬁ 1)1’—}—20)) —n} .

This answer (5.21) is easily rewritten in terms of the inverse trigonometric functions
for ¢ > 1 and |z|] < /c as

~oy 1 arctan —(c+ 1)z +2c arctan (c+ 1)z +2¢
p(:c)—27r|: ¢ ((c—l)\/c—m2>+ ; <(c—1)\/c—x2>:|' (5.22)

The typical graph of the function p(z) for ¢ > 1 is presented in Figure 4. The limit
shape of the diagram is then obtained using the formula (5.7). An example for ¢ = 9
and a diagram with n = 10,k = 90 is presented in Figure 5.

For ¢ < 1 it is no longer possible to find the minimizer such that p(z) < 1 for

o(x

(5.21)

all z. The potential V (z) becomes weaker as ¢ tends to 1, and when ¢ = 1 we have
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0.4
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0.1

-3 -2 -1 1 2 3

Fig. 4 The function p(z) for ¢ =1 (blue), c = % (orange), ¢ = 3 (green) and ¢ =9 (red).

a “phase transition.” In this case the particles are not confined strictly inside the
interval [—1, 1] anymore, and instead we have a constant density p(z) = 1/2 on the
whole interval. We have an obvious restriction p(z) < 1, therefore for ¢ < 1 it is
reasonable to expect

Pw) =1 - pi(a),
where suppp; C [— chr ,Cgl]. Note that p(z) = % is a constant solution to
Equation (5.12) for a = 1. Then

/(c“)/2 ply) dy _ /(CH)/2 A-p@)dy _ _217’(a:)+/(c+1)/2 oW dy _ iy,

—(c+1)/2 T—Y —(c+1)/2 r—=Yy —(c+1)/2 T Y
and the function pj(x) should also be a solution of (5.12), but with a different
normalization condition

(c+1)/2 (e+1)/2 (e+1)/2
/ p1(x) dx:—/ o(x) dx+/ ldx=c.
—(c+1)/2 —(c+1)/2 —(c+1)/2
The integral representation of p1(x) is obtained in the same way as for the case ¢ > 1,
but Equation (5.18) becomes

2
c+1 2a
5 |17 1_<c+1) -G

and we again get a = y/c. The function p1 is derived in exactly the same way as in
the case ¢ > 1 and the final formula is

plx)y=1- % |:arctan (—(c—|—1)x+2c> + arctan (W)} . (5.23)

(1—-c)Ve—a2 1—c)Ve— 22
which leads to the formula (5.2). This formula can be also obtained by interchanging
n and k for GLn, X GLy, case.’ O

3This does not hold for the SO and Sp cases we consider in the sequel.
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10

0 I I I I I
0 2 4 6 8 10

Fig. 5 The most probable (GL,,GL}) diagram for n = 10,k = 90 and the limit shape for
c=9.

The most probable diagram for n = 20, k¥ = 10 and the corresponding limit
shape for ¢ = 0.5 as well as the most probable diagram for n = 10, k = 20 and
the limit shape for ¢ = 2 are presented in Figure 6.

Proof of Theorem 5.1 for GLn x GLy The proof of the convergence to the limit
shape is completely analogous to the proof for SO2y,+1 presented in [57].

The proof proceeds as follows. First the functional J is written in terms of the
upper boundary fn as J[fn] = Q[fn] + C, where Q is quadratic in the derivative f;:

(c+1)/2 plet1)/2
M= +0 Q=g [ [ @kl —y ™ ax ay.

Since our definition of @ is similar to a definition in the book [89], we can use [89,
Prop. 1.15] and see that @ is positive-definite on compactly-supported Lipschitz
functions. Then for a compactly supported Lipschitz function f: R — [0,00), the
quadratic part @ of the functional J is used to introduce a norm

I1fllg == QLAY

Consider a space of 1-Lipschitz functions f; and fs such that the derivative f{,g(x) =
sgn z for |z| > Cgl. Then the difference f; — fo is a compactly supported Lipschitz

function and we can use its norm to introduce a metric

do(f1, f2) = lf1 = f2llq- (5.24)
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Fig. 6 One of the most probable (GLn,GLy) diagrams for n = 20,k = 10 and the limit
shape for ¢ = 0.5 on the left and one of the most probable diagrams for n = 10, k = 20 and
the limit shape for ¢ = 2 on the right.

We can use [89, Lemma 1.21] to obtain an estimate on the supremum norm for a
Lipschitz function f with a compact support:

£ loo = suplf ()] < CLQUAMY, (5.25)

where (1 is some constant.

Then we estimate the probability of the diagram that differs from the limit shape
by e. For a highest weight A with the boundary of rotated Young diagram given by
a function fn(z) such that d(fn, f) = €, the probability is bounded by

fin k(M) < Cpe™m e O INm),
After that we need only to estimate total number of diagrams in the n X k box as
at most Ce™ in order to have the convergence in probability in the metric dg to
the limiting shape given by the formula (5.3). This estimate is easily obtained from

the Hardy—Ramanujan formula, since total number of boxes in the diagram is not
greater than cn?. That is, for all £ > 0 we have

P(llfn = fllQ >¢€) —0, (5.26)

since the probability of each highest weight A with a rotated Young diagram with

boundary fn such that ||fn — fllg > ¢ is bounded by e~ +0(nlnn)
At last we apply the relation (5.25) to complete the proof of the theorem. O

5.2 Limit shape for (SOz;41, Pinyg) skew Howe duality

Now we will assume that n = 2] + 1 is odd. Then, as was discussed in
Section 2, it has a multiplicity-free decomposition into the direct sum of
S0O9;4+1 X Pingy, irreducible representations that are parametrized by general-
ized Young diagrams given in Section 4.2. Regarding this decomposition as
a SOq41 representation, we obtain the formula for the multiplicities of the
irreducible representations in the tensor power decomposition of the exterior
algebra of the defining representation A V(A1):

(/\ V(Al))®k — @MWV,
A
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A

~

Fig. 7 Rotated generalized Young diagram for SOg; 41 and the geometrical meaning of the
coordinates {a;}l_,.

Since A\ V(A1) =2 V(A;)®2@ A V(0), it is equivalent to compute the multiplicity
of V(A) in the tensor power decomposition

V(A)®F = @MV
A

since the multiplicities are related by M?2¥(\) = Q*kﬁk()\). Thus we recover
the multiplicity formula obtained in [47]:

. !
(2k +2m — 2)!
MPE(N) = H 22m—2 (Zhtant2l-1)) (2kodmi2l1)) % H s % H (aF —aj).
2 : 2 : s=1

m=1 i<j

where the coordinates {a;} we are related to the values A = Y | ¢;A; by the
formula

-1
a; =2 Li+0+201—i)+1=2N\+1-i)+1 (5.27)

j=i

and correspond to the rotated Young diagram, as demonstrated in Figure 7.
We will use the coordinates (5.27) for the remainder of this section.

The limit shape for this case was completely derived and presented with all
the proofs in [57]. Here we will present the limit shape in a special normaliza-
tion so that the connection between limit shapes for the diagrams of SOg;41
and GL, becomes apparent.
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Fig. 8 Rotated and scaled diagram for SOz;41 with [ = 5 and its continuation to negative
values of coordinate x. The function fj(z) is shown in solid black, the points z; = % are
the midpoints of intervals, where f/(z) = —1.

Using the Weyl dimension formula, the probability measure is written as

9P +2=lk]) l (2k + 2m — 2)!
/j‘n,k(A) = (2l)'(2l — 2)[ 9l X Tl_:ll 92m—2 (2k+an§+2l—1)! (2k—an§+2l—1)!
l
X Hai X H(a?—a?)z,
s=1 i<j

(5.28)
Now, we consider the limit n,k — oo such that lim % = c. Here the notation
is different from what was used in the paper [57]. The coordinates {a;} are
taking integer values in the domain [0, n(c + 1)].
To bring the expression (5.28) to the form (5.4), we denote by agj 41—, © >
0, i <l the “mirror image” of a;:

ag)+1—i = —Q;. (529)

These points correspond to a continued diagram, as illustrated in Figure 8.
Then we use Stirling formula to rewrite the measure (5.28) in the form:

21 21
i {ai)2) = 1;[ o= o] [ exw v (3) e
i,j=1
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Fig. 9 One of the most probable Young Fig. 10 One of the most probable Young
diagrams for GL4o and k = 101 (white back- diagrams for GL4o and k = 100 (white back-
ground). We superimposed one of the most ground). We superimposed one of the most
probable diagrams for SO41 and tensor power probable diagrams for Spsg and tensor power

50 (shaded blue background). 50 (shaded blue background).
where
1{/c+1 c+1 c+1 c+1
(5 ) (42 ()
(5.30)
1 1 1
ei(u) = 1 In (((c + 2)1)2 - u2) + 3 In|u| + O (l> , (5.31)

and Z; does not depend on a; and the additional conditions (5.29) are satisfied.

Introducing the coordinates {:z:Z =5 }?lzl, we arrive at the same variational
problem (5.9). Yet now we are interested only in values of p(z) for > 0. The
solution is given by the formula (5.22) for ¢ > 1 and by the formula (5.23) for
¢ < 1. This coincidence of density p with GL,, case leads to a peculiar effect
for the limit shapes of Young diagrams: for large n, k typical Young diagram
of SOg;4+1 looks as a part of a typical diagram for GL,,. This is demonstrated
in Figure 9.

5.3 Limit shape for (Spz;, Spar) skew Howe duality

This case is very similar to the SO9;4+1 case. We can consider the exterior
algebra /\ (C* @ C*) as the k-th tensor power of the exterior algebra of the
defining representation V = A V(A;) since dim V' = 22!, The multiplicity of



Springer Nature 2021 BTEX template

Skew Howe duality and limit shapes 47

V(A) in the decomposition of V®* can be written as a product formula

l (2k — 1+ 2i)!
Hl kit a)lktl—a) XSHGSxH“ a4

1<

where we use the coordinates
a; =N +1—i+ 1

Using the Weyl dimension formula, we can write the probability measure as

92(1—k) ! (2k — 1+ 2i)!
pn(faih) = —— 11 3
Hm(J DNEI+2—i—j) L (k+ 1+ a)!(k+1—a,)!
N (5.32)
Lo -
i<j
We are again interested in the limit n, k — oo such that lim 2& - = lim 22’; =c.

To bring the expression (5.32) to the form (5.4) we again denote by agi—; = —a;
(i > 0 or i <) the “mirror image” of a;. Then we use Stirling formula to
rewrite the measure (5.32) in the form:

21

pnifai)2) = 5 T loi - aj\xHexp[ OV (2) - ala)],

i#]
1,j=1

where V(u) is the same as in Equation (5.30), but the expressions for the
correction term e;(u) and the normalization constant Z; are different.

Introducing the coordinates { x; = 55 j,_,,» we arrive at the same variational
problem (5.9), and thus we obtain the same limit shape as in the SOqj41-
case. This limit shape again coincides with a half of non-linear part of limit
shape for GL case. We illustrate this coincidence with a diagram for Sp,, with
n = 20,k = 50 and GL,-diagram for n = 40,k = 50, presented in Figure 10.
Since both cases correspond to ¢ = 5 and n is large enough, we see a good but

not a perfect coincidence of the shapes of the most probable diagrams.

5.4 Limit shape for (Oq, SO2;) skew Howe duality

As before, consider the exterior algebra A ((C2l ® (Ck). Then this space can be

seen as (/\ (CQl)@k, the k-th tensor power of the exterior algebra of the first
fundamental representation of Oy;. On the other hand it can be seen as the
2k-th tensor power of the sum of the last two fundamental representations
(V(Al_l) @ V(Al))®2k for SOg; (recall that as an Og-representation, it is
irreducible).
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The tensor product decomposition coefficient is obtained in Theorem 4.14.
Similarly to all previous cases, the coordinates

a; = 2)\l+2(l—1)

correspond to a rotated Young diagram. The probability measure is given by
the formula

l
o MR T 2k + 21— 20)0 [ (af —a3)?

i=1 1<i<j<l

pnk({ai}) =

H(j_i)(%_i_j)ﬁ<2k+2l2—2—ai)!(2k+2l2—2+ai)

i<j i=1

(5.33)

by applying the Weyl dimension formula Similarly to SO9;41 case we consider
the limit n, k — oo such that lim 28 = lim 22]; = ¢. Again we bring the expres-
sion (5.33) to the form (5.4) denotlng by agi—; = —a; (i > 0 or i <) the
“mirror image” of a;. The only difference here is that there are no columns of
the half-width. Using the Stirling formula to rewrite the measure (5.33) in the

form

sl (V) = 7 e a]\xHexp[ W (%) —eala)].

K
1,j=1

we again obtain V(u) as in Equation (5.30), but the expression for the correc-
tion term e;(u) and the normalization constant Z; is different from the SOg; 44
case. We do not write these expressions here since the limit shape does not
depend upon them.

Introducing the coordinates {ati = 41 f,_;» We again arrive at the same
variational problem (5.9). Thus we obtain the same limit shape as in the
S0Oq41-case.

5.5 Limit shapes and the insertion algorithms

All skew Howe dualities considered above can be seen as tensor power decom-
positions. The tensor product decompositions we consider here can all be
represented by an insertion algorithm for the corresponding generalized Young
diagrams:

GL,: Schensted insertion (or dual RSK) [25, 90],
Spar: Berele insertion [32, 34],

SO4;41: Benkart—Stroomer insertion [50],
SOq;: Okada insertion [51].

Hence, by pushing forward the uniform distribution on matrices, these inser-
tion algorithms give the same probability measure as (5.1) on partitions.
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Therefore, our results provide the limit shape for these insertion schemes and
gives an algorithm to efficiently sample the random diagrams with respect to
this measure.

Let us discuss the (GLy,GL,,) case in more detail, where the sampling
algorithm proceeds as follows. First, we generate a uniform random n x k
matrix M with matrix elements taking values 0 and 1 with the probability %
This matrix M encodes the random basis element of A ((C" ® C* )

eyr = /\ (e; ®ej),

(i,j):Mijil

where we go through the pairs (i, j) is some fixed order, such as lexicographic
order (the sign does not matter). Similarly, we consider a sequence of the pairs
(i,7) such that M;; = 1 ordered lexicographically, which is called a generalized
permutation or a biword by Stanley [18]. We then apply Schensted insertion
using the second value j in each pair, where an equal element is bumped
downwards in a row the insertion tableau P or added to the end [25]. The
new box added to P has the first value ¢ added to the corresponding position
in the recording tableau ). The shapes of P and @ are the same and ) and
the transposed insertion tableau P’ are semistandard. Then the shape of Q
is conjugate to the shape of P’, and tableaux P’ and ) encode the basis
elements of the decomposition (2.1), as demonstrated in [25]. The shape of the
tableau P’ is sampled from the distribution (5.1a). In Figure 11, we present a
diagram, sampled by the dual RSK algorithm for n = 50, k = 150, as well as
the corresponding limit shape for ¢ = 3 = k/n. The limit shape (5.2) can be
used to deduce the asymptotics of first row length of the random diagram as
we obtain A; ~ vkn + ESn as n, k — oo from (5.19).

For the other series, we have analogous sampling algorithms by using the
corresponding insertion algorithm. We also present a diagram in Figure 11
sampled using Benkart—Stroomer insertion for SOs5; and 2k = 150 from the
distribution (5.1b) since 2k/(20 + 1) &~ 3 = ¢. We also obtain the asymptotic
of first row length as \; ~ v/2kl as [, k — oo, 2k/l — const from Theorem 5.1.

5.6 Analytic continuation and orthogonal polynomial
ensembles

We will discuss the relation between our measures and limit shapes with other
results in the literature. We begin with the (GL,,,GLy) skew Howe duality,
discussing its relation with [28, 29] and the Krawtchouk ensemble. We then
briefly survey papers of Borodin, Johansson, Okounkov, and Olshanski to con-
nect it with the Meixner ensemble through the “analytic continuation” of the
parameters n, k, the z-measure. There is another related measure that we
discuss called the zw-measure, which comes from harmonic analysis of the infi-
nite unitary group Uss := J,,,»; Um. We then sketch a possible unification of
these as a manifestation of the super Howe duality for (GLyg, gl(m|n)) [69]. We
conclude with showing that other skew Howe dual pairs from our paper are
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0

Fig. 11 Blue: Random Young diagram sampled using dual RSK algorithm for GLsg and
k = 150 with the limit shape for ¢ = 3. Shaded: Random Young diagram sampled using the
Benkart—Stroomer insertion algorithm for SOs; and 2k = 150.

specializations of the type BC' z-measure introduced by Cuenca [62]. We dis-
cuss the relationship with orthogonal polynomials and possible related super
Howe dualities.

5.6.1 Type A

The decomposition of the exterior power

N (€ oct) = @ Vor, () @ Var, () (5.34)
[A|=m
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was considered by P. Sniady and G. Panova [28]. They proved the equality

dim Vor, (\) dim Ve, (V) A
dim A" (Cr®CF)  — fF7

(5.35)

recalling f* is the dimension of the irreducible representation of the permuta-
tion group S, (which equals the number of standard Young tableaux of shape
v) and k™ denotes a rectangular Young diagram with n rows and k columns.
In [28, Thm. 1.4], it was shown the random irreducible component of (5.34)
corresponds to a pair of Young diagrams (A, \'), where A has the same distri-
bution as the Young diagram formed by taking the boxes with its entry < m
of a uniformly random Young tableau of rectangular shape k™. Thus, the limit
shape for Young diagrams with the probability measure

_ dim Vo, () - dim Vr, (Y)

(m)
/"Ln’,;’;;; (A) nk
( 7”)
in the limit n, k, m — oo, E — const, - — const is the same as the level lines
of the limit shape for plane partitions presented in [29].

Since
A eck) = @/\ (CreCh),
the measure p, (A\) can be written as

nk  (m) A nk
NI S L) s

p=0

for the finite values of n, k, m. In the limit n, k — oo, the binomial distribution
concentrates on the point m = 2k . Therefore, the limit shape (5.3) coincides

with the limit shape for ,u< 2 >()\) that was obtained in [28] and is the same
as the corresponding level hne of the plane partitions in the box from the
paper [29].

In the paper [58], it was demonstrated that the “binomialization” of the

measure uiﬁ>()\) given by (5.36) is the Krawtchouk ensemble and its limit

shape was related to the m = "7’“ level line of plane partitions in the box. In

particular, compare the following:

* Equation (5.4) recalling W(a;) = (*©'7') with [58, Eq. (5.2)] (or [85,
Eq. (2.4))) at p = 1/2; '

¢ Equation (5.35) with the probability measure denoted M,, n,as in [58, Sec. 5];
and

® Equation (5.36) with [58, Eq. (5.1)].
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The relation of the Krawtchouk ensemble to the skew (GL,,, GLj)-duality does
not seemed to have been noticed in [28, 58]. However, it does appear indirectly
in [11, Prop. 5.1] through the use of dual RSK and the result [91, Thm. 7.1].
From the Krawtchouk ensemble perspective, we obtain Equation (5.35)
from [60, Prop. 4.3].

We describe the appearance of the skew Howe duality in [85] and connect
the lozenge tilings with domino tilings of Aztec diamonds. We note that the
function denoted wh] in the proof of [85, Thm. 2.2], where using our notation
h = (an,...,as,a1) and depends on a parameter w, can be described in terms
of lozenge tilings as

wlh] = (1 +w?)() x [T(ai —a;) x ﬁ (Z,“’_A;)! =Y (1 +w?)#Pu#h, (5.37)

1<J L

where we sum over all half hexagon lozenge tilings L giving V(A) and #X
denotes the number of tiles X in L. We note that these formulas agree from
the Weyl dimension formula (5.6) and the fact that the number of B tiles and
R tiles is fixed for any given A. Similarly, the formula for w[h'] is the same sum
over the tilings for V(X/). Therefore, we have [85, Eq. (2.11)] at w = 1 is our
probability measure fi, (A).

We can then think of the factor 1 + w? as choosing between a pair of
horizontal or vertical domino tiles in the Aztec diamond, and therefore there

exists a 2(3)to-1 mapping of Aztec diamond tilings to lozenge tilings for V().
As a consequence, we have that there are

2(2)2(’;)2nk — 2n(n—1)/2+k(k—1)/2+nk — 2(n+k)(n+k—1)/2 — 2(n;k)

tilings of the Aztec diamond of order n + k — 1, first shown in [92].* However,
we are unable to find such the explicit mapping to give a combinatorial proof
of Equation (5.37).

We bring in another character into our ensemble cast, the z-measure, that
comes from harmonic analysis on the infinite symmetric group [61]. To do so,
we begin by looking at the Schur measure [21, 22], which is the measure on
partitions A from the Cauchy identity (1.1) renormalized so the sum is 1. By
specializing x; = 1 and y; = £, we obtain a {-deformed version of the measure
ua‘f(}\) from the introduction

15 () = (1 — ™M dim Vg, (V) dim Var, (V). (5.38)
Note this does not make sense when £ = 1 as the sum from the Cauchy

identity would be infinite. By using the hook-content formula [95, Thm. 15.3]
for dim Vg, (M) and dim Vg, (A) and replacing n, k € Z~o with z,2’ € C, we

4The bijection between NILPs consisting of large Schréder paths and Aztec diamond tilings
given by the DR paths in [85] was rediscovered in [93, 94].
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have the z-measure [22, Eq. (2.4)] (¢f. [60, Eq. (1.3)]). The connection with the
Meixner ensemble was given in [11, 60]° (see also [63, Ex. 1.5] for an explicit
statement) and by taking z = n and 2’ = —k, we obtain the Krawtchouk
ensemble with w = ¢/(£ — 1) with £ < 0 [60, Prop. 4.1].

We can also describe a relation to the zw-measure, which now comes from
the “big” group Us [99, 100]. An alternative way of describing skew Howe
duality is we have a natural left action of U, x Uy acting on n X k matrices
by (a,b) - M = aMb~'. For any representation V of U, we can construct a
probability measure Py by

X(V) = X(Va)Pr(N),
A

where X denotes the normalized irreducible character. Therefore, our measure
Iin, is this probability measure for the action given above. In the case k = n,
skew Howe duality becomes the biregular representation, and additionally we
can describe U, as the symmetric space (U, x U,)/U,, where we use the
diagonal embedding A(U,,). When taking the limit as n — oo, we need to
take a slightly bigger space that still carries the Uy, x U, action. These give a
family of representations parameterized by two complex parameters z, w (with
some restrictions), which give probabilities that when restricting down to finite
n are the zw-measures and have explicit formulas [99)].

Finally, we note that we can take the actions of U, on the left and the
right to be different, which means are irreducible representations are actually
indexed by a pair of partitions. We can induct a gl,, ®gl,,, representation, which
we equate to a U, x U, (polynomial) representation, to a representation of the
Lie superalgebra gl(m|n), where we obtain what is known as a Kac module,
and the irreducible representations can be indexed by a pair of partitions with
one being the positive part and the other being the negative part. There is
a super analog of Howe duality for (GLg,gl(m|n)) [69, 101, 102] (see also,
e.g., [103, Ch. 5.2]) on the supersymmetric algebra of C*¥ @ C™" denoted
S(CF@C™") (see, e.g., [103, Sec. 5.1.1] for a precise definition) giving a super
Cauchy identity that “interpolates” between the usual Cauchy identity and
the dual Cauchy identity:

S sasa(y/w) = [ s
A

1— 2y,
g i

where s)(y/w) denotes the hook Schur or Schur supersymmetric function and
are the characters for gl(m|n) modules [104] (see also [39, Sec. 1.5], where they
can be defined in terms of plethystic substitution). In [99], they actually use a
bigger space 4 that has a U, X Uy, action to describe the extreme characters.
This suggests that i corresponds to a Kac representation or the corresponding

5The Meixner ensemble, Howe duality, and a last passage percolation model have been linked
in [96-98].
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irreducible representation for gl(oo|oo) as a limit of the Kac representations
for gl(n|n) or the limit of S(C* ® C™I") when k,n,m — oco.

5.6.2 Types BCD

By instead considering the infinite orthogonal and symplectic groups and limits
of symmetric spaces [105], we arrive at the type BC' z-measure [63, 65], which
is defined on partitions with £(\) <1 by

2
[T (97 =0+97)
BC o 1<i<j<l , )
Mz7z’,a,5()‘) - ZZ(Z, 2 5) H Wz,z 00,5 l(bz)v

i=1

Mz+20)'(z+a+1)
o ST ESCES
T+ D~ + DTz +2+ 1+ 20)0(2 + 2+ 1 +209)’

L(z 42 + B+ i)l (a+i)I(i)
2z 20 f) = HFz—I—z PE+p+iI(E +B+ iz +2 +i+at+B+i)

where b; == \; +1 — ¢ and ¥ = %’BH Note that Z;(z,2’,«, ) is the nor-
malization constant. In [62, 106], Cuenca constructed an explicit kernel for
the corresponding point process and showed a relation to the one for the zw-
measure. Furthermore, as described in [62], there are special values of the pairs
(a, B) (there denoted (a,b)) that correspond to the limits of symmetric spaces
first examined in [105], where the BC' z-measure describes an approximation
of the spectral measure from a generalization of the biregular representation
at finite values. As given in [99, Sec. 8|, the BC' z-measure can be constructed
from multivariate Jacobi polynomials, which are BC'D analogs of Jack poly-
nomials and are characters for the type BC D irreducible representations when
suitably normalized [107, Thm. 1.2]. This can also be considered as a type BC
Weyl group, the group of signed permutations, analog of z-measure from the
Plancharel measure.

Our goal is to show that our measure p, 5 is equal to a specialization of
Ni?,a,ﬂ' Comparing ,uizc,,aﬁ with our measures, we should set a; = b; + 99,
and hence we need to have o + 8 = —1,0,1 (so ¥ = ,2, 1, respectively)
to make our coordinates to agree. This and the symmetric space description
suggests we should take («,8) = (£1/2,41/2), and these indeed yield our
desired specializations. For the case of @« = 8 = 0, we will need an “odd”
measure that would correspond to the skew Howe duality for (Ogj11, SO2k+1)
(or (SOq;, Pinggy1)) if it existed:

pn k(N = Z - dim Vo, , (A) - dim Vso,, ,, (X ) = Z - dim Vso,,,, (A) - MP(A+ A,)



Springer Nature 2021 BTEX template

Skew Howe duality and limit shapes 55

(o, B) (1/2,1/2) (1/2,-1/2) (=1/2,-1/2) (0,0)
G/K  (Spai x Sp21)/Spai (O2141 X O2141)/O02141 (O21 X O2)/O2;  Uzpn/(Un x Un)
(G1,G2) (Sp2i, Spak) (SO2141, Pingyg) (021, 802k)  “(O2141,802k41)”

Table 2 The values of the parameters («, 3), the corresponding limit of symmetric spaces
G/K, and the corresponding skew Howe dual pair (G1, G2).

!
Hai X H (a? —a?)2
i=1

1<i<j<l

=7

l
[Tk +1—ai = 1/2)k + 1+ a; — 1/2)!

i=1
for some normalization constant Z and

l
[k +2n — 2i + 1!
Z=7— =1 :
[Te-i+1/2itx J] @+1-i-j)

i=1 1<i<j<l

Theorem 5.3 Let k be an even positive integer. For (a,8) and the corresponding
group given by Table 2, we have

l .
pn k(N = (=D)Z=19C, 4 uBG L 50,

and Cy, 1, is a constant that does not depend on .

Proof We first recall some basic facts about the Gamma function I'(z), where z €
C\ Z<yp. In particular, it satisfies
T
ra)=1 r 1) = =T 'l —2T(2) = ———
=1 (= +1) = 20(2), (1-20C) = s,
where the last identity (Euler’s reflection formula) holds if and only if z ¢ Z. Note
that for any positive integer m, we have I'(m) = (m — 1)L.

As previously mentioned, we let

1
ai:bi-‘r’ﬂ:)\i-F(n—i)-F%.
Therefore, we have
2
2 2
[T (@?-@?)
BC 1<i<j<l
Mz,z’,a,ﬁ()‘) = Zn(z, Z’, a,ﬁ) H WZ’Z’,Q,B; l(bi)a

i=1
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w T(a; + 1)F(ai + 1/2)
' D(a; +1/2)0(ay)

W, ow11b) = —— -
2,255,531 F(ai,z)r(ai,z’)F(a?:z)r(a:z’)
a7

D(a; )T (a; ,)T(a; )T (a; )’

; .,
1,2 1,2 i,

a F(ai + 1/2)F(ai —+ 1)
" D(ai)T(ai +1/2)

W, o1 _1.,b;) =

ZZh2 T e) F(a;z)F(a;Z,)F(aiz)r(aiz,)
2
a;

(a; )T (a; . )T(a; )T (a] )’

7,2’

o Lai)l(a; +1/2)
'T'(a; +1/2)I(a; + 1)
F(a;z)F(a;Z,)F(a;’:z)F(a;":Z,)

1
B L(a;)T(a; )T (af )T(a; )

W ’ 1 ll(bl):

El

aI‘(ai +1/2)T(a; + 1/2)

L "Tla; +1/2)(a; +1/2)
e P TP TR Py
F(a;z)F(a;Z,)f(a+ W(aS.,)’

0,2 1,2’

1,2

where aitz = z=4a; +1+9. Next, we set z = k and 2’ = 1/2 — 1 — ¥, and hence every

denominator above is equal to
Pk—a;+1+N(1/2—a)T(k+a; +1+9)T(1/2+ a;)
=(h—a;+1+9—Dk+a;+1+9— 1)1m
=(-D%ak—a; +1+9—-Dk+a;+1+9—1),
where we used Euler’s reflection formula for the first equality (recall that a; € Z~g).
The claim follows by comparing these formulas to the corresponding measures. (]

From this connection, the relationship between the kernels in [62] could be
seen as the reflection of the fact that we essentially get the same limit shapes
for type A as for types BCD. The agreement of the limit shapes for types
BCD can also be seen as coming from the fact they are all controlled by the
BC' z-measure in the limit as n — oo.

Additionally, our measure equals the spectral measure Wiop for an
extremal character w of a “big” group restricted down to its rank [ sub-
group (up to an overall constant). This is an immediate consequence of [65,
Prop. 5.1], that the (appropriately normalized) multivariate Jacobi polynomi-
als P\(1') = dim Vg, (\) with the rank of G being I, and the definition of
tn k, Wwhere 1™ = (1,...,1) be the sequence with every entry 1 of length m.
We note there is a minor typo in [65, Eq. (26)], where the leading factor should
be HK Bi(2—8;)

j=1 2
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Corollary 5.4 Fiz the extremal character w = (0, 1k,k). For (a,B) and the
corresponding group given by Table 2, we have i, ) = /L‘fja,ﬁ‘

Remark 5.5. There is another formula for the restricted spectral measures
for g = f% given in [64, Thm. 2.8] involving a determinant. A natural question
is if the matrix given there, which we will denote by M(}A), is equal to ours
up to some power of 2 multiplying each entry, but this turns out to not be the
case. If we consider (a, ) = (1/2,—1/2) and M) for | = 3 and k = 4,
then we compute:

275 75 20 2538
MPC ) = 297 90 28 M@O) = |2 1 T
132 42 14 5 1 7

256 256 128

Note that there is no element in M () that is a multiple of 17. We can also
extend the construction for the case o« = § = % by using the normalized Jacobi

T () 1-3-(2j—1)

: b
polynomials J§a )(1') = "% 2425

, where ¢; = for 7 > 0 and ¢y = 1.

5.6.3 Relationship with Howe duality

For completeness, we discuss how our results in lozenge tilings are related to
Howe duality. Here, we assume k € Z (not necessarily even). We start with the
classical result of Howe duality for (GL,,, GLy) with restricting the partition A
to be inside of an min(n, k) x m rectangle from the lozenge tiling description,
yielding the measure ,u‘:'m from the introduction. Without loss of generality,
we assume k < n. We can take a half hexagon tiling parameterizing the crystal

B(\) for GL,, and the one for B(\) for GLj and join them together at the
top point after reflecting the GLj across the vertical axis. We can then ignore
the portion of the GL,, half hexagon that is fixed by A\py1 = --- = A, = 0.
This gives us a lozenge tiling of a partition inside of a n x m x k box. As
an example, consider n = 4, k = 2, and m = 1, one such lozenge tiling for
A= (1,1,0,0) C 1% is

where we have drawn in the fixed portion in light gray.

Now we describe Howe duality for the pairs (SO, spyy) or (Spak,509)
using lozenge tilings with bounding A inside of a rectangle. We can perform
the analogous joining of the quarter hexagons for the SO,, and Spyy represen-
tations to form a half hexagon and removing the fixed parts, where we also
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remove the bottom B tiles and leftmost R tiles from the Spoy tiling (they
are completely fixed). The corresponding measure for (SO,,, Spai) was inves-
tigated in [108, Lemma 2.2], which can be seen as a specialization of the BC
z-measure :u’kB,ngl,a,B for £(A) < min(k,n), where we set the variables in [108]
toN=I[+kandp=1I.

6 Open Problems

Here we gather some open problems and conjectures from this work.

Since we have g-analogs for our multiplicity and dimension formulas (hence
our probability measures), a natural question is to determine how the param-
eter ¢ changes the limit shape. For the case of (GLy,GL,), we can compute
one such g-analog probability measure

g i (Vg () - % dimg (Ve (7))

A
e (A5 @) 7 6.1)

" N7, (@)

where
= 4 Wk
NiL(q) = P PG) TT (g + 120 [T T+
i=1 j=k+1i=1

with

k(k + 1)(2k + 1)

6
the square pyramidal numbers OEIS A000330 [83]. We obtain (6.1) by taking
the principal specialization of the alternative form of the dual Cauchy identity

P, =

n k
Z SA(T1y s ) S5 (Y1, Yk) = H H(xi +Y5)s (6.2)

ACkn

which is constructed from the dual Cauchy identity by using

-~/

Ch(V(A ))(ylv ey yk)

|
—
<
Sy
|
3
o
=
—
<
—
S
N>
*
N
—~
<
[
<
=
S~—

<.
Il
-

..,yk_l).

I
—=
<
T3
o
=
—
<
—
>~
-
N
—~
<
=

.
Il
-

In particular, we substitute y; — y; ! to account for the \ — X' change, and
then we multiply by y7 - - -y to obtain (6.2). We can similarly construct other
g-analogs of our probability measures using the principal specializations of the
formulas from, e.g., [37].


https://oeis.org/A000330
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However, the measure uﬁ, & (A; @) is not a unique g-analogue of the mea-
sure [, ;(A). Other choices are given by the following conjecture based on
experimental data.

Conjecture 6.1 We have probability measures on all partitions X\ inside of an X k
rectangle:

M dimg (Var, (1) - ¢V dimq(VGL X))

2
k(X5 @) = =23 : (6.3a)
9 H n 1 k+2—1 % H H Jj+2—i
j=k+1i=1
. ~/ ~/ . —
Az oy, @M dimg (Var, V) - g™ M dimg (Vg )
k(A @) = —5¢ — : (6.3b)
i=1 j=k+1i=1

We note that the numerators of (6.3) become

¢ dimg (Varz, (V) - ¢ dimg (Ver, V) = ¢/ dimy (Ver, (V) - MA(N),

qHXH dim, (VGLT,,(/\)) . qIX I dimq(VGLk (X’)) - qlx [N dim, (VGLn, (,\)) . M;‘()\).

We also remark that we can rewrite the numerator of u 2 (\; q) as the classical
skew Howe duality

g dimg (Var, (V) - g™l dimyg (Vor, (\))

by using the equality dim, Vgr,, (\) = dim, Vz, (A), which is immediate from
the well-known fact Vgr, (A\)* = Vigr, (M) up to a shift by the determinant
representation (see also Theorem 4.6).

We have some initial data computed by using a discrete steepest descent
method that suggests that limit shapes are deformed in the limit n,k — oo,
q — 1 such that lim £ = ¢, g = 1 — 2. For the measure fio 1 (A; q) in (6.1), w
have produced the estimated limit shapes for various values of v in Figure 12
Derivation of the formulas that describe these limit shapes remains an open
problem. In the case ¢ = const, which corresponds to v = £oo the limit shape
degenerates to one of the straight horizontal lines, which are shown in black
in Figure 12. The upper line is for ¢ > 0 and the lower for g < 0.

An even more general problem is to describe the asymptotic behavior of
the character measure that can be introduced for GL,, x GLj, as follows:

Z sa(i, .o n)sy (Y1, - Yk)

ACkn

pn oA}y, {5} =1) =

n

k
[T 11+

i=1j=1
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Fig. 12 The most probable diagram for n = 25,k = 100, the limit shape for ¢ = 4 and

the upper boundaries for the most probable diagrams for the measure iy x()\; ¢) where
g=1-v/nandy = -3, 155
(upper) and v = —oo (lower).

2,10, 25. Black horizontal lines correspond to 7 = 400

and similarly for other dual pairs of groups. We suggest that the limit shape
for n,k — oo and x; = e*a(i/"),yj = e¥U/") with smooth ¢, 1) is described by
the Burgers equation. The asymptotic behavior of the character in the infinite
rank limit is related to the asymptotic of the Harish-Chandra—Itzykson—Zuber
integral, which is described by Burgers equation as was derived in [109] and
proven in [110].

We now switch to looking at questions from the other skew Howe dual
pairs. To account for the sign difference in Theorem 5.3, we believe by using
the “Jack parameter” £ < 0 for the type BC z-measure (which is analogous
to the £ from the type A z-measure), will yield a positive formula. We note
this extra parameter comes from the multivariate Jacobi polynomials [65, 105].
Furthermore, by defining nn = £/(1 — £), we will obtain a parameter 0 < n < 1
for a polynomial ensemble. In particular, as a consequence of Corollary 5.4,
we should obtain that these processes are specializations of a “dual” version
of specialized Jacobi polynomial ensembles (see, e.g., [63, Prop. 8.1] and [64,
Thm. 5.7]) in parallel to the case with (GL,,GLy) with the Meixner and
Krawtchouk ensembles.
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Conjecture 6.2 The specialized BC z-measure “E?ﬁ—l—ﬂ o8 with the extra
parameter £ < 0 is equal to a discrete orthogonal polynomial ensemble with parameter
n=¢/(1—=&). Moreover, this measure equals ji, 1 for a particular value of §.

We note the the cases of @« = g = :i:% correspond to kernels from Cheby-
shev polynomials (of the first or second kind depending on the sign), which
are playing the role of the Meixner polynomials for the orthogonal and sym-
plectic groups. We also have the case when o = 8 = 0 in the BC' z-measure,
where the Jacobi polynomials specialize to Legendre polynomials. However,
this does not seem to correspond to a known skew Howe duality or character
identity. We remark that [37, (B;B,)| (with all variables specialized to 1) does
not yield this identity because of the extra spin contribution, which means we
use M{PY(X) rather than MP (X) since dim Vso,,,, (n+Ax) = 2% dim Vs, ().
Hence, using [37, (B;By)] produces the same measure as for (Span,Spar)
(see [37, Sec. 3] for the character identity).

Problem 6.3. Determine if there is a (skew) Howe duality for the case when
a=p=0.

Let us expand on the potential relationship between the extremal char-
acters of “big” groups and super Howe duality. Now we note that the skew
Howe duality for the other pairs is a special case of the super Howe dualities
(Spak, 0sp(20]2m)) and (O(k),spo(2m|2l)) duality (see, e.g., [103, Sec. 5.3]).
In parallel to the (GL,, GLy) case with (Ux X Us)/Use, it is natural to sup-
pose the corresponding infinite symmetric spaces in question (see Table 2) are
related to one or both of these super Howe dualities. There is also a relation-
ship between infinite rank Lie algebras and Lie superalgebras discussed in [103,
Ch. 6].

Problem 6.4. Describe the relationship between harmonic analysis on “big”
groups and representations of Lie superalgebras.

We can push this parallel even further. In Section 5.6.3, we noted a con-
nection with the probability measure from [108, Lemma 2.2] and Howe duality
via lozenge tilings. This yields Howe duality versus skew Howe duality based
on the sign choice of 2z’ for the BC' z-measure as in the (type A) z-measure.
Furthermore, a similar picture for a half hexagon lozenge tiling is given in [64,
Fig. 1] in the special case of b = ¢ + 1.° Examining the probability measure
from [64, Thm. 2.8], we see one factor being the dimension of a representa-
tion and the other being a determinant in the finite case. We remark that
a similar process for the symplectic group was constructed by Warren and

Windridge [111], which should correspond to a = 8 = %

SWhen we take the infinite limit b, ¢ — co of the [64] quarter hexagon, we obtain our quarter
hexagon with k — oo after reflecting over the line y = z.
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From Corollary 5.4, another natural problem is to see if there is an extremal
character so the spectral measure for positive s from [65, Eq. (16)] corresponds
to Howe duality and the orthosymplectic analog of the measure uE”]J with
possibly with m = oo. This would imply the specialized Jacobi polynomial
ensemble can be described by (a restriction of) Howe duality.

Problem 6.5. Determine if there exists an extremal character w such that the
corresponding spectral measure is equal to the measure induced from Howe
duality or restricted to partitions inside of an min(n, k) x m rectangle.

We note that for the extremal characters (1™,0,m) and (1™, 1%, mk) with
(o, ) = (£3,£3), the matrix from [64, Thm. 2.4] appears to has rational
entries with positive determinants by computational evidence. Furthermore,
for (1™,0,m), the support appears to be limited to £(\) < m. However, these
do not appear to correspond to any Howe duality. It is possible that using
(€1™,0,&m) will lead to a &-deformed version of a Cauchy identity from a
Howe duality analogous to /‘Eﬁ ¢ from (5.38).

As noted in Remark 5.5, the matrix from [64, Thm. 2.4] is distinct from
our determinants for the extremal character w = (0,1% k). Computational
evidence suggests that all of the entries are positive integers divided by some
power of 2, which could be considered as contributing to the normalization con-
stant. Hence, there should be a combinatorial interpretation of these matrices
M(]) through the LGV lemma.

Problem 6.6. Find a nonintersecting lattice path interpretation of the
matrices M(A).

There is also a Howe duality for (Spa;, GLy) and (GLg, O,,) [1, Ch. 3] (recall
I = |n/2]) decomposing the coordinate ring of the null fiber as

RN)= > Va,(N) @ Va,(\). (6.4)

£(A)<min(l,k)

On the other hand, there are other limits of symmetric spaces considered
in [105, Table II], which should produce z-measures. This leads to the following
problems.

Problem 6.7. Find a z-measure that specializes to the measure induced
from (6.4).

Problem 6.8. Determine if there are corresponding z-measures for the other
spaces in [105, Table IT] and if they correspond to a (skew) Howe duality.
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