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In the present paper, whi
h is an outgrowth of our joint work with Anthony

Bak and Roozbeh Hazrat on unitary 
ommutator 
al
ulus [9,27,30,31℄, we

�nd generators of the mixed 
ommutator subgroups of relative elementary

groups and obtain unrelativized versions of 
ommutator formulas in the

setting of Bak's unitary groups. It is a dire
t sequel of our papers [71, 76,

78, 79℄ and [77, 80℄, where similar results were obtained for GL(n,R) and
for Chevalley groups over a 
ommutative ring with 1, respe
tively. Namely,

let (A,Λ) be any form ring and let n > 3. We 
onsider Bak's hyperboli


unitary group GU(2n, A,Λ). Further, let (I,Γ) be a form ideal of (A,Λ).
One 
an asso
iate with the ideal (I,Γ) the 
orresponding true elementary
subgroup FU(2n, I,Γ) and the relative elementary subgroup EU(2n, I,Γ)
of GU(2n, A,Λ). Let (J,∆) be another form ideal of (A,Λ). In the present

paper we prove an unexpe
ted result that the nonobvious type of genera-

tors for [ EU(2n, I,Γ),EU(2n, J,∆)], as 
onstru
ted in our previous papers
with Hazrat, are redundant and 
an be expressed as produ
ts of the obvi-

ous generators, the elementary 
onjugates Zij(ξ, c) = Tji(c)Tij(ξ)Tji(−c),
and the elementary 
ommutators Yij(a, b) = [Tij(a), Tji(b)], where a ∈

(I,Γ), b ∈ (J,∆), c ∈ (A,Λ), and ξ ∈ (I,Γ) ◦ (J,∆). It follows that

[ FU(2n, I,Γ),FU(2n, J,∆)] = [EU(2n, I,Γ),EU(2n, J,∆)]. In fa
t, we es-

tablish mu
h more pre
ise generation results. In parti
ular, even the ele-

mentary 
ommutators Yij(a, b) should be taken for one long root position

and one short root position. Moreover, the Yij(a, b) are 
entral modulo

EU(2n, (I,Γ) ◦ (J,∆)) and behave as symbols. This allows us to gener-

alize and unify many previous results, in
luding the multiple elementary


ommutator formula, and dramati
ally simplify their proofs.

Êëþ÷åâûå ñëîâà: Bak's unitary groups, elementary subgroups, 
ongruen
e subgroups,

standard 
ommutator formula, unrelativized 
ommutator formula, elementary generators,

multiple 
ommutator formula.
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Introdu
tion

In a series of our joint papers with Anthony Bak and Roozbeh Hazrat [9,27,

30,31℄ we studied 
ommutator formulas in Bak's unitary groups. In the present

paper we generalize, re�ne and strengthen some of the main results of these

works. Namely, we dis
over that the set of generators for the mixed 
ommutator

subgroup of relative elementary unitary groups listed in these papers 
an be

substantially redu
ed and remove all 
ommutativity 
onditions therein.

1

This

allows us to prove unexpe
ted unrelative versions of the 
ommutator formulas,

generalize multiple elementary 
ommutator formulas, and more. These results

both improve a great number of previous results, and path the way to several

new unexpe
ted appli
ations.

Morally, the present paper is a dire
t sequel our papers [71, 76, 78, 79℄ and

[77,80℄, where the same was done for GL(n,R) and for Chevalley groups over a


ommutative ring with 1, respe
tively. There, the proofs heavily relied on our

previous works, in parti
ular on [32, 33, 65, 74, 75℄ for GL(n,R) and on [28, 29℄

for Chevalley groups. Similarly, the present paper heavily hinges on the results

of [9, 27, 30, 31℄.

0.1. The prior state of art. To enun
iate the main results of the present

paper, let us brie�y re
all the notation, whi
h will be reviewed in somewhat

more detail in ��1�4. Let (A,Λ) be a form ring, n > 3, and let GU(2n,A,Λ) be
the hyperboli
 Bak's unitary group. Below, EU(2n,A,Λ) denotes the [absolute℄
elementary unitary group, generated by the elementary root unipotents.

As usual, for a form ideal (I,Γ) of the form ring (A,Λ) we denote by

FU(2n, I,Γ)

the unrelative elementary subgroup of level (I,Γ), and by

EU(2n, I,Γ)

the relative elementary subgroup of level (I,Γ). By de�nition, EU(2n, I,Γ) is
the normal 
losure of FU(2n, I,Γ) in EU(2n,A,Λ). Further, GU(2n, I,Γ) and
CU(2n, I,Γ) denote the prin
ipal 
ongruen
e subgroup and the full 
ongruen
e

subgroup of level (I,Γ), respe
tively.
We re
apitulate two prin
ipal results of our joint papers with Roozbeh

Hazrat, [27, 30, 31℄. The �rst one is the birelative standard 
ommutator for-

mula, see [27, Theorems 1 and 2℄. It is a very broad generalization of the


ommutator formulas for unitary groups, previously established by Anthony

Bak, the �rst author, Leonid Vaserstein, Hong You, G�unter Habdank, and

others, see, for instan
e, [1, 2, 6, 9, 17, 18, 69℄.

1

In parti
ular, this solves [23, Problem 1℄ and [30, Problem 1℄.

pave 
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Theorem 1. Let R be a 
ommutative ring, and (A,Λ) a form ring su
h that

A is a quasi�nite R-algebra. Further, let (I,Γ) and (J,∆) be two form ideals

of the form ring (A,Λ) and let n > 3. Then the following 
ommutator identity

holds

[GU(2n, I,Γ),EU(2n, J,∆)] = [EU(2n, I,Γ),EU(2n, J,∆)].

When A is itself 
ommutative, one even has

[CU(2n, I,Γ),EU(2n, J,∆)] = [EU(2n, I,Γ),EU(2n, J,∆)].

Another 
ru
ial result is the des
ription of a generating set for the mixed


ommutator subgroup [EU(2n, I,Γ),EU(2n, J,∆)] as a group, similar to the fa-

miliar generating set for relative elementary subgroups, see [9℄, Proposition 5.1

(
ompare with Lemma 3 below).

Re
all that we denote by Tij(a) elementary unitary transve
tions. They


ome in two denominations, those of short root type, when i 6= ±j, and those

of long root type, when i = −j. The 
orresponding root subgroups are then

parametrized by the ring A itself and by the form parameter Λ, respe
tively. To
simplify the notation in the relative 
ase, we introdu
e the following 
onvention.

For a form ideal (I,Γ), we write a ∈ (I,Γ) to signalize that a ∈ I if i 6= ±j,

and a ∈ λ−(ε(i)+1)/2Γ if i = −j. Clearly, a ∈ (I,Γ) means pre
isely that

Tij(a) ∈ EU(2n, I,Γ), see ��3,4 for details.

Further, we 
onsider the elementary 
onjugates Zij(a, c) and the elementary


ommutators Yij(a, b), whi
h are de�ned as follows:

Zij(a, c) = Tji(c)Tij(a)Tji(−c), Yij(a, b) = [Tij(a), Tji(b)],

In a slightly weaker form, the following result was stated as Theorem 9

of [31℄, and in pre
isely this form as Theorem 3B of [30℄. Observe that there its

proof depended on Theorem A, and thus ultimately, on lo
alization methods.

Theorem 2. Let R be a 
ommutative ring, and (A,Λ) a form ring su
h that A
is a quasi�nite R-algebra. Let (I,Γ) and (J,∆) be two form ideals of the form

ring (A,Λ), and let n > 3. The relative 
ommutator subgroup

[EU(2n, I,Γ),EU(2n, J,∆)]

is generated by the elements of the following three types:

• Zij(ξ, c),

• Yij(a, b),

• [Tij(a), Zij(b, c)],

where in all 
ases a ∈ (I,Γ), b ∈ (J,∆), c ∈ (A,Λ), and ξ ∈ (I,Γ) ◦ (J,∆).
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0.2. Statement of the prin
ipal result. The te
hni
al 
ore of the present

paper are Lemmas 6�12 that we prove in ��5�8. Together they imply that the

above Theorem B 
an be drasti
ally generalized and improved, as follows.

• We 
an lift the 
ommutativity 
ondition.

• The third type of generators are redundant.

• The se
ond type of generators 
an be restri
ted to one long and one short

root (and are subje
t to further relations, to be stated below).

The following result is the pinna
le of the present paper, other results are

either preparation to its proof, or its easy 
onsequen
e. For the general lin-

ear group GL(n,R) it was established in [76, Theorem 1℄. For the Chevalley

groups G(Φ, R) over 
ommutative rings � and thus, in parti
ular, for the usual

symple
ti
 group Sp(2n,R) and the split orthogonal group SO(2n,R) � it is

essentially a 
onjun
tion of [77, Theorem 1.2℄ and [80, Theorem 1℄. However,

as explained below, in these spe
ial 
ases one 
an say somewhat more.

Theorem 1. Let (A,Λ) be any asso
iative form ring, let (I,Γ) and (J,∆)
be two form ideals of the form ring (A,Λ) and let n > 3. Then the relative


ommutator subgroup [EU(2n, I,Γ),EU(2n, J,∆)] is generated by the elements

of the following two types:

• Zij(ξ, c) and Zij(ξ, c),

• Yij(a, b),

where in all 
ases a ∈ (I,Γ), b ∈ (J,∆), c ∈ (A,Λ), and ξ ∈ (I,Γ) ◦ (J,∆).
Moreover, for the se
ond type of generators it su�
es to take one pair (h, k),
h 6= ±k, and one pair (h,−h).

The di�eren
e with Chevalley groups is that now we have to throw in el-

ementary 
ommutators for two roots, one long root and one short root. For

Chevalley groups, one long root would su�
e. Conversely, when 2 is invert-

ible for types Bl,Cl,F4 and 3 is invertible for type G2, one short root would

su�
e. For unitary groups, modulo EU(2n, (I,Γ) ◦ (J,∆)) we 
an still estab-

lish a 
ognate relation between short root type elementary 
ommutators and

long root type elementary 
ommutators, Lemma 13. However, unlike Chevalley

groups, for unitary groups the elements of long root subgroups are parametrized

by the form parameter Λ, whereas the elements of short root subgroups are

parametrized by the ring A itself. This means that now we 
ould dispose of

some short type elementary 
ommutators, yet not all of them. In the opposite

dire
tion, the long type elementary 
ommutators, one of whose arguments sits

in the 
orresponding minimal ideal form parameter 
ould be dis
arded � but

not all of them! This 
an be done when one of the form parameters is either

minimal, or as large as possible � not merely maximal! � see �9.
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Observe that the proof of this theorem 
onsists of two independent parts.

The possibility to express the third type of generators as produ
ts of elementary


onjugates and elementary 
ommutators in [EU(2n, I,Γ),EU(2n, J,∆)] will be

alled the �rst 
laim of Theorem 1. The mu
h more arduous bid that modulo

EU(2n, (I,Γ) ◦ (J,∆)) all elementary 
ommutators 
an be expressed in terms

of su
h 
ommutators in one short and two long positions, will be 
alled the

se
ond 
laim of Theorem 1.

We mention another important trait. The published proofs of Theorem B

heavily depended on some version of Theorem A, and thus, ultimately, on

lo
alization. The proof of Theorem 1 given below in ��5�7 is purely elementary

2

and thus works already at the level of unitary Steinberg groups, see [1, 2, 36℄.

The only reason why we do not state our results in this generality is to skip

the dis
ussion of relative unitary Steinberg groups. The details and te
hni
al

fa
ts are not readily available in the literature, and would noti
eably in
rease

the length of the present paper.

0.3. Unrelativization. Sin
e both remaining types of generators listed in

Theorem 1 already belong to the mixed 
ommutator of the unrelative elemen-

tary subgroups [FU(2n, I,Γ),FU(2n, J,∆)], we get the amazing equality in

Theorem 2. Morally, it shows that the 
ommutator of relative elementary sub-

groups [EU(2n, I,Γ),EU(2n, J,∆)] is smaller than one expe
ts. Observe that

it only depends on the [relatively℄ easy �rst 
laim of Theorem 1 whose proof

is 
ompleted already in �5. For GL(n,R) the 
orresponding result is [71℄, The-
orem 2 (for 
ommutative rings, with a 
ompletely di�erent proof), and [76℄,

Theorem 1 (for arbitrary asso
iative rings). For Sp(2n,R) and SO(2n,R) it is
a spe
ial 
ase of [77℄, Theorem 1.2.

Theorem 2. Let (A,Λ) be any asso
iative form ring, let (I,Γ) and (J,∆)
be two form ideals of the form ring (A,Λ) and let n > 3. Then the mixed


ommutator subgroup [FU(2n, I,Γ),FU(2n, J,∆)] is normal in EU(2n,A,Λ).
Furthermore, we have the following 
ommutator identity

[FU(2n, I,Γ),FU(2n, J,∆)] = [EU(2n, I,Γ),EU(2n, J,∆)].

In parti
ular, in 
onjun
tion with Theorem A this shows that the birelative

standard 
ommutator formula also holds in the following unrelativized form.

Again, for GL(n,R) this is [71℄, Theorem 1 and [76℄, Theorem 3, whereas for

Chevalley groups it is [77℄, Theorem 1.3.

Theorem 3. Let R be a 
ommutative ring, and (A,Λ) a form ring su
h that

A is a quasi�nite R-algebra. Further, let (I,Γ) and (J,∆) be two form ideals

2

In the te
hni
al sense that it does not invoke anything apart from the usual Steinberg

relations.
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of the form ring (A,Λ) and let n > 3. Then we have an unrelative 
ommutator

identity

[GU(2n, I,Γ),EU(2n, J,∆)] = [FU(2n, I,Γ),FU(2n, J,∆)].

When A is itself 
ommutative, one even has

[CU(2n, I,Γ),EU(2n, J,∆)] = [FU(2n, I,Γ),FU(2n, J,∆)].

The following result is a unitary analog of the unrelative normality theorem

proved for GL(n,R) by Bogdan Ni
a and ourselves, see [44, 71, 78℄. It is an

immediate 
orollary to our Theorem 3, if we set there (I,Γ) = (J,∆).

Theorem 4. Let R be a 
ommutative ring, and (A,Λ) a form ring su
h that

A is a quasi�nite R-algebra. Further, let (I,Γ) be a form ideal of the form ring

(A,Λ) and let n > 3. Then FU(2n, I,Γ) is normal in GU(2n, I,Γ).

0.4. Elementary 
ommutators. The proof of the se
ond 
laim of Theo-

rem 1 is the gist of the present paper, and pro
eeds as follows. First, in �6 we

prove that the elementary 
ommutators Yij(a, b) are 
entral in the absolute

elementary group modulo EU(2n, (I,Γ) ◦ (J,∆)). Re
all that here

(I,Γ) ◦ (J,∆) = (IJ + JI, JΓ + I∆+ Γmin(IJ + JI))

denotes the symmetrized produ
t of form ideals, see �2 for details.

Sin
e by that time we already know that together with EU(2n, (I,Γ)◦(J,∆))
these 
ommutators generate [FU(2n, I,Γ),FU(2n, J,∆)], this result 
an be

stated as follows. For GL(n,R) and Chevalley groups this is [76, Theorem

2℄, and [80, Theorem 2℄, respe
tively.

Theorem 5. Let (A,Λ) be any asso
iative form ring, let (I,Γ) and (J,∆) be
two form ideals of the form ring (A,Λ), and let n > 3. Then

[FU(2n, I,Γ),FU(2n, J,∆)]

is 
entral in EU(2n,A,Λ) modulo EU(2n, (I,Γ) ◦ (J,∆)).

In other words,

[

[ FU(2n, I,Γ),FU(2n, J,∆)],EU(2n,A,Λ)
]

6 EU(2n, (I,Γ) ◦ (J,∆)).

In parti
ular, it implies that the quotient

[ FU(2n, I,Γ),FU(2n, J,∆)]/EU(2n, (I,Γ) ◦ (J,∆))

is itself Abelian. This readily implies the additivity of the elementary 
om-

mutator with respe
t to its arguments, and other similar useful properties,


olle
ted in Theorem 10, that are employed in the proofs of subsequent results.

However, the fo
al point of the present paper is �7, where we prove that

modulo EU(2n, (I,Γ) ◦ (J,∆)) all elementary 
ommutators of the same root
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type are equivalent. Moreover, for the short root type they are balan
ed with

respe
t to the fa
tors from R, both on the left and on the right. For the long

root type, the balan
ing property is more 
ompli
ated, and only o

urs for the

quadrati
 (=Jordan) multipli
ation. In the 
ase of the usual symple
ti
 group,

where A is a 
ommutative ring with trivial involution, it 
orresponds to the

multipli
ation by squares, see [80, Theorem 5℄.

Theorem 6. Let (A,Λ) be an asso
iative form ring with 1, n > 3, and let

(I,Γ), (J,∆) be form ideals of (A,Λ).

• Then for any i 6= ±j, any h 6= ±l with h, l 6= ±i,±j, and a ∈ I, b ∈ J,
c, d ∈ A, the elementary 
ommutator obeys the relation

Yij(cad, b) ≡ Yhl(a, dbc) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

• Then for any −n 6 i 6 n, any −n 6 k 6 n, and a ∈ λ−(ε(i)+1)/2Γ,
b ∈ λ(ε(i)−1)/2∆ c ∈ A, the elementary 
ommutator obeys the relation

Yi,−i(cac, b)

≡ Yk,−k(λ
(ε(i)−ε(k))/2a,−λ(ε(k)−ε(i))/2cbc) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

The 
al
ulation behind these 
ongruen
es is the highlight of the whole the-

ory. Inherently, it is pre
isely a birelative in
arnation of a 
lassi
al 
al
ulation

that appeared dozens of times in the algebrai
 K-theory and the theory of

algebrai
 groups sin
e mid 60s, see �12 for a terse histori
al medley.

0.5. Further 
orollaries. As another illustration of the power of Theorem 1,

we show that it allows us to [almost 
ompletely℄ lift 
ommutativity 
onditions

in some of the prin
ipal results of [27, 30, 31℄.

Under the additional assumptions su
h as quasi�niteness, the following re-

sult for any n > 3 is [31, Theorem 7℄. From Theorem 1 we 
an derive that

for n > 4 a similar result holds true for arbitrary asso
iative form rings. For

GL(n,R) su
h a generalization was already obtained in [76℄. We believe this


ould be also done for n = 3, see Problem 3, but in that 
ase it would require

formidable 
al
ulations.

Theorem 7. Let (A,Λ) be any asso
iative form ring with 1, let n > 4, and
let (Ii,Γi) P R, i = 1, . . . ,m, be form ideals of (A,Λ). Consider an arbitrary

arrangement of bra
kets J. . .K with the 
ut point s. Then one has

q
EU(2n, I1,Γ1),EU(2n, I2,Γ2), . . . ,EU(2n, Im,Γm)

y

=
[

EU(2n, (I1,Γ1) ◦ . . . ◦ (Is,Γs)),EU(2n, (Is+1,Γs+1) ◦ . . . ◦ (Im,Γm))
]

,

where the bra
keting of symmetrized produ
ts on the right-hand side 
oin
ides

with the bra
keting of the 
ommutators on the left-hand side.
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Under the additional assumption that the absolute standard 
ommutator

formulas are satis�ed, the following result is [27, Theorem 3℄. As we know

from [9,20,21,27℄, this 
ondition is satis�ed for quasi�nite rings. But from the

work of Vi
tor Gerasimov [16℄ it follows that some 
ommutativity or �niteness

assumptions are ne
essary for the standard 
ommutator formulas to be true.

Now, we are in a position to prove the following result for arbitrary asso
iative

form rings.

Theorem 8. Let (A,Λ) be any asso
iative form ring and let n > 3. Then
for any two 
omaximal form ideals (I,Γ) and (J,∆) of the form ring (R,Λ),
I + J = A, one has

[EU(2n, I,Γ),EU(2n, J,∆)] = EU(2n, (I,Γ) ◦ (J,∆)).

Another bizarre 
orollary to Theorem 1 is the surje
tive stability of the

quotients

[FU(2n, I,Γ),FU(2n, J,∆)]/EU(2n, (I,Γ) ◦ (J,∆)),

again for arbitrary asso
iative form rings, without any stability 
onditions, or


ommutativity 
onditions. This is a typi
al result in the style of Bak's paradigm

�stability results without stability 
onditions,� see [3℄ and also [4,20,21,25,26℄.

Theorem 9. Let (A,Λ) be any asso
iative form ring, let (I,Γ) and (J,∆) be
two form ideals of the form ring (A,Λ), and let n > 3. Then the stability map

[FU(2n, I,Γ),FU(2n, J,∆)]/EU(2n, (I,Γ) ◦ (J,∆))

−→ [FU(2(n + 1), I,Γ),FU(2(n + 1), J,∆)]/EU(2(n + 1), (I,Γ) ◦ (J,∆))

is surje
tive.

Indeed, in view of Theorems 1 and 5, as a normal subgroup of EU(2n,A,Λ),
the group

[EU(2n, I,Γ),EU(2n, J,∆)]

is generated by

[EU(6, I,Γ),EU(6, J,∆)].

An expli
it 
al
ulation of these quotients presents itself as a natural next step.

However, so far we were unable to resolve it, apart from some spe
ial 
ases,

see a dis
ussion in �12.

0.6. Organization of the paper. The rest of the paper is devoted to the

proof of these results. In ��1�4 we re
all the ne
essary de�nitions and 
olle
t

requisite preliminary results. The next four se
tions ��5�8 are the te
hni
al 
ore

of the paper. Namely, in �5 we prove Theorem 5 and derive �rst 
onsequen
es

of it. In �6 we redu
e the set of generators of [EU(2n, I,Γ),EU(2n, J,∆)] to
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the �rst two types. In �7 we prove Theorem 6 and then in �8 establish another


ognate result, relating some elementary 
ommutators of short root type with

some elementary 
ommutators of long root type. This �nishes the proof of

Theorem 1 and its 
orollaries, and, in parti
ular, also of Theorems 2�4. In �9

we establish the spe
ial 
ases of Theorem 7 pertaining to triple and quadruple


ommutators, and then in �10 derive Theorem 7 itself by an easy indu
tion.

In �11 we derive Theorem 8 and yet another 
orollary to our main results.

Finally, in �12 we des
ribe the general 
ontext, brie�y review re
ent related

publi
ations, and state several further related open problems.

�1. Notation

Here we re
all some basi
 notation that will be used throughout the present

paper.

1.1. General linear group. Let, as above, A be an asso
iative ring with 1.

For natural m,n we denote by M(m,n,A) the additive group ofm×n matri
es

with entries in A. In parti
ular M(m,A) = M(m,m,A) is the ring of matri
es

of degree m over A. For a matrix x ∈ M(m,n,A) we denote by xij , 1 6 i 6 m,

1 6 j 6 n, its entry in the position (i, j). Let e be the identity matrix and eij ,
1 6 i, j 6 m, a standard matrix unit, i.e., the matrix that has 1 in the position

(i, j) and zeros elsewhere.

As usual, GL(m,A) = M(m,A)∗ denotes the general linear group of degree

m over A. The group GL(m,A) a
ts on the free right A-module V ∼= Am
of

rank m. Fix a base e1, . . . , em of the module V . We may think of elements

v ∈ V as 
olumns with 
omponents in A. In parti
ular, ei is the 
olumn whose

ith 
oordinate is 1, while all other 
oordinates are zeros.

A
tually, in the present paper we are only interested in the 
ase whenm = 2n
is even. We usually number the base as follows: e1, . . . , en, e−n, . . . , e−1. All

other o

urring geometri
 obje
ts will be numbered a

ordingly. Thus, we write

v = (v1, . . . , vn, v−n, . . . , v−1)
t
, where vi ∈ A, for ve
tors in V ∼= A2n

.

The set of indi
es will be always ordered in 
onformity with this 
onvention,

Ω = {1, . . . , n,−n, . . . ,−1}. Clearly, Ω = Ω+ ⊔ Ω−
, where Ω+ = {1, . . . , n}

and Ω− = {−n, . . . ,−1}. For an element i ∈ Ω we denote by ε(i) the sign of

Ω, i.e., ε(i) = +1 if i ∈ Ω+
, and ε(i) = −1 if i ∈ Ω−

.

1.2. Commutators. Let G be a group. For any x, y ∈ G, xy = xyx−1
and

yx = x−1yx denote the left 
onjugate and the right 
onjugate of y by x,
respe
tively. As usual, [x, y] = xyx−1y−1

denotes the left-normed 
ommutator

of x and y. Throughout the present paper we repeatedly use the following


ommutator identities:
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(C1) [x, yz] = [x, y] · y[x, z],

(C1+) an easy indu
tion, with the use of identity (C1), shows that

[

x,

k
∏

i=1

ui

]

=

k
∏

i=1

∏i−1
j=1 uj [x, ui],

where by 
onvention

∏0
j=1 uj = 1,

(C2) [xy, z] = x[y, z] · [x, z],

(C2+) as in (C1+), we have
[ k
∏

i=1

ui, x

]

=

k
∏

i=1

∏k−i
j=1 uj [uk−i+1, x],

(C3)

x[[x−1, y], z] · z[[z−1, x], y] · y[[y−1, z], x] = 1,

(C4) [x, yz] = y[y
−1
x, z],

(C5) [yx, z] = y[x, y
−1
z],

(C6) if H and K are subgroups of G, then [H,K] = [K,H].

Espe
ially important is (C3), the 
elebrated Hall�Witt identity . Sometimes it

is used in the following form, known as the three subgroup lemma.

Lemma 1. Let F,H,L P G be three normal subgroups of G. Then

[[F,H], L] 6 [[F,L],H] · [F, [H,L]].

�2. Form rings and form ideals

The notion of Λ-quadrati
 forms, quadrati
 modules, and generalized unitary

groups over a form ring (A,Λ) were introdu
ed by Anthony Bak in his Thesis,

see [1, 2℄. In this se
tion, and in the next one, we very brie�y review the most

fundamental notation and results that will be 
onstantly used in the sequel.

We refer to [2,9,11,19�21,27,30,31,35,36,46,67℄ for details, proofs, and further

referen
es. In the �nal se
tion we mention some further related re
ent works,

and some generalizations.

2.1. Form rings. Let R be a 
ommutative ring with 1, and A a (not ne
-

essarily 
ommutative) R-algebra. An involution, denoted by , is an anti-

homomorphism of A of order 2. Namely, for a, b ∈ A, one has

a+ b = a+ b, ab = b a, a = a.

Fix an element λ ∈ Cent(A) su
h that λλ = 1. One may de�ne two additive

subgroups of A as follows:

Λmin = {c− λc | c ∈ A}, Λmax = {c ∈ A | c = −λc}.
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A form parameter Λ is an additive subgroup of A su
h that

(1) Λmin ⊆ Λ ⊆ Λmax,

(2) cΛ c ⊆ Λ for all c ∈ A.

The pair (A,Λ) is 
alled a form ring.

2.2. Form ideals. Let I P A be a two-sided ideal of A. We assume I to be

involution invariant, i.e., su
h that I = I. Set

Γmax(I) = I ∩ Λ, Γmin(I) = {a− λa | a ∈ I}+ 〈aca | a ∈ I, c ∈ Λ〉.

A relative form parameter Γ in (A,Λ) of level I is an additive group of I su
h

that

(1) Γmin(I) ⊆ Γ ⊆ Γmax(I),

(2) cΓ c ⊆ Γ for all c ∈ A.

The pair (I,Γ) is 
alled a form ideal.

In the level 
al
ulations we will use sums and produ
ts of form ideals. Let

(I,Γ) and (J,∆) be two form ideals. Their sum is artlessly de�ned as (I +
J,Γ +∆), it is immediate to verify that this is indeed a form ideal.

Guided by analogy, one is tempted to set (I,Γ)(J,∆) = (IJ,Γ∆). However,
it is 
onsiderably harder to 
onsistently de�ne the produ
t of two relative form

parameters. The papers [17, 18, 20, 21℄ introdu
e the following de�nition

Γ∆ = Γmin(IJ) +
JΓ + I∆,

where

JΓ = 〈bΓ b | b ∈ J〉, I∆ = 〈a∆ a | a ∈ I〉.

One 
an verify that this is indeed a relative form parameter of level IJ if

IJ = JI.
However, in the present paper we do not wish to impose any su
h 
ommuta-

tivity assumptions. Thus, we are for
ed to 
onsider the symmetrized produ
ts

I ◦ J = IJ + JI, Γ ◦∆ = Γmin(IJ + JI) + JΓ + I∆.

The notation Γ◦∆ (as also Γ∆) is slightly misleading, be
ause in fa
t it depends

on I and J , not only on Γ and ∆. Thus, stri
tly speaking, one should talk of

the symmetrized produ
ts of form ideals

(I,Γ) ◦ (J,∆) = (IJ + JI,Γmin(IJ + JI) + JΓ + I∆).

Clearly, in the above notation one has

(I,Γ) ◦ (J,∆) = (I,Γ)(J,∆) + (J,∆)(I,Γ).
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�3. Unitary groups

In the present se
tion we re
all basi
 notation and fa
ts related to Bak's

generalized unitary groups.

3.1. Unitary group. For a form ring (A,Λ), one 
onsiders the hyperboli


unitary group GU(2n,A,Λ), see [9, �2℄. This group is de�ned as follows.

One �xes a symmetry λ ∈ Cent(A), λλ = 1, and supplies the module

V = A2n
with the following λ-hermitian form h : V × V −→ A,

h(u, v) = u1v−1 + . . .+ unv−n + λu−nvn + . . .+ λu−1v1,

and the following Λ-quadrati
 form q : V −→ A/Λ,

q(u) = u1u−1 + . . .+ unu−n mod Λ.

In fa
t, both forms are engendered by a sesquilinear form f ,

f(u, v) = u1v−1 + . . . + unv−n.

Now, h = f + λf , where f(u, v) = f(v, u), and q(v) = f(u, u) mod Λ.
By de�nition, the hyperboli
 unitary group GU(2n,A,Λ) 
onsists of all el-

ements from GL(V ) ∼= GL(2n,A) preserving the λ-Hermitian form h and the

Λ-quadrati
 form q. In other words, g ∈ GL(2n,A) belongs to GU(2n,A,Λ) if
and only if

h(gu, gv) = h(u, v) and q(gu) = q(u), for all u, v ∈ V.

When the form parameter is neither maximal nor minimal, these groups

are not algebrai
. However, their internal stru
ture is very similar to that of

the usual 
lassi
al groups. They are also oftentimes 
alled general quadrati


groups, or 
lassi
al-like groups.

3.2. Unitary transve
tions. Elementary unitary transve
tions Tij(ξ) 
orre-
spond to the pairs i, j ∈ Ω su
h that i 6= j. They 
ome in two sto
ks. Namely,

if, moreover, i 6= −j, then for any c ∈ A we set

Tij(c) = e+ ceij − λ(ε(j)−ε(i))/2ce−j,−i.

These elements are also often 
alled elementary short root unipotents. On the

other side for j = −i and c ∈ λ−(ε(i)+1)/2Λ we set

Ti,−i(c) = e+ cei,−i.

These elements are also often 
alled elementary long root elements.

Note that Λ = λΛ. In fa
t, for any element c ∈ Λ one has c = −λc and thus

Λ 
oin
ides with the set of produ
ts λc, where c ∈ Λ. This means that in the

above de�nition c ∈ Λ when i ∈ Ω+
and c ∈ Λ when i ∈ Ω−

.
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Subgroups Xij = {Tij(c) | c ∈ A}, where i 6= ±j, are 
alled short root

subgroups. Clearly, Xij = X−j,−i. Similarly, subgroups Xi,−i = {Tij(c) | c ∈

λ−(ε(i)+1)/2Λ} are 
alled long root subgroups.

The elementary unitary group EU(2n,A,Λ) is generated by elementary uni-

tary transve
tions Tij(c), i 6= ±j, c ∈ A, and Ti,−i(c), c ∈ Λ, see [9, �3℄.

3.3. Steinberg relations. Elementary unitary transve
tions Tij(c) satisfy

the following elementary relations, also known as Steinberg relations. These

relations will be used throughout this paper.

(R1) Tij(c) = T−j,−i(−λ(ε(j)−ε(i))/2c),

(R2) Tij(c)Tij(d) = Tij(c+ d),

(R3) [Tij(c), Thk(d)] = e, where h 6= j,−i and k 6= i,−j,

(R4) [Tij(c), Tjh(d)] = Tih(cd), where i, h 6= ±j and i 6= ±h,

(R5) [Tij(c), Tj,−i(d)] = Ti,−i(cd− λ−ε(i)dc), where i 6= ±j,

(R6) [Ti,−i(c), T−i,j(d)] = Tij(cd)T−j,j(−λ(ε(j)−ε(i))/2dad), where i 6= ±j.

Relation (R1) 
oordinates two natural parametrizations of the same short

root subgroup Xij = X−j,−i. Relation (R2) expresses the additivity of the nat-

ural parametrizations. All other relations are various instan
es of the Chevalley


ommutator formula. Namely, (R3) 
orresponds to the 
ase where the sum of

two roots is not a root, whereas (R4) and (R5) 
orrespond to the 
ase of two

short roots, whose sum is a short root, and a long root, respe
tively. Finally,

(R6) is the Chevalley 
ommutator formula for the 
ase of a long root and a

short root whose sum is a root. Observe that any two long roots are either

opposite, or orthogonal, so that their sum is never a root.

�4. Relative subgroups

In this se
tion we re
all de�nitions and basi
 fa
ts 
on
erning relative sub-

groups. For the proofs of these results, see [9℄.

4.1. Relative subgroups. One asso
iates with a form ideal (I,Γ) the fol-

lowing four relative subgroups.

• The subgroup FU(2n, I,Γ) generated by elementary unitary transve
tions

of level (I,Γ),

FU(2n, I,Γ) =
〈

Tij(a) | a ∈ I if i 6= ±j and a ∈ λ−(ε(i)+1)/2Γ if i = −j
〉

.

• The relative elementary subgroup EU(2n, I,Γ) of level (I,Γ), de�ned as

the normal 
losure of FU(2n, I,Γ) in EU(2n,A,Λ),

EU(2n, I,Γ) = FU(2n, I,Γ)EU(2n,A,Λ).
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• The prin
ipal 
ongruen
e subgroup GU(2n, I,Γ) of level (I,Γ) in

GU(2n,A,Λ) 
onsists of those g ∈ GU(2n,A,Λ), that are 
ongruent to e mod-

ulo I and preserve f(u, u) modulo Γ,

f(gu, gu) ∈ f(u, u) + Γ, u ∈ V.

• The full 
ongruen
e subgroup CU(2n, I,Γ) of level (I,Γ), de�ned as

CU(2n, I,Γ) = {g ∈ GU(2n,A,Λ) | [g,GU(2n,A,Λ)] ⊆ GU(2n, I,Γ)}.

In some books, in
luding [19℄, the group CU(2n, I,Γ) is de�ned di�erently.

However, in many important situations these de�nitions yield the same group.

4.2. Some basi
 lemmas. We us 
olle
t several basi
 fa
ts, 
on
erning rela-

tive groups, whi
h will be used in the sequel. The �rst one of them, see [9,

Lemma 5.2℄, asserts that the relative elementary groups are EU(2n,A,Λ)-
perfe
t.

Lemma 2. Suppose either n > 3 or n = 2 and I = ΛI + IΛ. Then

EU(2n, I,Γ) = [EU(2n, I,Γ),EU(2n,A,Λ)].

The next lemma gives generators of the relative elementary subgroup

EU(2n, I,Γ) as a subgroup. With this end, 
onsider matri
es

Zij(a, c) =
Tji(c)Tij(a) = Tji(c)Tij(a)Tji(−c),

where a ∈ I, c ∈ A, if i 6= ±j, and a ∈ λ−(ε(i)+1)/2Γ, c ∈ λ−(ε(j)+1)/2Λ, if
i = −j. The following result is [9℄, Proposition 5.1.

Lemma 3. Suppose n > 3. Then

EU(2n, I,Γ) = 〈Zij(a, c) | a ∈ I, c ∈ A if i 6= ±j, and

a ∈ λ−(ε(i)+1)/2Γ, c ∈ λ−(ε(j)+1)/2Λ, if i = −j〉.

The following lemma was �rst established in [1℄, but remained unpublished.

See [19℄ and [9℄, Lemma 4.4, for published proofs.

Lemma 4. The groups

GU(2n, I,Γ) and CU(2n, I,Γ)

are normal in GU(2n,A,Λ).

In this form the following lemma was established in [31, Lemmas 7 and 8℄, see

also [30, Lemma 1B℄ for a de�nitive exposition. Before that [27℄, Lemmas 21�

23 only established weaker in
lusions, with smaller left-hand sides, or larger

right-hand sides.
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Lemma 5. (A,Λ) be an asso
iative form ring with 1, n > 3, and let (I,Γ) and
(J,∆) be two form ideals of (A,Λ). Then

EU(2n, (I,Γ) ◦ (J,∆)) 6[ FU(2n, I,Γ),FU(2n, J,∆)]

6 [ EU(2n, I,Γ),EU(2n, J,∆)]

6 [ GU(2n, I,Γ),GU(2n, J,∆)]

6 GU(2n, (I,Γ) ◦ (J,∆)).

�5. Unrelativization

Here we establish the �rst 
laim of Theorem 1, and thus also Theorems 2, 3

and 4. It immediately follows from the next two lemmas, the �rst of whi
h

addresses the 
ase of short roots, while the se
ond one pertain to the 
ase of

long roots.

Re
all that for the easier 
ase of the general linear group over 
ommutative

rings this result was �rst established in 2018 in our paper [77℄. Then it was

generalized to arbitrary asso
iative rings in 2019, together with the se
ond


laim of Theorem 1, see [76℄. The proof of the following results exploits the

same ideas as the proof of [76, Lemma 4℄, but is noti
eably more demanding

from a te
hni
al viewpoint.

The following two lemmas address the 
ase of short roots, where i 6= ±j,
and the 
ase of long roots, where i = −j, respe
tively

Lemma 6. Let (A,Λ) be an asso
iative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). Suppose that a ∈ I, b ∈ J, r ∈ A, and i 6= ±j.
Then

[Tji(a), Zji(b, r)] ∈ [FU(2n, I,Γ),FU(2n, J,∆)].

Proof. For simpli
ity, we assume that ε(i) = ε(j). Pi
k an h 6= i, j with

ε(h) = ε(i). Then

x = [Tji(a), Zji(b, r)] = Tji(a) ·
Zji(b,r)Tji(−a) = Tji(a) ·

Zji(b,r)[Tjh(1), Thi(−a)].

Expanding the 
onjugation by Zji(b, r), we see that

x = Tji(a)[
Zji(b,r)Tjh(1),

Zji(b,r)Thi(−a)]

= Tji(a)[Tih(−rbr)Tjh(1− br), Thj(−arbr)Thi(−a(1− rb))]

= Tji(a)[yTjh(1), Thi(−a)z],

where

y = Tih(−rbr)Tjh(−br) ∈ FU(2n, J,∆),

z = Thj(−arbr)Thi(arb) ∈ FU(2n, (I,Γ) ◦ (J,∆)).
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Sin
e Thi(−a) ∈ FU(2n, I,Γ), the se
ond fa
tor of the above 
ommutator be-

longs to FU(2n, I,Γ). Thus,

[yTjh(1), Thi(−a)z] = y[Tjh(1), Thi(−a)z] · [y, Thi(−a)z]. (1)

Now, the �rst 
ommutator on the right-hand side equals

y[Tjh(1), Thi(−a)] · yThi(−a)[Tjh(1), z].

The se
ond 
ommutator in the last expression belongs to EU(2n, (I,Γ)◦(J,∆)),
and remains there after elementary 
onjugations, while the �rst 
ommutator

equals

yTij(−a). But

yTij(−a) = [Tih(−rbr)Tjh(−br), Tij(−a)] · Tij(−a).

The �rst fa
t above lies in EU(2n, (I,Γ) ◦ (J,∆)), hen
e

yTij(−a) ∈ Tij(−a) EU(2n, (I,Γ) ◦ (J,∆)).

On the other hand, the se
ond 
ommutator of (1) equals

[y, Thi(−a)z] = [Tih(−rbr)Tjh(−br), Thi(−a)Thj(−arbr)Thi(arb)].

Expanding the 
ommutator above by its se
ond argument, we obtain

[Tih(−rbr)Tjh(−br), Thi(−a)Thj(−arbr)Thi(arb)]

= [Tih(−rbr)Tjh(−br), Thi(−a)]
Thi(−a)[Tih(−rbr)Tjh(−br), Thj(−arbr)Thi(arb)].

The se
ond fa
tor above belongs to EU(2n, (I,Γ)◦ (J,∆)). And the �rst fa
tor

above equals

Tih(−rbr)[Tjh(−br), Thi(−a)] · [Tih(−rbr), Thi(−a)]

= Tih(−rbr)Tji(bra) · [Tih(−rbr), Thi(−a)]

∈ [Tih(−rbr), Thi(−a)] · EU(2n, (I,Γ) ◦ (J,∆)).

Summarising the above, we see that

x ∈ [Tih(−rbr), Thi(−a)] · EU(2n, (I,Γ) ◦ (J,∆))

whi
h �nishes the proof. �

Lemma 7. Let (A,Λ) be an asso
iative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). Suppose that a ∈ Γ, b ∈ ∆, and r ∈ Λ. Then

[T−i,i(a), Z−i,i(b, r)] ∈ [FU(2n, I,Γ),FU(2n, J,∆)].
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Proof. Without loss of generality, we may assume that i > 0. Pi
k an h > 0
with h 6= i. Then

x = [T−i,i(a), Z−i,i(b, r)] = T−i,i(a) ·
Z−i,i(b,r)T−i,i(−a)

= T−i,i(a) ·
Z−i,i(b,r)

(

Thi(−a) · [Th,−h(a), T−h,i(1)]
)

.

Thus,

x = T−i,i(a) ·
(

Z−i,i(b,r)Thi(−a) · [Th,−h(a),
Z−i,i(b,r)T−h,i(1)]

)

= T−i,i(a) · Th,i(−a(1− br)) · Ti,−h(λrbra)

×
[

Th,−h(a), T−h,i(1− rb) · Ti,h(λrbr)
]

.

Using the additivity of root unipotents, we 
an rewrite this as

x = T−i,i(a)Th,i(−a) · Th,i(−abr)Ti,−h(λrbra)

×
[

Th,−h(a), T−h,i(1)T−h,i(−rb) · Ti,h(λrbr)
]

.

Clearly,

Th,i(−abr)Ti,−h(λrbra) ∈ EU(2n, (I,Γ) ◦ (J,∆)).

On the other hand, the 
ommutator in the last expression equals

[

Th,−h(a), T−h,i(1)T−h,i(−rb) · Ti,h(λrbr)
]

=
[

Th,−h(a), T−h,i(1)
]

· T−h,i(1)
[

Th,−h(a), T−h,i(−rb) · Ti,h(λrbr)
]

= Th,i(a)T−i,i(−a) · T−h,i(1)
[

Th,−h(a), T−h,i(−rb) · Ti,h(λrbr)
]

.

Again, 
learly

[

Th,−h(a), T−h,i(−rb) · Ti,h(λrbr)
]

∈ [FU(2n, I,Γ),FU(2n, J,∆)].

On the other hand, the previous fa
tors assemble to a left T−i,i(a)Th,i(−a)

onjugate of an element of EU(2n, (I,Γ) ◦ (J,∆)), whi
h is 
ontained in

[FU(2n, I,Γ),FU(2n, J,∆)].

This proves Lemma 7. �

Combined with Theorem 2, these results imply the �rst 
laim of Theorem 1.

�6. Elementary 
ommutators modulo EU(2n, (I,Γ) ◦ (J,∆))

Now we embark on the proof of the se
ond 
laim of Theorem 1. Our �rst

major goal is to prove that the 
ommutator [FU(2n, I,Γ),FU(2n, J,∆)] is 
en-
tral in EU(2n,A,Λ), modulo EU(2n, (I,Γ)◦ (J,∆)). Namely, here we establish

Theorem 5 and derive some 
orollaries to it. We prove the 
ongruen
e in The-

orem 5 separately for short root positions, and then for long root positions.
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Lemma 8. Let (A,Λ) be an asso
iative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). For any i 6= ±j, any a ∈ I, b ∈ J, and any

x ∈ EU(2n,A,Λ), one has

xYij(a, b) ≡ Yij(a, b) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. Consider the elementary 
onjugate

xYij(a, b). We argue by indu
tion

on the length of x ∈ EU(2n,A,Λ) in elementary generators. Let x = yTkl(c),
where y ∈ EU(2n,A,Λ) is shorter than x.

We start with the 
ase where k 6= ±l.

• If k, l 6= ±i,±j, then Tkl(c) 
ommutes with z = Yij(a, b) and 
an be

dis
arded.

• On the other hand, for any h 6= ±i,±j dire
t 
omputations show that

[Tih(c), z] = Tih(−abc− ababc)Tjh(−babc),

[Tjh(c), z] = Tih(abac)Tjh(bac),

[Thi(c), z] = Thi(cab)Thj(−caba),

[Thj(c), z] = Thi(cbab)Thj(−cba− cbaba),

Similarly, one has

[T−i,h(c), z] = [T−h,i(−λ(ε(h)+ε(i))/2c), z]

= T−h,i(−λ(ε(h)+ε(i))/2cab)T−h,j(−λ(ε(h)+ε(i))/2caba),

[T−j,h(c), z] = [T−h,j(−λ(ε(h)+ε(j))/2c), z]

= T−h,i(−λ(ε(h)+ε(j))/2cbab)

T−h,j(−λ(ε(h)+ε(j))/2cba− λ(ε(h)+ε(j))/2cbaba),

[Th,−i(c), z] = [Ti,−h(−λ−(ε(i)−ε(h))/2c), z]

= Ti,−h(−λ−(ε(i)−ε(h))/2abac)Tj,−h(−λ−(ε(i)−ε(h))/2bac),

[Th,−j(c), z] = [Tj,−h(−λ−(ε(j)−ε(h))/2c), z]

= Ti,−h(−λ(−(ε(j)−ε(h))/2abac)Tj,−h(−λ−(ε(j)−ε(h))/2bac)

All fa
tors on the right-hand side belong already to EU(2n, (I,Γ) ◦ (J,∆)).
If (k, l) = (±i,±j) or (±j,±i), then we take an index h 6= ±i,±j and

rewrite Tkl(c) as [Tk,h(c), Th,l(1)] and apply the previous items to get the same


ongruen
e modulo EU(2n, (I,Γ) ◦ (J,∆)).
It remains to 
onsider the 
ase where k = −l.

• If k 6= ±i,±j, then Tk,−k(c) 
ommutes with z and 
an be dis
arded.
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• Otherwise, we have

[Ti,−i(c), z] =Ti,−i(c− (1 + ab+ abab)c(1 + ab+ abab))

Tj,−j(−λ(ε(i)−ε(j))/2babcbab)

Ti,−j(λ
(ε(i)−ε(j))/2(1 + ab+ abab)c(bab)),

[Tj,−j(c), z] =Tj,−j(c− (1− ba)c(1 − ba))Ti,−i(−λ(ε(j)−ε(i))/2abacaba)

Ti,−j(abac(1 − ba)),

[T−i,i(c), z] =[T−i,i(c), [Tij(a), Tji(b)]]

=[T−i,i(c), [T−j,−i(−λ(ε(j)−ε(i))/2a), T−i,−j(λ
(ε(i)−ε(j))/2b)]],

[T−j,j(c), z] =[T−j,j(c), [Tij(a), Tji(b)]]

=[T−j,−j(c), [T−j,−i(−λ(ε(j)−ε(i))/2a), T−i,−j(λ
(ε(i)−ε(j))/2b)]].

The last two 
ases redu
e to the �rst two. Hen
e all fa
tors on the right belong

to EU(2n, (I,Γ) ◦ (J,∆)).
We have shown that for i 6= ±j,

xz ≡ yz (mod EU(2n, (I,Γ) ◦ (J,∆))) . �

Lemma 9. Let (A,Λ) be an asso
iative form ring with 1, n > 3, and let (I,Γ),

(J,∆) be form ideals of (A,Λ). For any a ∈ λ−(ε(i)+1)/2Γ, b ∈ λ(ε(i)−1)/2∆, and
any x ∈ EU(2n,A,Λ), one has

xYi,−i(a, b) ≡ Yi,−i(a, b) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. We argue by indu
tion on the length of x ∈ EU(2n,A,Λ) in elementary

generators as we did in the previous lemma. Let x = yTkl(c), where y ∈
EU(2n,A,Λ) is shorter than x.

We start with the 
ase where k = −l. Denote Yi,−i(a, b) = [Ti,−i(a), T−i,i(b)]
by z.

• If (k, l) = (−i, i), then

[T−i,i(c), z] = [T−i,i(c), [Ti,−i(a), T−i,i(b)]] = [T−i,i(c), Z−i,i(b, a)].

The same 
omputation as in Lemma 7 shows that

[T−i,i(c), z] ∈ EU(2n, (I,Γ) ◦ (J,∆)).

• If (k, l) = (i,−i), then

[Ti,−i(c), z]=[Ti,−i(c), [Ti,−i(a), T−i,i(b)]]

=[Ti,−i(c), [T−i,i(b), Ti,−i(a)]
−1]

=[T−i,i(b), Ti,−i(a)]
−1[[T−i,i(b), Ti,−i(a)], Ti,−i(c)][T−i,i(b), Ti,−i(a)].
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Now the inner fa
tor [[T−i,i(b), Ti,−i(a)], Ti,−i(c)] falls into the previous 
ase,

hen
e belongs to EU(2n, (I,Γ) ◦ (J,∆)). But then the same applies also to its


onjugate

[T−i,i(b), Ti,−i(a)]
−1 ·

[

[T−i,i(b), Ti,−i(a)], Ti,−i(c)
]

· [T−i,i(b), Ti,−i(a)].

• If k = i and j 6= ±k, then

[Ti,j(c), z] = [Ti,j(c), [Ti,−i(a), T−i,i(b)]]

= Ti,j(−abc− ababc)T−i,j(−babc) · T−j,j

(

− λ(ε(j)−ε(i))/2(bc)a(bc)

− λε(j)((abc)b(abc) + (babc)a(babc))
)

.

Sin
e a ∈ λ−(ε(i)+1)/2Γ and b ∈ λ(ε(i)−1)/2∆, it follows that the right side

belongs to EU(2n, (I,Γ) ◦ (J,∆)).

• If k = −i and j 6= ±k, then

[T−i,j(c), z]=[T−i,j(c), [Ti,−i(a), T−i,i(b)]]

=[T−i,i(b),Ti,−i(a)][T−i,j(c), [T−i,i(b),Ti,−i(a)]]
−1[T−i,i(b),Ti,−i(a)]

−1.

By the previous 
ase,

[T−i,j(c), [T−i,i(b), Ti,−i(a)]] ∈ EU(2n, (I,Γ) ◦ (J,∆)).

As above, the normality of EU(2n, (I,Γ) ◦ (J,∆)) then implies that the whole

right side belongs to EU(2n, (I,Γ) ◦ (J,∆)).

• Finally, the 
ase where l = ±i and k 6= ±i redu
es to the 
ase of k = ±i
via relation (R1).

We have shown that

xz ≡ yz (mod EU(2n, (I,Γ) ◦ (J,∆))) .

By indu
tion we get

xz ≡ z (mod EU(2n, (I,Γ) ◦ (J,∆))) . �

In parti
ular, these results immediately imply the following additivity prop-

erty of the elementary 
ommutators with respe
t to their arguments.

Theorem 10. Let R be an asso
iative ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of R. Then for any i 6= j, and any a, a1, a2 ∈ (I,Γ),
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b, b1, b2 ∈ (J,∆) one has

Yij(a1 + a2, b) ≡ Yij(a1, b) · Yij(a2, b) (mod EU(2n, (I,Γ) ◦ (J,∆))) ,

Yij(a, b1 + b2) ≡ Yij(a, b1) · Yij(a, b2) (mod EU(2n, (I,Γ) ◦ (J,∆))) ,

Yij(a, b)
−1 ≡ Yij(−a, b) ≡ Yij(a,−b) (mod EU(2n, (I,Γ) ◦ (J,∆))) ,

Yij(ab1, b2) ≡ Yij(a1, a2b) ≡ e (mod EU(2n, (I,Γ) ◦ (J,∆))) ,

Yi,−i(b1ab1, b2) ≡ Yi,−i(a1, a2ba2) ≡ e (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. The �rst item 
an be derived from Lemma 8 for i 6= ±j and Lemma 9

for i = −j as follows. By de�nition,

Yij(a1 + a2, b) = [Tij(a1 + a2), Tji(b)] = [Tij(a1)Tij(a2), Tji(b)],

and it only remains to apply the multipli
ativity of 
ommutators in the �rst

fa
tor, and then apply Lemma 8 and Lemma 9 respe
tively. The se
ond item

is similar, and the third item follows. The last two items are obvious from the

de�nition. �

�7. Rolling over elementary 
ommutators

Now we pass to the �nal, and most di�
ult part of the proof of Theorem 1,

rolling an elementary 
ommutator over to a di�erent position. Sin
e we assume

that n > 3, the 
ase of short root type elementary 
ommutators is easy. It

is settled by essentially the same 
al
ulation as for the general linear group

GL(n,R), n > 3, see [76, 78℄. But for the 
ase of long root type elementary


ommutators we have to imitate the proof of [80, Theorems 4 and 5℄, for

Sp(4, R). In the presen
e of a nontrivial involution, non
ommutativity, and

nontrivial form parameters, this is quite a 
hallenge. In �12 we make some

observations, to put this 
al
ulation in histori
al 
ontext.

Lemma 10. Let (A,Λ) be an asso
iative form ring with 1, n > 3, and let

(I,Γ), (J,∆) be form ideals of (A,Λ). Then for any i 6= ±j, any h 6= ±l, and
any a ∈ I, b ∈ J, c1, c2 ∈ A, one has

Yij(c1ac2, b) ≡ Yhl(a, c2bc1) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. Take any h 6= ±i,±j, and rewrite the elementary 
ommutator z =
Yij(c1ac2, b) on the left-hand side of the above 
ongruen
e as follows

z = [Tij(c1ac2), Tji(b)] = Tij(c1ac2) ·
Tji(b)Tij(−c1ac2)

= Tij(c1ac2) ·
Tji(b)[Thj(ac2), Tih(c1)].
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Expanding the 
onjugation by Tji(b), we see that

z = Tij(c1ac2) · [
Tji(b)Thj(ac2),

Tji(b)Tih(c1)]

= Tij(c1ac2) ·
[

[Tji(b), Thj(ac2)]Thj(ac2), Tih(c1)[Tih(−c1), Tji(b)]
]

= Tij(c1ac2) ·
[

Thi(−ac2b)Thj(ac2), Tih(c1)Tjh(bc1)
]

.

Now, the �rst fa
tor Thi(−ac2b) of the �rst argument in this last 
ommutator

already belongs to the group FU(2n, (I,Γ) ◦ (J,∆)). Thus, as above,

z ≡ Tij(c1ac2) ·
[

Thj(ac2), Tih(c1)Tjh(bc1)
]

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

Using the multipli
ativity of the 
ommutator with respe
t to the se
ond ar-

gument, 
an
elling the �rst two fa
tors of the resulting expression, and then

applying Lemma 8, we see that

z ≡ Tih(c1)[Thj(ac2), Tjh(bc1)]

≡ [Thj(ac2), Tjh(bc1)] (mod EU(2n, (I,Γ) ◦ (J,∆))) .

On the other hand, 
hoosing another index l 6= ±j,±h and rewriting the


ommutator [Thj(ac2), Tjh(bc1)] on the right-hand side of the last 
ongruen
e

as

[Thj(ac2), Tjh(bc1)] = [[Thl(a), Tlj(c2)], Tjh(bc1)],

by the same argument we get the 
ongruen
e

z ≡ [Thj(ac2), Tjh(bc1)] ≡ [Thl(a), Tlh(c2bc1)] (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Obviously, for n > 3 we 
an pass from any position (i, j), i 6= j, to any other

su
h position (k,m), k 6= ±m, by a sequen
e of at most three su
h elementary

moves. �

Lemma 11. Let (A,Λ) be an asso
iative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). Then for any −n 6 i 6 n, any −n 6 k 6 n,

and any a ∈ λ−(ε(i)+1)/2Γ, b ∈ λ(ε(i)−1)/2∆, c ∈ A, one has

Yi,−i(cac, b)

≡ Yk,−k(λ
(ε(i)−ε(k))/2a,−λ(ε(k)−ε(i))/2cbc)·Yi,−k(λ

(ε(i)−ε(k))/2ca, λ(ε(k)+ε(i))/2cb)

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. Rewrite the elementary 
ommutator z = Yi,−i(cac, b) on the left-hand

side of the above 
ongruen
e as follows

z = Ti,−i(cac) ·
T−i,i(b) Ti,−i(−cac)

= Ti,−i(cac) ·
T−i,i(b)

(

[Tk,−k(λ
(ε(i)−ε(k))/2a), Ti,k(c)]Tk,−i(−ac)

)

.



COMMUTATORS OF RELATIVE ELEMENTARY UNITARY GROUPS 23

Expanding the 
onjugation by T−i,i(b), we see that

z = Ti,−i(cac)

×
[

T−i,i(b)Tk,−k(λ
(ε(i)−ε(k))/2a), T−i,i(b)Ti,k(c)

]

·T−i,i(b) Ti,−k(λ
(ε(i)−ε(k))/2ca).

Clearly, the last fa
tor

y =T−i,i(b) Ti,−k(λ
(ε(i)−ε(k))/2ca)


an be rewritten as

[T−i,i(b), Ti,−k(λ
(ε(i)−ε(k))/2ca)] · Ti,−k(λ

(ε(i)−ε(k))/2ca)

whi
h gives us the following 
ongruen
e

y ≡ Ti,−k(λ
(ε(i)−ε(k))/2ca) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

On the other hand, the 
ommutator

u =
[

T−i,i(b)Tk,−k(λ
(ε(i)−ε(k))/2a), T−i,i(b)Ti,k(c)

]

in the expression of u equals

[

Tk,−k(λ
(ε(i)−ε(k))/2a), T−i,k(bc)T−k,k(−λ(ε(k)−ε(i))/2cbc)Ti,k(c)

]

.

Expanding this last expression, we get

u = [Tk,−k(λ
(ε(i)−ε(k))/2a), T−i,k(bc)]

× x[Tk,−k(λ
(ε(i)−ε(k))/2a), T−k,k(−λ(ε(k)−ε(i))/2cbc)]

× v[Tk,−k(λ
(ε(i)−ε(k))/2a), Ti,k(c)],

where

x = T−i,k(bc), v = T−i,k(bc)T−k,k(−λ(ε(k)−ε(i))/2cbc).

It is easy to see that

[Tk,−k(−λ(ε(i)−ε(k))/2a), T−i,k(bc)] ∈ EU(2n, (I,Γ) ◦ (J,∆)),

so we 
an drop it. Further, by Lemma 9, modulo EU(2n, (I,Γ) ◦ (J,∆)) the

se
ond fa
tor 
an be simpli�ed as follows

x[Tk,−k(λ
(ε(i)−ε(k))/2a), T−k,k(−λ(ε(k)−ε(i))/2cbc)]

≡ [Tk,−k(λ
(ε(i)−ε(k))/2a), T−k,k(−λ(ε(k)−ε(i))/2cbc)]

(mod EU(2n, (I,Γ) ◦ (J,∆)).)
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Summarising the above, we get

z ≡ Ti,−i(cac) · [Tk,−k(λ
(ε(i)−ε(k))/2a), T−k,k(−λ(ε(k)−ε(i))/2cbc)]·

v[Tk,−k(λ
(ε(i)−ε(k))/2a), Ti,k(c)] · Ti,−k(λ

(ε(i)−ε(k))/2ca)

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

Thus, to �nish the proof it su�
es to show that

x′ = Ti,−i(cac) ·
v[Tk,−k(λ

(ε(i)−ε(k))/2a), Ti,k(c)] · Ti,−k(λ
(ε(i)−ε(k))/2ca)

≡ Yi,−k(λ
(ε(i)−ε(k))/2ca, λ(ε(i)+ε(k))/2cb) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Clearly, the se
ond fa
tor of x′

v[Tk,−k(λ
(ε(i)−ε(k))/2a), Ti,k(c)]


an be rewritten as

v[Tk,−k(λ
(ε(i)−ε(k))/2a), Ti,k(c)] =

v(Ti,−i(−cac) · Ti,−k(−λ(ε(i)−ε(k))/2ca)).

Therefore we obtain

x′ = Ti,−k(−λ(ε(i)−ε(k))/2ca)[Ti,−k(λ
(ε(i)−ε(k))/2ca)Ti,−i(cac), v]

Expanding this last 
ommutator with respe
t to its �rst and se
ond ar-

guments, we express it as the produ
t of elementary 
onjugates of the four

following 
ommutators.

• [Ti,−i(cac), T−i,k(bc)],

• [Ti,−i(cac), T−k,k(−λ(ε(k)−ε(i))/2cbc)],

• [Ti,−k(λ
(ε(i)−ε(k))/2ca), T−i,k(bc)] = Yi,−k(λ

(ε(i)−ε(k))/2ca, λ(ε(k)+ε(i))/2cb),

• [Ti,−k(λ
(ε(i)−ε(k))/2ca), T−k,k(−λ(ε(k)−ε(i))/2cbc)].

A dire
t 
omputation 
onvin
es us that ea
h of these 
ommutators ex
ept for

the third one belongs to the elementary subgroup EU(2n, (I,Γ) ◦ (J,∆)). This
�nishes the proof of the lemma, and thus also of Theorem 1. �

Lemma 12. Let (A,Λ) be an asso
iative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). Then for any −n 6 i 6 n, any −n 6 k 6 n

with i 6= ±k and ε(i) = ε(k), and any a ∈ λ−(ε(i)+1)/2Γ, b ∈ λ(ε(i)−1)/2∆, one
has

Yi,−i(a, b) ≡ Yk,−k(a, b) (mod EU(2n, (I,Γ) ◦ (J,∆))) .



COMMUTATORS OF RELATIVE ELEMENTARY UNITARY GROUPS 25

Proof. Pi
k an integer l with −n 6 l 6 n. Applying Lemma 11 with c = 1,
we get

Yi,−i(a, b)

≡ Yl,−l(λ
(ε(i)−ε(l))/2a,−λ(ε(l)−ε(i))/2b) · Yi,−l(λ

(ε(i)−ε(l))/2a, λ(ε(l)+ε(i))/2b)

(mod EU(2n, (I,Γ) ◦ (J,∆)))

and

Yk,−k(a, b)

≡ Yl,−l(λ
(ε(k)−ε(l))/2a,−λ(ε(l)−ε(k))/2b) · Yk,−l(λ

(ε(k)−ε(l))/2a, λ(ε(l)+ε(k))/2b)

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

By Lemma 10, we obtain

Yi,−l(λ
(ε(i)−ε(l))/2a, λ(ε(l)+ε(i))/2b) ≡ Yk,−l(λ

(ε(k)−ε(l))/2a, λ(ε(l)+ε(k))/2b)

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

Therefore we 
on
lude that

Yi,−i(a, b) ≡ Yk,−k(a, b) (mod EU(2n, (I,Γ) ◦ (J,∆))) . �

�8. Mat[
h℄ing elementary 
ommutators of di�erent root lengths

In this se
tion we prove a 
ongruen
e relating elementary 
ommutators of

long root type with those of short root type. In the 
ase where one of the

relative form parameters is as small as possible (=minimal), this 
ongruen
e


an be used to eliminate long root type elementary 
ommutators. On the other

hand, when one of the relative form parameters is as large as possible (=equals

the 
orresponding ideal), one 
an abandon short root type elementary 
ommu-

tators.

Lemma 13. Let (A,Λ) be an asso
iative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). Then for any −n 6 i 6 n, any −n 6 k 6 n

with i 6= ±k , and a ∈ I, b ∈ λ(ε(i)−1)/2∆, one has

[

Ti,−i(a− λε(−i)a), T−i,i(b)
]

≡ [Ti,k(a), Tk,i(b)] (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. Pi
k an index k 6= ±i, and rewrite the elementary 
ommutator

z =
[

Ti,−i(a− λε(−i)a), T−i,i(b)
]

on the left-hand side as

z =
[

[Tk,−i(−1), Ti,k(a)], T−i,i(b)
]

=
[

Tk,−i(−1)Ti,k(a) · Ti,k(−a), T−i,i(b)
]

.
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Using the multipli
ativity of the 
ommutator with respe
t to the �rst argu-

ment, we see that

z = Tk,−i(−1)Ti,k(a)Tk,−i(1)[Ti,k(−a), T−i,i(b)] ·
[

Tk,−i(−1)Ti,k(a), T−i,i(b)
]

.

The �rst fa
tor belongs to EU(2n, (I,Γ)◦ (J,∆)), so we leave it out. Thus, z is


ongruent modulo this subgroup to

[

Tk,−i(−1)Ti,k(a), T−i,i(b)
]

= Tk,−i(−1)
[

Ti,k(a),
Tk,−i(1)T−i,i(b)

]

= Tk,−i(−1)
[

Ti,k(a), [Tk,−i(1), T−i,i(b)]T−i,i(b)
]

= Tk,−i(−1)
[

Ti,k(a), Tk,i(b)Tk,−k(λ
(ε(−i)−ε(k))/2(b))T−i,i(b)

]

.

Expanding this last 
ommutator with respe
t to the se
ond argument, we see

that the se
ond and the third fa
tors belong to EU(2n, (I,Γ) ◦ (J,∆)), so that
we 
an leave them out. Now we have

z ≡ Tk,−i(−1)
[

Ti,k(a), Tk,i(b)
]

(mod EU(2n, (I,Γ) ◦ (J,∆))) ,

as 
laimed. �

Corollary 1. Under the 
onditions of Lemma 13, further assume that b =
b′ − λε(i)b′ for some b′ ∈ J, then
[

Ti,−i(a− λε(−i)a), T−i,i(b− λε(i)b)
]

≡ [Ti,k(a), Tk,i(b
′)] · [Ti,k(a), Tk,i(−λε(i)b′)]

modulo EU(2n, (I,Γ) ◦ (J,∆)).

Proof. We keep the notation from the proof of Lemma 13. Under this addi-

tional assumption one has

z ≡ Tk,−i(−1)
[

Ti,k(a), Tk,i(b
′)Tk,i(−λε(i)b′)

]

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

Expanding the 
ommutator with respe
t to the se
ond argument again, we see

that

Tk,−i(−1)
[

Ti,k(a), Tk,i(b
′)Tk,i(−λε(i)b′)

]

= Tk,−i(−1)
(

[Ti,k(a), Tk,i(b
′)] · Tk,i(b

′)[Ti,k(a), Tk,i(−λε(i)b′)]
)

.

Applying Lemma 8, we get

z ≡ [Ti,k(a), Tk,i(b
′)] · [Ti,k(a), Tk,i(−λε(i)b′)] (mod EU(2n, (I,Γ) ◦ (J,∆))) ,

as 
laimed. �

Corollary 2. If I = Γ or J = ∆, then for the se
ond type of generators in

Theorem 1 it su�
es to take one pair (h,−h).

Corollary 3. If Γ = I ∩ Λmin or ∆ = J ∩ Λmin, then for the se
ond type of

generators in Theorem 1 it su�
es to take one pair (h, k), h 6= ±k.
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�9. Triple and quadruple 
ommutators

A
tually Theorem 7 easily follows by indu
tion on m from the following two

spe
ial 
ases, triple 
ommutators, and quadruple 
ommutators.

Lemma 14. Let (A,Λ) be any asso
iative form ring with 1, let n > 3, and let

(I,Γ), (J,∆), (K,Ω), be form ideals of (A,Λ). Then

[[ EU(2n, I,Γ),EU(2n, J,∆)],EU(2n,K,Ω)]

= [EU(2n, (I,Γ) ◦ (J,∆)),EU(2n,K,Ω)].

Proof. Let i, j, k ∈ {−n, . . . ,−1, 1, . . . , n} with i 6= ±j 6= ±k. For any a ∈
(I,Γ), b ∈ (J,∆) and c ∈ (K,Ω), we have

[Yk,−k(a, b), Ti,j(c)] = e

[Yk,j(a, b), Ti,j(c)] = Tij(cba+ cbaba)Tik(−cbab).

Both above 
ommutators land in [ EU(2n, (I,Γ) ◦ (J,∆)),EU(2n,K,Ω)]. By
Theorem 1, we dedu
e that

[[ EU(2n, I,Γ),EU(2n, J,∆)], Ti,j(c)]

⊆ [ EU(2n, (I,Γ) ◦ (J,∆)),EU(2n,K,Ω)].

Similarly, we have

[Yk,−k(a, b), Ti,−i(c)] = e,

[Yk,j(a, b), Ti,−i(c)] = e.

whi
h implies that

[[ EU(2n, I,Γ),EU(2n, J,∆)], Ti,−i(c)]

⊆ [ EU(2n, (I,Γ) ◦ (J,∆)),EU(2n,K,Ω)].

We �nish the proof by 
ombining all above results and applying Theorem 1. �

Now, for n > 4 the only new 
ase of quadruple 
ommutators is 
onsidered

in the following lemma, whi
h immediately follows from Lemma 14 and Theo-

rem 5. Of 
ourse, for the outstanding 
ase n = 3 it requires a separate proof. All
our assaults on this remaining 
ase were 
rippled by forbidding 
al
ulations.

Lemma 15. Let (A,Λ) be any asso
iative form ring with 1 and let (I,Γ),
(J,∆), (K,Ω), (L,Θ) be form ideals of (A,Λ). If either n > 4 or there exists

an ideal that equals its 
orresponding relative form parameter and n > 3, then
[

[ EU(2n, I,Γ),EU(2n, J,∆)], [ EU(2n,K,Ω),EU(2n,L,Θ)]
]

= [EU(2n, (I,Γ) ◦ (J,∆)),EU(2n, (K,Ω) ◦ (L,Θ))].
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Proof. From the previous lemma we already know that

[

EU(2n, (I,Γ) ◦ (J,∆)), [ EU(2n,K,Ω),EU(2n,L,Θ)]
]

=
[

EU(2n, (I,Γ) ◦ (J,∆)),EU(2n, (K,Ω) ◦ (L,Θ))
]

and that

[

[ EU(2n, I,Γ),EU(2n, J,∆)],EU(2n, (K,Ω) ◦ (L,Θ))
]

=
[

EU(2n, (I,Γ) ◦ (J,∆)),EU(2n, (K,Ω) ◦ (L,Θ))
]

.

Thus, it only remains to prove that

[Yij(a, b), Yhk(c, d)] ∈
[

EU(2n, (I,Γ) ◦ (J,∆)),EU(2n, (K,Ω) ◦ (L,Θ))
]

,

where a ∈ (I,Γ), b ∈ (J,∆), c ∈ (K,Ω), and d ∈ (L,Θ). Conjugations by

elements x ∈ EU(2n,A,Λ) do not matter, be
ause they amount to extra fa
tors

from the above triple 
ommutators, whi
h are already a

ounted for.

Now, for n > 4 this already �nishes the proof, be
ause in this 
ase we 
an

move Yhk(c, d) modulo EU(2n, (K,Ω)◦(L,Θ)) to a position where it 
ommutes

with Yij(a, b)], either by Lemma 10 when i 6= ±j and h 6= ±k or by Lemma 12

when i = −j or h = −k.
Suppose that there exists an ideal that equals its 
orresponding relative form

paramerter, say I = Γ. If i 6= ±j, then by Lemma 13 we have

Yi,j(a, b) ≡ Yi,−i(a, b− λε(i)b).

For n > 3, we 
an move Yi,−i(a, b − λε(i)b) modulo EU(2n, (K,Ω) ◦ (L,Θ))
to a position where it 
ommutes with Yhk(c, d) by Lemma 10. Otherwise, if

i = −j, then we 
an also move Yi,−i(a, b) to a position where it 
ommutes with

Yhk(c, d) by Lemma 12. This �nishes the whole proof. �

�10. Elementary multiple 
ommutator formulas

In the 
urrent se
tion, we show that multiple 
ommutators of elementary

subgroups 
an be redu
ed to double 
ommutators of these kind.

To state our main results, we have to re
all some further pie
es of notation

from [22, 23, 27, 31, 33, 64℄. Namely, let H1, . . . ,Hm 6 G be subgroups of G.
There are many ways to form a higher 
ommutator of these groups, depending

on where we put the bra
kets. Thus, for three subgroups F,H,K 6 G one


an form two triple 
ommutators [[F,H],K] and [F, [H,K]]. Usually, we write
[H1,H2, . . . ,Hm] for the left-normed 
ommutator, de�ned indu
tively by

[H1, . . . ,Hm−1,Hm] = [[H1, . . . ,Hm−1],Hm].
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To stress that here we 
onsider any 
ommutator of these subgroups, with an

arbitrary pla
ement of bra
kets, we write JH1,H2, . . . ,HmK. Thus, for instan
e,
JF,H,KK refers to any of the two arrangements above.

A
tually, a spe
i�
 arrangement of bra
kets usually does not play a major

role in our results � apart from one important attribute

3

. Namely, what will

matter a lot is the position of the outermost pairs of inner bra
kets. Namely,

every higher 
ommutator subgroup JH1,H2, . . . ,HmK 
an be written uniquely

as

JH1,H2, . . . ,HmK = [JH1, . . . ,HsK, JHs+1, . . . ,HmK],

for some s = 1, . . . ,m − 1. This s will be 
alled the 
ut point of our multiple


ommutator. Now we are all set to �nish the proof of Theorem 7. The proof is

an easy adaptation of the proof of [78℄, Theorem 1, but we reprodu
e it here

for the sake of 
ompleteness.

Proof. Denote the 
ommutator on the left-hand side by H,

H = JEU(2n, I1,Γ1),EU(2n, I2,Γ2), . . . ,EU(2n, Im,Γm)K.

We argue by indu
tion onm, with the 
ases ofm 6 4 as the base of indu
tion �

for the 
ase of m = 2 there is nothing to prove, the 
ase of m = 3 is a

ounted

for by Lemma 14, and the 
ase of m = 4 � by Lemma 14 if the 
ut point

s 6= 2, and by Lemma 15 when s is not 2.
Now, letm > 5 and assume that our theorem is already proved for all shorter


ommutators. Consider an arbitrary arrangement of bra
kets [[. . .]] with the 
ut

point s and let

JEU(2n, I1,Γ1),EU(2n, I2,Γ2), . . . ,EU(2n, Is,Γs)K,
JEU(2n, Is+1,Γs+1),EU(2n, Is+2,Γs+2), . . . ,EU(2n, Im,Γm)K,

be the partial 
ommutators, the �rst one 
ontaining the fa
tors afore the 
ut

point, and the se
ond one 
ontaining those after the 
ut point.

• When the 
ut point o

urs at s = 1 or at s = m − 1, one of these


ommutators is a single elementary subgroup, EU(2n, I1) in the �rst 
ase or

EU(2n, Im−1) in the se
ond one. Then we 
an apply the indu
tive hypothesis

to another fa
tor. For s = 1, denote by t = 2, . . . ,m − 1 the 
ut point of the

3

A
tually, for non
ommutative rings symmetri
 produ
t of ideals is not asso
iative, so

that the initial bra
keting of higher 
ommutators will be re�e
ted also in the bra
keting of

su
h higher symmetri
 produ
ts.
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se
ond fa
tor. Then by indu
tive hypothesis

H =
[

EU(2n, I1,Γ1),
q
EU(2n, I2,Γ2),EU(2n, I3,Γ3), . . . ,EU(2n, Im,Γm)

y]

=
[

EU(2n, I1,Γ1),
[

EU(2n, (I2,Γ2) ◦ . . . ◦ (It,Γt)),

EU(2n, (It+1,Γt+1) ◦ . . . ◦ (Im,Γm))
]

]

,

and we are done by Lemma 14. Similarly, for s = m − 1 denote by r =
1, . . . ,m− 1 the 
ut point of the �rst fa
tor. Then by indu
tive hypothesis

H=
[q

EU(2n, I1,Γ1),EU(2n, I2,Γ2), . . . ,EU(2n, Im−1,Γm−1)
y
,

EU(2n, Im,Γm)
]

=
[

[

EU(2n, (I1,Γ1) ◦ . . . ◦ (Ir,Γr)),

EU(2n, (Ir+1,Γr+1) ◦ . . . ◦ (Im−1,Γm−1))
]

,

EU(2n, Im,Γm)
]

,

and we are again done by Lemma 14.

• Otherwise, when s 6= 1,m − 1, we 
an apply the indu
tive hypothesis to

both fa
tors. Let as above r = 1, . . . , s − 1 be the 
ut point of the �rst fa
tor

and let t = s+1, . . . ,m− 1 be the 
ut point of the se
ond fa
tor. Then we 
an

apply indu
tive hypothesis to both fa
tors of

H =
[q

EU(2n, I1),EU(2n, I2), . . . ,EU(2n, Is)
y
,

q
EU(2n, Is+1),EU(2n, Is+2), . . . ,EU(2n, Im)

y]

to 
on
lude that

H =
[

[

EU(2n, I1 ◦ . . . ◦ Ir),EU(2n, Ir+1 ◦ . . . ◦ Is)
]

,

[

EU(2n, Is+1 ◦ . . . ◦ It),EU(2n, It+1 ◦ . . . ◦ Im)
]

]

,

and we are again done, this time by Lemma 15. �

�11. Further appli
ations

Now, we are in a position to �nish the proof of Theorem 8.

Proof. Sin
e (I,Γ) and (J,∆) are 
omaximal, there exist a′ ∈ I and b′ ∈ J
su
h that a′ + b′ = 1 ∈ R. But then by Lemmas 10 and 13, for i 6= ±j one has

Yij(a, b) = Yij(a(a
′ + b′), b) ≡ Yij(aa

′, b) · Yij(ab
′, b) ≡ e



COMMUTATORS OF RELATIVE ELEMENTARY UNITARY GROUPS 31

modulo EU(2n, (I,Γ) ◦ (J,∆)).
For i = −j, one has

Yi,−i(a, b) = Yi,−i((a
′ + b′)a(a′ + b′), b) = Yi,−i(a

′aa′ + b′aa′ + a′ab′ + b′ab′, b).

Applying multipli
ativity of 
ommutators to the �rst argument of the above


ommutator and then using Lemma 9, we dedu
e that

z ≡ Yi,−i(a
′aa′, b)Yi,−i(b

′aa′, b)Yi,−i(a
′ab′, b)Yi,−i(b

′ab′, b)

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

By Theorem 10, ea
h of the above fa
tors is trivial modulo EU(2n, (I,Γ) ◦
(J,∆)). This �nishes the proof. �

Let us state another amusing 
orollary of Theorem 10. For the form ideals

themselves, one has an obvious in
lusion

(

(I,Γ) + (J,∆)
)

◦
(

(I,Γ) ∩ (J,∆)
)

=
(

(I + J) ◦ (I ∩ J),Γmin((I + J) ◦ (I ∩ J)) + (Γ∩∆)(Γ + ∆) + (Γ+∆)(Γ ∩∆)
)

6
(

I ◦ J,Γmin(I ◦ J) +
JΓ + I∆

)

= (I,Γ) ◦ (J,∆).

Only very rarely this in
lusion is always an identity.

Theorem 11. For any two form ideals (I,Γ) and (J,∆) of (A,Λ), n > 3, one
has

[

EU(2n, (I,Γ)+(J,∆)),EU(n, (I,Γ)∩(J,∆))
]

6 [ EU(2n, I,Γ),EU(2n, J,∆)].

Proof. The observation immediately pre
eding the theorem shows that the

level of the left-hand side is 
ontained in the level of the right-hand side,

EU
(

2n,R, ((I,Γ) + (J,∆)) ◦ ((I,Γ) ∩ (J,∆))
)

6 EU(2n,R, (I,Γ) ◦ (J,∆)).

Thus, it only remains to prove that the elementary 
ommutators Yij(a+b, c),
with a ∈ (I,Γ), b ∈ (J,∆), c ∈ (I,Γ) ∩ (J,∆), on the left-hand side belong to

the right-hand side.

By Theorem 10, one has

Yij(a+ b, c) ≡ Yij(a, c) · Yij(b, c)

(mod EU (2n,R, ((I,Γ) + (J,∆)) ◦ ((I,Γ) ∩ (J,∆)))) .

Thus, this 
ongruen
e holds true also modulo the larger subgroup

EU(2n,R, (I,Γ) ◦ (J,∆)).

On the other hand, Theorem 6 implies that

Yij(b, c) ≡ Yij(c,−b) (mod EU(2n,R, (I,Γ) ◦ (J,∆))) .
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Combining the above 
ongruen
es, we see that

Yij(a+ b, c) ≡ Yij(a, c) · Yij(c,−b) (mod EU(2n,R, (I,Γ) ◦ (J,∆))) ,

where both 
ommutators on the right-hand side belong to

[EU(2n, I,Γ),EU(2n, J,∆)],

whi
h proves the desired in
lusion. �

�12. Final remarks

Here we make some further observations 
on
erning the 
ontext of this work

and also state some unsolved problems and reiterate some further problems

from [27, 31℄, whi
h are still pending.

12.1. How we got here. The study of birelative standard 
ommutator for-

mulas goes ba
k to the foundational work by Hyman Bass [10℄. As early su
-


esses one should also mention important 
ontributions by Ale
 Mason and

Wilson Stothers [39�42℄ and by Hong You [84℄. Our own resear
h in this

dire
tion started in 2008�2010 in the joint works with Alexei Stepanov and

Roozbeh Hazrat [32, 74, 75℄ and was then 
ontinued in 2011�2017 in a series

of our joint works based on relative versions of lo
alization methods, in par-

ti
ular

4

[27�31,33℄. Simultaneously, Stepanov developed his universal lo
aliza-

tion and applied it to multiple 
ommutator formulas and 
ommutator width,

see [63, 64℄. One 
an �nd systemati
 des
ription of that stage of development

in our surveys and 
onferen
e papers [22�24, 30℄.

The present work is a natural extension of our more re
ent papers [71, 72,

76�80℄. It owes its existen
e to the two following momentous observations we

made in O
tober 2018, and in September 2019, respe
tively.

In O
tober 2018 the �rst author proved a spe
ial 
ase of Theorems 2 and 3 for

the general linear group GL(n,R), n > 3, over 
ommutative rings, see [71℄. The

initial proof employed a version of de
omposition of unipotents [65℄, whi
h was

already used for a similar purpose in his joint work with Alexei Stepanov [74℄.

The se
ond author then immediately observed that Theorem 2 implies the �rst


laim of Theorem 1 and that it should be possible to pro
eed 
onversely, �rst

establish a version of Theorem 1 by elementary 
al
ulations, and then derive

Theorems 2 and 3. This is exa
tly what was done for Chevalley groups in our

paper [76℄, again over 
ommutative rings.

In July�September 2019 the �rst author was dis
ussing bounded generation

of Chevalley groups in the fun
tion 
ase with Boris Kunyavsky and Eugene

4

At least three our s
heduled works of that period, whi
h were essentially 
ompleted

by 2016, viz., the general multiple 
ommutator formula for GL(n,R), unitary 
ommutator

width, and the analysis of the 
ase GU(4, R,Λ), still remain unpublished.
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Plotkin. One of the tri
ks used in many published papers 
onsisted of splitting

an elementary 
onjugate/elementary 
ommutator and then reassembling it in

a di�erent position. We noti
ed that the same 
al
ulation of rolling elemen-

tary 
onjugates to a di�erent position appeared over and over again in many

di�erent 
ontexts.

• Congruen
e subgroup problem. In a preliminary mode it was already present

in the pre
ursory arti
le by Jens Menni
ke [43℄ and then already in full-�edged

form in the epo
h-making memoir by Hyman Bass, John Milnor, and Jean-

Pierre Serre [12℄, behold the proof of Theorem 5.4.

• Bounded generation. Post fa
tum, we dis
erned the same 
al
ulation in the


lassi
al papers by David Carter, Gordon Keller, and Oleg Tavgen [15,68℄, but

we only be
ame aware of that perusing a re
ent arti
le by Bogdan Ni
a [44℄.

• In fa
t, Wilberd van der Kallen and Alexei Stepanov [34, 62, 63℄ used a

very similar 
al
ulation to redu
e the generating sets of relative elementary

subgroups.

Here we atta
hed merely a handful of referen
es. Retrospe
tively, we spotted

the same or very similar 
al
ulations in oodles of further papers, but apparently

it was hardly ever applied in the birelative 
ontext.

At the end of September the �rst author used essentially the same 
al
ula-

tion

5

to prove that when R is 
ommutative and n > 3, the mixed relative 
om-

mutator subgroup [E(n,A), E(n,B)] is 
ontained in another birelative group

EE(n,A,B) = 〈tij(c), where c ∈ A, i < j, and c ∈ B, i > j〉,

see [72℄, Theorem 3. Within a few days of vehement 
orresponden
e we observed

that everything works over arbitrary asso
iative rings and 
an be further en-

han
ed to entail Theorems 1 and 5 for GL(n,R). This was done in [76℄, and

soon thereafter in a more mature form, implying also Theorems 6, 7 and 8,

in [78℄.

Morally, the present paper, and a parallel paper that addresses the 
ase

of Chevalley groups [80℄, are dire
t o�springs of this development. However,

te
hni
ally these 
ases turned out to be way more demanding, and we had to

spend quite some time to supply detailed proofs of all auxiliary results.

12.2. Degree improvements. Of 
ourse, the �rst question that immediately

o

urs is whether Theorem 7 is true also for n = 3. For quasi�nite rings this is

indeed the 
ase [30℄, and we are pretty more in
lined to believe in the positive

answer.

Problem 1. Prove that Lemma 15 and Theorem 7 hold also for n = 3.

5

Simultaneously and independently exa
tly the same 
al
ulation was applied by Andrei

Lavrenov and Sergei Sin
huk [38℄ at the level of K2.
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Getting a proof in the same style as that of Lemma 14 seems to be highly

nontrivial from a te
hni
al viewpoint. However, the possibility to 
onstru
t a


ounterexample appears even more remote.

In the main body of the present paper we always assumed that n > 3. Obvi-
ously, due to the ex
eptional behavior of the orthogonal group SO(4, A), these
results do not fully generalize to the 
ase of n = 2. It is natural to ask whether

results of the present paper are true also for the group GU(4, A,Λ). However,
this obviously fails in general without some strong additional assumptions on

the form ring and/or form ideals.

Still, we believe they do generalize, provided ΛA + AΛ = A, or the like.

Known results

6


learly indi
ate both that this should be possible, and that

the analysis of the 
ase n = 2 will be 
onsiderably harder from a te
hni
al

viewpoint than that of the 
ase n > 3.

Problem 2. Generalize results of the present paper to the group GU(4, A,Λ),
provided that ΛA+AΛ = A, ΓJ + JΓ = I, ∆I + I∆ = J, or the like.

A
tually, some 8 years ago we obtained various headways towards the rela-

tive standard 
ommutator formula and all that for GU(4, A,Λ), but even these

results are unpublished, due to their �er
ely te
hni
al 
hara
ter.

12.3. Presentations and stability. As a 
ounterpart to Theorem 9 we 
an

ask, whether the stability map for this quotient is also inje
tive. A natural

approa
h to this would be to ta
kle the following mu
h more ambitious proje
t.

Problem 3. Give a presentation of

[ EU(2n, I,Γ),EU(2n, J,∆)]/EU(2n,A, (I,Γ) ◦ (J,∆))

by generators and relations, does this presentation depend on n > 3 ?

In Theorems 6 and 10 and Lemma 13 we established some of the relations

among the elementary 
ommutators modulo EU(2n,A, (I,Γ) ◦ (J,∆)). How-
ever, easy arithmeti
 examples show this is not a de�ning set of relations, so

that there must be some further relations. Compare [76, 78, 79℄ for dis
ussion

of a similar problem for GL(n,A).

12.4. Higher relations. In [79℄ we established some further 
ongruen
es for

the elementary 
ommutators in GL(n,A), n > 3, where A is an arbitrary

asso
iative ring. The highlight of that paper is the following remarkable triple


ongruen
e, a version of the Hall�Witt identity.

6

Compare the work by Bak and the �rst author [8℄, and referen
es therein.
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Let I, J,K be two-sided ideals of R. Then for any three distin
t indi
es i, j, h
su
h that 1 6 i, j, h 6 n, and all a ∈ I, b ∈ J , c ∈ K, one has

yij(ab, c)yjh(ca, b)yhi(bc, a) ≡ e (mod E(n,R, IJK + JKI +KIJ)) ,

see [79, Theorem 1℄. This identity has lots of appli
ations, in
luding many new

in
lusions among double and multiple mixed relative elementary 
ommutator

subgroups.

Spe
i�
ally, it allows us to solve an analog of Problem 3 for GL(n,A) in the

parti
ularly agreeable 
ase of Dedekind rings. Thus, it would be most natural

to seek out similar higher 
ongruen
es also in the unitary 
ase.

Problem 4. Generalize the results of [79℄ to the unitary groups GU(2n,A,Λ),
n > 3.

One su
h 
ongruen
e among short root type elementary 
ommutators is

immediately 
lear. But the 
ongruen
es involving long root type elementary


ommutators will be fan
ier and longer.

12.5. Other birelative groups. We brie�y dis
uss two further groups de-

pending on two form ideals of a form ring. First of all, it is the partially

relativized group FU(2n, I,Γ)FU(2n,J,∆)
. It seems that in view of the identity

FU(2n, I,Γ)FU(2n,J,∆) = [FU(2n, I,Γ),FU(2n, J,∆)] · FU(2n, I,Γ),

our Theorem 1 readily implies the following generalization of [9, Proposi-

tion 5.1℄, to FU(2n, I,Γ)FU(2n,J,∆)
. Namely, we assert that it is generated by

the appropriate elementary 
onjugates.

Problem 5. Prove that the partially relativized groups FU(2n, I,Γ)FU(2n,J,∆)

are generated by

Tji(b)Tij(a), where a ∈ (I,Γ), b ∈ (J,∆).

Another birelative group EEU(2n, (I,Γ), (J,∆)) is de�ned as follows

EEU(2n, (I,Γ), (J,∆)=
〈

Tij(a), where c∈(I,Γ), i<j, and c∈(J,∆), i>j
〉

.

The following problem proposes a unitary generalization of [72, Theorem 3℄,

where a similar result was established for GL(n,A).

Problem 6. Prove that

[FU(2n, I,Γ),FU(2n, J,∆)] 6 EEU(2n, (I,Γ), (J,∆)).
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12.6. General multiple 
ommutator formula. Now we re
all another ma-

jor unsolved problem as stated already in [27, 30℄ and [31, Problem 1℄. We

pro�er to prove a general multiple 
ommutator formula for unitary groups.

Problem 7. Let (Ii,Γi), 1 6 i 6 m, be form ideals of the form ring (A,Λ) su
h
that A is module-�nite over a 
ommutative ring R that has �nite Bass�Serre

dimension δ(R) = d < ∞. Prove that for any m > d one has

JGU(2n, I0,Γ0),GU(2n, I1,Γ1), . . . ,GU(2n, Im,Γm)K
= JEU(2n, I0,Γ0),EU(2n, I1,Γ1), . . . ,EU(2n, Im,Γm)K.

Observe that the arrangement of bra
kets in the above formula should be

the same on both sides be
ause the mixed 
ommutators are not asso
iative.

A similar problem for algebrai
 groups over 
ommutative rings, in parti
ular

for Chevalley groups, was solved by Alexei Stepanov [64℄, by his remarkable

universal lo
alization method.

Re
all that the proof of a similar result for GL(n,R) over non
ommutative

rings is based on the following result of Mason�Stothers [42℄, Theorem 3.6 and

Corollary 3.9, see [30, Theorem 13℄, for an easy modern proof. Of 
ourse, that

we 
an unrelativize the right-hand side was only established in [76, Theorem 2℄,

so formally this theorem was never stated in this form.

Theorem 3. Let A be a ring, and let I and J be two two-sided ideals of A.
Assume that n > sr(R), 3. Then

[GL(n,A, I),GL(n,A, J)] = [E(n, I), E(n, J)].

For unitary groups, even su
h basi
 fa
ts at the stable level seem to be

missing.

Problem 8. Find appropriate stability 
onditions under whi
h

[GU(2n, I,Γ),GU(2n, J,∆)] = [FU(2n, I,Γ),FU(2n, J,∆)].

After that, the proof in our unpublished paper pro
eeds by indu
tion on d,
whi
h depends on Bak's results [3℄, the pre
ise form of inje
tive stability forK1,

su
h as the Bass�Vaserstein theorem, et
. It seems that to solve Problem 7 one

has to rethink and expand many aspe
ts of the stru
ture theory of unitary

groups, starting with stability theorems for KU1.

The �rst 
omplete

7

generally a

epted proof of inje
tive stability for KU1

was obtained (but not published!) by Maria Saliani [56℄, and �rst published

7

In late 1960s and mid 1970s Anthony Bak and Manfred Kolster obtained stability un-

der stronger assumptions, with very sket
hy proofs. Leonid Vaserstein worked in smaller

generality as far as groups, and his proof of inje
tive stability for unitary groups 
ontained

serious gaps and ina

ura
ies. In 1980 Mamed-Emin Oglu Namik Mustafa-Zadeh announ
ed

surje
tive stability for KU2 � and thus also inje
tive stability for KU1 � in full generality.
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by Max Knus in his book [35℄. After that, generalizations and improvements

were proposed by Anthony Bak, Guoping Tang, Vi
tor Petrov, and Sergei

Sin
huk [5,7,60℄, and then very re
ently by Weibo Yu, Rabeya Basu and Egor

Voronetsky [14, 82, 87℄.

Problem 7 is also intimately related to the nilpotent stru
ture of KU1. In the

absolute 
ase the 
orresponding results for unitary groups were obtained by

Roozbeh Hazrat in his Ph. D. Thesis [20,21℄, and in the relative 
ase in a joint

paper by Bak, Hazrat and the �rst author [4℄. To fully 
ope with Problem 7,

we need more powerful results on the superspe
ial unitary groups than what

was established in [4℄. Part of what is demanded here was re
ently established

by Weibo Yu, Guoping Tang and Rabeya Basu [13, 88℄, but there is still a lot

of work to be done.

12.7. Subnormal subgroups. Initially, one of our main motivations to pur-

sue the work on birelative 
ommutator formulas were prospe
tive appli
ations

to the study of subnormal subgroups of GU(2n,A,Λ). As was observed by

John Wilson [83℄, te
hni
ally this amounts to des
ription of subgroups of

GU(2n,A,Λ), normalized by a relative elementary subgroup EU(2n, J,∆), for
some form ideal (J,∆).

A major early 
ontribution is due to G�unter Habdank [17, 18℄, who addi-

tionally assumed that the form ring was subje
t to some stability 
onditions.

De�nitive results for quasi�nite rings were then obtained by the se
ond author

and You Hong [85,90�92℄. However, we are 
onvin
ed that the bounds in these

papers 
an be further improved and hope to return to the following problem

with our new tools.

Problem 9. Obtain optimal bounds in the des
ription of subgroups of

GU(2n,A,Λ),

normalized by the relative elementary subgroup EU(2n, J,∆), for a form ideal

(J,∆) P (A,Λ).

Until re
ently, for the unitary groups the proofs of stru
ture theorems were in

bad shape even in the absolute 
ase.

8

However, now the situation has 
hanged.

In 2013 Hong You and Xuemei Zhou [86℄ published a detailed proof for 
ommu-

tative form rings. Finally, in 2014 Raimund Preusser in his Ph. D. Thesis [49℄

However, a 
omplete proof was never published, and the exposition in his 1983 Ph. D. Thesis

is blurred by serious mistakes.

8

As indi
ated in [26℄, the proof in the work by Leonid Vaserstein and Hong You [69℄


ontained a major omission, and only established the weak stru
ture theorem. The details

of the purported global proof by Bak and the �rst author, that was around sin
e the early

1990s, and that was harbingered in [9℄, remained unpublished.
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gave a �rst 
omplete lo
alization proof for quasi�nite form rings, whi
h was

published in [50℄.

In 2017 Raimund Preusser [51, 52℄ also �nally su

eeded in 
ompleting a

global proof as envisaged in [9℄. These papers 
onstitute a major breakthrough

be
ause, at least for 
ommutative rings, they give expli
it polynomial expres-

sions of nontrivial transve
tions as produ
ts of elementary 
onjugates of a

given matrix and its inverse. (See also [53, 55℄ for further results in this spirit

for GL(n,A) over various 
lasses of non
ommutative rings.) The �rst author

immediately re
ognized that the results by Preusser pro
ure an e�e
tivization

for the des
ription of normal subgroups in mu
h the same sense as the de
om-

position of unipotents [65℄ does for the normality of the elementary subgroup.

This prompted him to 
all this method reverse de
omposition of unipotents [70℄.

Moreover, he noti
ed that in the 
ase of GL(n,A) these results 
an be gen-

eralized (with only marginally worse bounds) to the des
ription of subgroups

normalized by a relative elementary subgroups [73℄.

We are 
on�dent that, 
ombining the methods developed by Preusser in

the above papers with our methods, we 
ould easily improve bounds in all

published results for unitary groups. Of 
ourse, to prove that the bounds thus

obtained are themselves the best possible would be quite a 
hallenge.

12.8. Commutator width. Another related problem that initially moti-

vated our work was the study of 
ommutator width. Alexander Sivatsky and

Alexei Stepanov [61℄ dis
overed that over rings of �nite Ja
obson dimension

j-dim(A) = d < ∞ any 
ommutator [x, y], where x ∈ GL(n,A), y ∈ E(n,A), is
a produ
t of at most L elementary generators, where L = L(n, d) only depends
on n and d. This result was then generalized to all Chevalley groups G(Φ, A)
by Stepanov and the �rst author [66℄, with the bound depending on the type

Φ and on d.
Ultimately, Stepanov dis
overed that for redu
tive groups similar results hold

for arbitrary 
ommutative rings and that the bound L therein depends on the

type of the group alone and not on the ring A. Also, he dis
overed that sim-

ilar results hold at the relative and birelative level, with elementary 
onju-

gates and our generators (like those in Theorem B) as the generating sets of

[E(Φ, A, I), E(Φ, A, J)], again with bounds that depend on the type alone, and

not on A, I, or J . See [24℄ for statements and a detailed dis
ussion of these

results.

However, Bak's unitary groups are not always algebrai
 and similar results

on 
ommutator width are not yet published even in the absolute 
ase and even

over �nite-dimensional rings.
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Problem 10. Let (A,Λ) be a 
ommutative form ring su
h that j-dim(A) < ∞.

Prove that the length of 
ommutators in [GU(Φ, A, I), E(Φ, A, J)] in terms of

the generators listed in Theorem 1 is bounded, and estimate this length.

Alexei Stepanov maintained that the above length is bounded in the absolute


ase, without a
tually produ
ing any spe
i�
 bound. To obtain an exponential

bound depending on d by relative lo
alization methods [27, 30, 31℄ would be

simply a matter of patien
e. A
tually, this was essentially done by ourselves

and Roozbeh Hazrat, but even in the absolute 
ase all of this still remains

unpublished.

On the other hand, to a
hieve a uniform polynomial bound, similar to the

one established in [61℄ for GL(n,A) but not depending on d, one would need

to 
ombine a full-s
ale generalization of Stepanov's universal lo
alization to

unitary groups, with full-s
ale unitary versions of de
omposition of unipotents,

in
luding expli
it polynomial formulas for the 
onjugates of root unipotents.

This seems to be a rather ambitious proje
t.

12.9. Unitary Steinberg groups. It is natural to ask to whi
h extent our

methods and results 
arry over to the level of KU2.

Problem 11. Prove analogs of the main results of the present paper for the

unitary Steinberg groups StU(2n,A,Λ).

For the de�nition of unitary Steinberg groups, see [2,36℄ and referen
es there

(or [37℄ for odd unitary Steinberg groups). Here, we do not dis
uss subtleties

related to the de�nition of relative unitary Steinberg groups, as also the rela-

tionship with ex
ision in the unitary algebrai
 K-theory, et
.

12.10. Des
ription of subgroups. The methods of the present paper may

have appli
ations also in des
ription of various 
lasses of subgroups of unitary

groups. Not in the position to dis
uss this at any depth here, we only 
ite

the works by Vi
tor Petrov, Alexander Sh
hegolev, and Egor Voronetsky [46,

57�59,81℄ where one 
an �nd many further referen
es. Observe that the result

by Voronetsky [81℄ is espe
ially powerful, be
ause it simultaneously generalizes

also the des
ription of EU-normalized subgroups (in the 
ontext of odd unitary

groups!)

12.11. Odd unitary groups. Finally, we are positive that all results of the

present paper generalize also to odd unitary groups introdu
ed by Vi
tor Petrov

[47, 48℄.

Problem 12. Generalize the results of [27,29,30℄ and the present paper to odd

unitary groups, under suitable isotropy assumptions.
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Of 
ourse, this is not an individual 
lear-
ut problem, but rather a huge re-

sear
h proje
t. Clearly, in most 
ases the proofs in this setting will require mu
h

more onerous 
al
ulations. Let us 
ite some important re
ent papers by Yu

Weibo, Tang Guoping, Li Yaya, Liu Hang, Anthony Bak, Raimund Preusser,

and Egor Voronetsky [6, 54, 81, 82, 88, 89℄ that address normal stru
ture and

stability for odd unitary groups.
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