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In the present paper, whih is an outgrowth of our joint work with Anthony

Bak and Roozbeh Hazrat on unitary ommutator alulus [9,27,30,31℄, we

�nd generators of the mixed ommutator subgroups of relative elementary

groups and obtain unrelativized versions of ommutator formulas in the

setting of Bak's unitary groups. It is a diret sequel of our papers [71, 76,

78, 79℄ and [77, 80℄, where similar results were obtained for GL(n,R) and
for Chevalley groups over a ommutative ring with 1, respetively. Namely,

let (A,Λ) be any form ring and let n > 3. We onsider Bak's hyperboli

unitary group GU(2n, A,Λ). Further, let (I,Γ) be a form ideal of (A,Λ).
One an assoiate with the ideal (I,Γ) the orresponding true elementary
subgroup FU(2n, I,Γ) and the relative elementary subgroup EU(2n, I,Γ)
of GU(2n, A,Λ). Let (J,∆) be another form ideal of (A,Λ). In the present

paper we prove an unexpeted result that the nonobvious type of genera-

tors for [ EU(2n, I,Γ),EU(2n, J,∆)], as onstruted in our previous papers
with Hazrat, are redundant and an be expressed as produts of the obvi-

ous generators, the elementary onjugates Zij(ξ, c) = Tji(c)Tij(ξ)Tji(−c),
and the elementary ommutators Yij(a, b) = [Tij(a), Tji(b)], where a ∈

(I,Γ), b ∈ (J,∆), c ∈ (A,Λ), and ξ ∈ (I,Γ) ◦ (J,∆). It follows that

[ FU(2n, I,Γ),FU(2n, J,∆)] = [EU(2n, I,Γ),EU(2n, J,∆)]. In fat, we es-

tablish muh more preise generation results. In partiular, even the ele-

mentary ommutators Yij(a, b) should be taken for one long root position

and one short root position. Moreover, the Yij(a, b) are entral modulo

EU(2n, (I,Γ) ◦ (J,∆)) and behave as symbols. This allows us to gener-

alize and unify many previous results, inluding the multiple elementary

ommutator formula, and dramatially simplify their proofs.

Êëþ÷åâûå ñëîâà: Bak's unitary groups, elementary subgroups, ongruene subgroups,

standard ommutator formula, unrelativized ommutator formula, elementary generators,

multiple ommutator formula.
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Introdution

In a series of our joint papers with Anthony Bak and Roozbeh Hazrat [9,27,

30,31℄ we studied ommutator formulas in Bak's unitary groups. In the present

paper we generalize, re�ne and strengthen some of the main results of these

works. Namely, we disover that the set of generators for the mixed ommutator

subgroup of relative elementary unitary groups listed in these papers an be

substantially redued and remove all ommutativity onditions therein.
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This

allows us to prove unexpeted unrelative versions of the ommutator formulas,

generalize multiple elementary ommutator formulas, and more. These results

both improve a great number of previous results, and path the way to several

new unexpeted appliations.

Morally, the present paper is a diret sequel our papers [71, 76, 78, 79℄ and

[77,80℄, where the same was done for GL(n,R) and for Chevalley groups over a

ommutative ring with 1, respetively. There, the proofs heavily relied on our

previous works, in partiular on [32, 33, 65, 74, 75℄ for GL(n,R) and on [28, 29℄

for Chevalley groups. Similarly, the present paper heavily hinges on the results

of [9, 27, 30, 31℄.

0.1. The prior state of art. To enuniate the main results of the present

paper, let us brie�y reall the notation, whih will be reviewed in somewhat

more detail in ��1�4. Let (A,Λ) be a form ring, n > 3, and let GU(2n,A,Λ) be
the hyperboli Bak's unitary group. Below, EU(2n,A,Λ) denotes the [absolute℄
elementary unitary group, generated by the elementary root unipotents.

As usual, for a form ideal (I,Γ) of the form ring (A,Λ) we denote by

FU(2n, I,Γ)

the unrelative elementary subgroup of level (I,Γ), and by

EU(2n, I,Γ)

the relative elementary subgroup of level (I,Γ). By de�nition, EU(2n, I,Γ) is
the normal losure of FU(2n, I,Γ) in EU(2n,A,Λ). Further, GU(2n, I,Γ) and
CU(2n, I,Γ) denote the prinipal ongruene subgroup and the full ongruene

subgroup of level (I,Γ), respetively.
We reapitulate two prinipal results of our joint papers with Roozbeh

Hazrat, [27, 30, 31℄. The �rst one is the birelative standard ommutator for-

mula, see [27, Theorems 1 and 2℄. It is a very broad generalization of the

ommutator formulas for unitary groups, previously established by Anthony

Bak, the �rst author, Leonid Vaserstein, Hong You, G�unter Habdank, and

others, see, for instane, [1, 2, 6, 9, 17, 18, 69℄.

1

In partiular, this solves [23, Problem 1℄ and [30, Problem 1℄.

pave 
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Theorem 1. Let R be a ommutative ring, and (A,Λ) a form ring suh that

A is a quasi�nite R-algebra. Further, let (I,Γ) and (J,∆) be two form ideals

of the form ring (A,Λ) and let n > 3. Then the following ommutator identity

holds

[GU(2n, I,Γ),EU(2n, J,∆)] = [EU(2n, I,Γ),EU(2n, J,∆)].

When A is itself ommutative, one even has

[CU(2n, I,Γ),EU(2n, J,∆)] = [EU(2n, I,Γ),EU(2n, J,∆)].

Another ruial result is the desription of a generating set for the mixed

ommutator subgroup [EU(2n, I,Γ),EU(2n, J,∆)] as a group, similar to the fa-

miliar generating set for relative elementary subgroups, see [9℄, Proposition 5.1

(ompare with Lemma 3 below).

Reall that we denote by Tij(a) elementary unitary transvetions. They

ome in two denominations, those of short root type, when i 6= ±j, and those

of long root type, when i = −j. The orresponding root subgroups are then

parametrized by the ring A itself and by the form parameter Λ, respetively. To
simplify the notation in the relative ase, we introdue the following onvention.

For a form ideal (I,Γ), we write a ∈ (I,Γ) to signalize that a ∈ I if i 6= ±j,

and a ∈ λ−(ε(i)+1)/2Γ if i = −j. Clearly, a ∈ (I,Γ) means preisely that

Tij(a) ∈ EU(2n, I,Γ), see ��3,4 for details.

Further, we onsider the elementary onjugates Zij(a, c) and the elementary

ommutators Yij(a, b), whih are de�ned as follows:

Zij(a, c) = Tji(c)Tij(a)Tji(−c), Yij(a, b) = [Tij(a), Tji(b)],

In a slightly weaker form, the following result was stated as Theorem 9

of [31℄, and in preisely this form as Theorem 3B of [30℄. Observe that there its

proof depended on Theorem A, and thus ultimately, on loalization methods.

Theorem 2. Let R be a ommutative ring, and (A,Λ) a form ring suh that A
is a quasi�nite R-algebra. Let (I,Γ) and (J,∆) be two form ideals of the form

ring (A,Λ), and let n > 3. The relative ommutator subgroup

[EU(2n, I,Γ),EU(2n, J,∆)]

is generated by the elements of the following three types:

• Zij(ξ, c),

• Yij(a, b),

• [Tij(a), Zij(b, c)],

where in all ases a ∈ (I,Γ), b ∈ (J,∆), c ∈ (A,Λ), and ξ ∈ (I,Γ) ◦ (J,∆).
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0.2. Statement of the prinipal result. The tehnial ore of the present

paper are Lemmas 6�12 that we prove in ��5�8. Together they imply that the

above Theorem B an be drastially generalized and improved, as follows.

• We an lift the ommutativity ondition.

• The third type of generators are redundant.

• The seond type of generators an be restrited to one long and one short

root (and are subjet to further relations, to be stated below).

The following result is the pinnale of the present paper, other results are

either preparation to its proof, or its easy onsequene. For the general lin-

ear group GL(n,R) it was established in [76, Theorem 1℄. For the Chevalley

groups G(Φ, R) over ommutative rings � and thus, in partiular, for the usual

sympleti group Sp(2n,R) and the split orthogonal group SO(2n,R) � it is

essentially a onjuntion of [77, Theorem 1.2℄ and [80, Theorem 1℄. However,

as explained below, in these speial ases one an say somewhat more.

Theorem 1. Let (A,Λ) be any assoiative form ring, let (I,Γ) and (J,∆)
be two form ideals of the form ring (A,Λ) and let n > 3. Then the relative

ommutator subgroup [EU(2n, I,Γ),EU(2n, J,∆)] is generated by the elements

of the following two types:

• Zij(ξ, c) and Zij(ξ, c),

• Yij(a, b),

where in all ases a ∈ (I,Γ), b ∈ (J,∆), c ∈ (A,Λ), and ξ ∈ (I,Γ) ◦ (J,∆).
Moreover, for the seond type of generators it su�es to take one pair (h, k),
h 6= ±k, and one pair (h,−h).

The di�erene with Chevalley groups is that now we have to throw in el-

ementary ommutators for two roots, one long root and one short root. For

Chevalley groups, one long root would su�e. Conversely, when 2 is invert-

ible for types Bl,Cl,F4 and 3 is invertible for type G2, one short root would

su�e. For unitary groups, modulo EU(2n, (I,Γ) ◦ (J,∆)) we an still estab-

lish a ognate relation between short root type elementary ommutators and

long root type elementary ommutators, Lemma 13. However, unlike Chevalley

groups, for unitary groups the elements of long root subgroups are parametrized

by the form parameter Λ, whereas the elements of short root subgroups are

parametrized by the ring A itself. This means that now we ould dispose of

some short type elementary ommutators, yet not all of them. In the opposite

diretion, the long type elementary ommutators, one of whose arguments sits

in the orresponding minimal ideal form parameter ould be disarded � but

not all of them! This an be done when one of the form parameters is either

minimal, or as large as possible � not merely maximal! � see �9.
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Observe that the proof of this theorem onsists of two independent parts.

The possibility to express the third type of generators as produts of elementary

onjugates and elementary ommutators in [EU(2n, I,Γ),EU(2n, J,∆)] will be
alled the �rst laim of Theorem 1. The muh more arduous bid that modulo

EU(2n, (I,Γ) ◦ (J,∆)) all elementary ommutators an be expressed in terms

of suh ommutators in one short and two long positions, will be alled the

seond laim of Theorem 1.

We mention another important trait. The published proofs of Theorem B

heavily depended on some version of Theorem A, and thus, ultimately, on

loalization. The proof of Theorem 1 given below in ��5�7 is purely elementary

2

and thus works already at the level of unitary Steinberg groups, see [1, 2, 36℄.

The only reason why we do not state our results in this generality is to skip

the disussion of relative unitary Steinberg groups. The details and tehnial

fats are not readily available in the literature, and would notieably inrease

the length of the present paper.

0.3. Unrelativization. Sine both remaining types of generators listed in

Theorem 1 already belong to the mixed ommutator of the unrelative elemen-

tary subgroups [FU(2n, I,Γ),FU(2n, J,∆)], we get the amazing equality in

Theorem 2. Morally, it shows that the ommutator of relative elementary sub-

groups [EU(2n, I,Γ),EU(2n, J,∆)] is smaller than one expets. Observe that

it only depends on the [relatively℄ easy �rst laim of Theorem 1 whose proof

is ompleted already in �5. For GL(n,R) the orresponding result is [71℄, The-
orem 2 (for ommutative rings, with a ompletely di�erent proof), and [76℄,

Theorem 1 (for arbitrary assoiative rings). For Sp(2n,R) and SO(2n,R) it is
a speial ase of [77℄, Theorem 1.2.

Theorem 2. Let (A,Λ) be any assoiative form ring, let (I,Γ) and (J,∆)
be two form ideals of the form ring (A,Λ) and let n > 3. Then the mixed

ommutator subgroup [FU(2n, I,Γ),FU(2n, J,∆)] is normal in EU(2n,A,Λ).
Furthermore, we have the following ommutator identity

[FU(2n, I,Γ),FU(2n, J,∆)] = [EU(2n, I,Γ),EU(2n, J,∆)].

In partiular, in onjuntion with Theorem A this shows that the birelative

standard ommutator formula also holds in the following unrelativized form.

Again, for GL(n,R) this is [71℄, Theorem 1 and [76℄, Theorem 3, whereas for

Chevalley groups it is [77℄, Theorem 1.3.

Theorem 3. Let R be a ommutative ring, and (A,Λ) a form ring suh that

A is a quasi�nite R-algebra. Further, let (I,Γ) and (J,∆) be two form ideals

2

In the tehnial sense that it does not invoke anything apart from the usual Steinberg

relations.
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of the form ring (A,Λ) and let n > 3. Then we have an unrelative ommutator

identity

[GU(2n, I,Γ),EU(2n, J,∆)] = [FU(2n, I,Γ),FU(2n, J,∆)].

When A is itself ommutative, one even has

[CU(2n, I,Γ),EU(2n, J,∆)] = [FU(2n, I,Γ),FU(2n, J,∆)].

The following result is a unitary analog of the unrelative normality theorem

proved for GL(n,R) by Bogdan Nia and ourselves, see [44, 71, 78℄. It is an

immediate orollary to our Theorem 3, if we set there (I,Γ) = (J,∆).

Theorem 4. Let R be a ommutative ring, and (A,Λ) a form ring suh that

A is a quasi�nite R-algebra. Further, let (I,Γ) be a form ideal of the form ring

(A,Λ) and let n > 3. Then FU(2n, I,Γ) is normal in GU(2n, I,Γ).

0.4. Elementary ommutators. The proof of the seond laim of Theo-

rem 1 is the gist of the present paper, and proeeds as follows. First, in �6 we

prove that the elementary ommutators Yij(a, b) are entral in the absolute

elementary group modulo EU(2n, (I,Γ) ◦ (J,∆)). Reall that here

(I,Γ) ◦ (J,∆) = (IJ + JI, JΓ + I∆+ Γmin(IJ + JI))

denotes the symmetrized produt of form ideals, see �2 for details.

Sine by that time we already know that together with EU(2n, (I,Γ)◦(J,∆))
these ommutators generate [FU(2n, I,Γ),FU(2n, J,∆)], this result an be

stated as follows. For GL(n,R) and Chevalley groups this is [76, Theorem

2℄, and [80, Theorem 2℄, respetively.

Theorem 5. Let (A,Λ) be any assoiative form ring, let (I,Γ) and (J,∆) be
two form ideals of the form ring (A,Λ), and let n > 3. Then

[FU(2n, I,Γ),FU(2n, J,∆)]

is entral in EU(2n,A,Λ) modulo EU(2n, (I,Γ) ◦ (J,∆)).

In other words,

[

[ FU(2n, I,Γ),FU(2n, J,∆)],EU(2n,A,Λ)
]

6 EU(2n, (I,Γ) ◦ (J,∆)).

In partiular, it implies that the quotient

[ FU(2n, I,Γ),FU(2n, J,∆)]/EU(2n, (I,Γ) ◦ (J,∆))

is itself Abelian. This readily implies the additivity of the elementary om-

mutator with respet to its arguments, and other similar useful properties,

olleted in Theorem 10, that are employed in the proofs of subsequent results.

However, the foal point of the present paper is �7, where we prove that

modulo EU(2n, (I,Γ) ◦ (J,∆)) all elementary ommutators of the same root
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type are equivalent. Moreover, for the short root type they are balaned with

respet to the fators from R, both on the left and on the right. For the long

root type, the balaning property is more ompliated, and only ours for the

quadrati (=Jordan) multipliation. In the ase of the usual sympleti group,

where A is a ommutative ring with trivial involution, it orresponds to the

multipliation by squares, see [80, Theorem 5℄.

Theorem 6. Let (A,Λ) be an assoiative form ring with 1, n > 3, and let

(I,Γ), (J,∆) be form ideals of (A,Λ).

• Then for any i 6= ±j, any h 6= ±l with h, l 6= ±i,±j, and a ∈ I, b ∈ J,
c, d ∈ A, the elementary ommutator obeys the relation

Yij(cad, b) ≡ Yhl(a, dbc) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

• Then for any −n 6 i 6 n, any −n 6 k 6 n, and a ∈ λ−(ε(i)+1)/2Γ,
b ∈ λ(ε(i)−1)/2∆ c ∈ A, the elementary ommutator obeys the relation

Yi,−i(cac, b)

≡ Yk,−k(λ
(ε(i)−ε(k))/2a,−λ(ε(k)−ε(i))/2cbc) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

The alulation behind these ongruenes is the highlight of the whole the-

ory. Inherently, it is preisely a birelative inarnation of a lassial alulation

that appeared dozens of times in the algebrai K-theory and the theory of

algebrai groups sine mid 60s, see �12 for a terse historial medley.

0.5. Further orollaries. As another illustration of the power of Theorem 1,

we show that it allows us to [almost ompletely℄ lift ommutativity onditions

in some of the prinipal results of [27, 30, 31℄.

Under the additional assumptions suh as quasi�niteness, the following re-

sult for any n > 3 is [31, Theorem 7℄. From Theorem 1 we an derive that

for n > 4 a similar result holds true for arbitrary assoiative form rings. For

GL(n,R) suh a generalization was already obtained in [76℄. We believe this

ould be also done for n = 3, see Problem 3, but in that ase it would require

formidable alulations.

Theorem 7. Let (A,Λ) be any assoiative form ring with 1, let n > 4, and
let (Ii,Γi) P R, i = 1, . . . ,m, be form ideals of (A,Λ). Consider an arbitrary

arrangement of brakets J. . .K with the ut point s. Then one has

q
EU(2n, I1,Γ1),EU(2n, I2,Γ2), . . . ,EU(2n, Im,Γm)

y

=
[

EU(2n, (I1,Γ1) ◦ . . . ◦ (Is,Γs)),EU(2n, (Is+1,Γs+1) ◦ . . . ◦ (Im,Γm))
]

,

where the braketing of symmetrized produts on the right-hand side oinides

with the braketing of the ommutators on the left-hand side.
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Under the additional assumption that the absolute standard ommutator

formulas are satis�ed, the following result is [27, Theorem 3℄. As we know

from [9,20,21,27℄, this ondition is satis�ed for quasi�nite rings. But from the

work of Vitor Gerasimov [16℄ it follows that some ommutativity or �niteness

assumptions are neessary for the standard ommutator formulas to be true.

Now, we are in a position to prove the following result for arbitrary assoiative

form rings.

Theorem 8. Let (A,Λ) be any assoiative form ring and let n > 3. Then
for any two omaximal form ideals (I,Γ) and (J,∆) of the form ring (R,Λ),
I + J = A, one has

[EU(2n, I,Γ),EU(2n, J,∆)] = EU(2n, (I,Γ) ◦ (J,∆)).

Another bizarre orollary to Theorem 1 is the surjetive stability of the

quotients

[FU(2n, I,Γ),FU(2n, J,∆)]/EU(2n, (I,Γ) ◦ (J,∆)),

again for arbitrary assoiative form rings, without any stability onditions, or

ommutativity onditions. This is a typial result in the style of Bak's paradigm

�stability results without stability onditions,� see [3℄ and also [4,20,21,25,26℄.

Theorem 9. Let (A,Λ) be any assoiative form ring, let (I,Γ) and (J,∆) be
two form ideals of the form ring (A,Λ), and let n > 3. Then the stability map

[FU(2n, I,Γ),FU(2n, J,∆)]/EU(2n, (I,Γ) ◦ (J,∆))

−→ [FU(2(n + 1), I,Γ),FU(2(n + 1), J,∆)]/EU(2(n + 1), (I,Γ) ◦ (J,∆))

is surjetive.

Indeed, in view of Theorems 1 and 5, as a normal subgroup of EU(2n,A,Λ),
the group

[EU(2n, I,Γ),EU(2n, J,∆)]

is generated by

[EU(6, I,Γ),EU(6, J,∆)].

An expliit alulation of these quotients presents itself as a natural next step.

However, so far we were unable to resolve it, apart from some speial ases,

see a disussion in �12.

0.6. Organization of the paper. The rest of the paper is devoted to the

proof of these results. In ��1�4 we reall the neessary de�nitions and ollet

requisite preliminary results. The next four setions ��5�8 are the tehnial ore

of the paper. Namely, in �5 we prove Theorem 5 and derive �rst onsequenes

of it. In �6 we redue the set of generators of [EU(2n, I,Γ),EU(2n, J,∆)] to
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the �rst two types. In �7 we prove Theorem 6 and then in �8 establish another

ognate result, relating some elementary ommutators of short root type with

some elementary ommutators of long root type. This �nishes the proof of

Theorem 1 and its orollaries, and, in partiular, also of Theorems 2�4. In �9

we establish the speial ases of Theorem 7 pertaining to triple and quadruple

ommutators, and then in �10 derive Theorem 7 itself by an easy indution.

In �11 we derive Theorem 8 and yet another orollary to our main results.

Finally, in �12 we desribe the general ontext, brie�y review reent related

publiations, and state several further related open problems.

�1. Notation

Here we reall some basi notation that will be used throughout the present

paper.

1.1. General linear group. Let, as above, A be an assoiative ring with 1.

For natural m,n we denote by M(m,n,A) the additive group ofm×n matries

with entries in A. In partiular M(m,A) = M(m,m,A) is the ring of matries

of degree m over A. For a matrix x ∈ M(m,n,A) we denote by xij , 1 6 i 6 m,

1 6 j 6 n, its entry in the position (i, j). Let e be the identity matrix and eij ,
1 6 i, j 6 m, a standard matrix unit, i.e., the matrix that has 1 in the position

(i, j) and zeros elsewhere.

As usual, GL(m,A) = M(m,A)∗ denotes the general linear group of degree

m over A. The group GL(m,A) ats on the free right A-module V ∼= Am
of

rank m. Fix a base e1, . . . , em of the module V . We may think of elements

v ∈ V as olumns with omponents in A. In partiular, ei is the olumn whose

ith oordinate is 1, while all other oordinates are zeros.

Atually, in the present paper we are only interested in the ase whenm = 2n
is even. We usually number the base as follows: e1, . . . , en, e−n, . . . , e−1. All

other ourring geometri objets will be numbered aordingly. Thus, we write

v = (v1, . . . , vn, v−n, . . . , v−1)
t
, where vi ∈ A, for vetors in V ∼= A2n

.

The set of indies will be always ordered in onformity with this onvention,

Ω = {1, . . . , n,−n, . . . ,−1}. Clearly, Ω = Ω+ ⊔ Ω−
, where Ω+ = {1, . . . , n}

and Ω− = {−n, . . . ,−1}. For an element i ∈ Ω we denote by ε(i) the sign of

Ω, i.e., ε(i) = +1 if i ∈ Ω+
, and ε(i) = −1 if i ∈ Ω−

.

1.2. Commutators. Let G be a group. For any x, y ∈ G, xy = xyx−1
and

yx = x−1yx denote the left onjugate and the right onjugate of y by x,
respetively. As usual, [x, y] = xyx−1y−1

denotes the left-normed ommutator

of x and y. Throughout the present paper we repeatedly use the following

ommutator identities:
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(C1) [x, yz] = [x, y] · y[x, z],

(C1+) an easy indution, with the use of identity (C1), shows that

[

x,

k
∏

i=1

ui

]

=

k
∏

i=1

∏i−1
j=1 uj [x, ui],

where by onvention

∏0
j=1 uj = 1,

(C2) [xy, z] = x[y, z] · [x, z],

(C2+) as in (C1+), we have
[ k
∏

i=1

ui, x

]

=

k
∏

i=1

∏k−i
j=1 uj [uk−i+1, x],

(C3)

x[[x−1, y], z] · z[[z−1, x], y] · y[[y−1, z], x] = 1,

(C4) [x, yz] = y[y
−1
x, z],

(C5) [yx, z] = y[x, y
−1
z],

(C6) if H and K are subgroups of G, then [H,K] = [K,H].

Espeially important is (C3), the elebrated Hall�Witt identity . Sometimes it

is used in the following form, known as the three subgroup lemma.

Lemma 1. Let F,H,L P G be three normal subgroups of G. Then

[[F,H], L] 6 [[F,L],H] · [F, [H,L]].

�2. Form rings and form ideals

The notion of Λ-quadrati forms, quadrati modules, and generalized unitary

groups over a form ring (A,Λ) were introdued by Anthony Bak in his Thesis,

see [1, 2℄. In this setion, and in the next one, we very brie�y review the most

fundamental notation and results that will be onstantly used in the sequel.

We refer to [2,9,11,19�21,27,30,31,35,36,46,67℄ for details, proofs, and further

referenes. In the �nal setion we mention some further related reent works,

and some generalizations.

2.1. Form rings. Let R be a ommutative ring with 1, and A a (not ne-

essarily ommutative) R-algebra. An involution, denoted by , is an anti-

homomorphism of A of order 2. Namely, for a, b ∈ A, one has

a+ b = a+ b, ab = b a, a = a.

Fix an element λ ∈ Cent(A) suh that λλ = 1. One may de�ne two additive

subgroups of A as follows:

Λmin = {c− λc | c ∈ A}, Λmax = {c ∈ A | c = −λc}.
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A form parameter Λ is an additive subgroup of A suh that

(1) Λmin ⊆ Λ ⊆ Λmax,

(2) cΛ c ⊆ Λ for all c ∈ A.

The pair (A,Λ) is alled a form ring.

2.2. Form ideals. Let I P A be a two-sided ideal of A. We assume I to be

involution invariant, i.e., suh that I = I. Set

Γmax(I) = I ∩ Λ, Γmin(I) = {a− λa | a ∈ I}+ 〈aca | a ∈ I, c ∈ Λ〉.

A relative form parameter Γ in (A,Λ) of level I is an additive group of I suh

that

(1) Γmin(I) ⊆ Γ ⊆ Γmax(I),

(2) cΓ c ⊆ Γ for all c ∈ A.

The pair (I,Γ) is alled a form ideal.

In the level alulations we will use sums and produts of form ideals. Let

(I,Γ) and (J,∆) be two form ideals. Their sum is artlessly de�ned as (I +
J,Γ +∆), it is immediate to verify that this is indeed a form ideal.

Guided by analogy, one is tempted to set (I,Γ)(J,∆) = (IJ,Γ∆). However,
it is onsiderably harder to onsistently de�ne the produt of two relative form

parameters. The papers [17, 18, 20, 21℄ introdue the following de�nition

Γ∆ = Γmin(IJ) +
JΓ + I∆,

where

JΓ = 〈bΓ b | b ∈ J〉, I∆ = 〈a∆ a | a ∈ I〉.

One an verify that this is indeed a relative form parameter of level IJ if

IJ = JI.
However, in the present paper we do not wish to impose any suh ommuta-

tivity assumptions. Thus, we are fored to onsider the symmetrized produts

I ◦ J = IJ + JI, Γ ◦∆ = Γmin(IJ + JI) + JΓ + I∆.

The notation Γ◦∆ (as also Γ∆) is slightly misleading, beause in fat it depends

on I and J , not only on Γ and ∆. Thus, stritly speaking, one should talk of

the symmetrized produts of form ideals

(I,Γ) ◦ (J,∆) = (IJ + JI,Γmin(IJ + JI) + JΓ + I∆).

Clearly, in the above notation one has

(I,Γ) ◦ (J,∆) = (I,Γ)(J,∆) + (J,∆)(I,Γ).
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�3. Unitary groups

In the present setion we reall basi notation and fats related to Bak's

generalized unitary groups.

3.1. Unitary group. For a form ring (A,Λ), one onsiders the hyperboli

unitary group GU(2n,A,Λ), see [9, �2℄. This group is de�ned as follows.

One �xes a symmetry λ ∈ Cent(A), λλ = 1, and supplies the module

V = A2n
with the following λ-hermitian form h : V × V −→ A,

h(u, v) = u1v−1 + . . .+ unv−n + λu−nvn + . . .+ λu−1v1,

and the following Λ-quadrati form q : V −→ A/Λ,

q(u) = u1u−1 + . . .+ unu−n mod Λ.

In fat, both forms are engendered by a sesquilinear form f ,

f(u, v) = u1v−1 + . . . + unv−n.

Now, h = f + λf , where f(u, v) = f(v, u), and q(v) = f(u, u) mod Λ.
By de�nition, the hyperboli unitary group GU(2n,A,Λ) onsists of all el-

ements from GL(V ) ∼= GL(2n,A) preserving the λ-Hermitian form h and the

Λ-quadrati form q. In other words, g ∈ GL(2n,A) belongs to GU(2n,A,Λ) if
and only if

h(gu, gv) = h(u, v) and q(gu) = q(u), for all u, v ∈ V.

When the form parameter is neither maximal nor minimal, these groups

are not algebrai. However, their internal struture is very similar to that of

the usual lassial groups. They are also oftentimes alled general quadrati

groups, or lassial-like groups.

3.2. Unitary transvetions. Elementary unitary transvetions Tij(ξ) orre-
spond to the pairs i, j ∈ Ω suh that i 6= j. They ome in two stoks. Namely,

if, moreover, i 6= −j, then for any c ∈ A we set

Tij(c) = e+ ceij − λ(ε(j)−ε(i))/2ce−j,−i.

These elements are also often alled elementary short root unipotents. On the

other side for j = −i and c ∈ λ−(ε(i)+1)/2Λ we set

Ti,−i(c) = e+ cei,−i.

These elements are also often alled elementary long root elements.

Note that Λ = λΛ. In fat, for any element c ∈ Λ one has c = −λc and thus

Λ oinides with the set of produts λc, where c ∈ Λ. This means that in the

above de�nition c ∈ Λ when i ∈ Ω+
and c ∈ Λ when i ∈ Ω−

.
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Subgroups Xij = {Tij(c) | c ∈ A}, where i 6= ±j, are alled short root

subgroups. Clearly, Xij = X−j,−i. Similarly, subgroups Xi,−i = {Tij(c) | c ∈

λ−(ε(i)+1)/2Λ} are alled long root subgroups.

The elementary unitary group EU(2n,A,Λ) is generated by elementary uni-

tary transvetions Tij(c), i 6= ±j, c ∈ A, and Ti,−i(c), c ∈ Λ, see [9, �3℄.

3.3. Steinberg relations. Elementary unitary transvetions Tij(c) satisfy

the following elementary relations, also known as Steinberg relations. These

relations will be used throughout this paper.

(R1) Tij(c) = T−j,−i(−λ(ε(j)−ε(i))/2c),

(R2) Tij(c)Tij(d) = Tij(c+ d),

(R3) [Tij(c), Thk(d)] = e, where h 6= j,−i and k 6= i,−j,

(R4) [Tij(c), Tjh(d)] = Tih(cd), where i, h 6= ±j and i 6= ±h,

(R5) [Tij(c), Tj,−i(d)] = Ti,−i(cd− λ−ε(i)dc), where i 6= ±j,

(R6) [Ti,−i(c), T−i,j(d)] = Tij(cd)T−j,j(−λ(ε(j)−ε(i))/2dad), where i 6= ±j.

Relation (R1) oordinates two natural parametrizations of the same short

root subgroup Xij = X−j,−i. Relation (R2) expresses the additivity of the nat-

ural parametrizations. All other relations are various instanes of the Chevalley

ommutator formula. Namely, (R3) orresponds to the ase where the sum of

two roots is not a root, whereas (R4) and (R5) orrespond to the ase of two

short roots, whose sum is a short root, and a long root, respetively. Finally,

(R6) is the Chevalley ommutator formula for the ase of a long root and a

short root whose sum is a root. Observe that any two long roots are either

opposite, or orthogonal, so that their sum is never a root.

�4. Relative subgroups

In this setion we reall de�nitions and basi fats onerning relative sub-

groups. For the proofs of these results, see [9℄.

4.1. Relative subgroups. One assoiates with a form ideal (I,Γ) the fol-

lowing four relative subgroups.

• The subgroup FU(2n, I,Γ) generated by elementary unitary transvetions

of level (I,Γ),

FU(2n, I,Γ) =
〈

Tij(a) | a ∈ I if i 6= ±j and a ∈ λ−(ε(i)+1)/2Γ if i = −j
〉

.

• The relative elementary subgroup EU(2n, I,Γ) of level (I,Γ), de�ned as

the normal losure of FU(2n, I,Γ) in EU(2n,A,Λ),

EU(2n, I,Γ) = FU(2n, I,Γ)EU(2n,A,Λ).



14 N. VAVILOV, Z. ZHANG

• The prinipal ongruene subgroup GU(2n, I,Γ) of level (I,Γ) in

GU(2n,A,Λ) onsists of those g ∈ GU(2n,A,Λ), that are ongruent to e mod-

ulo I and preserve f(u, u) modulo Γ,

f(gu, gu) ∈ f(u, u) + Γ, u ∈ V.

• The full ongruene subgroup CU(2n, I,Γ) of level (I,Γ), de�ned as

CU(2n, I,Γ) = {g ∈ GU(2n,A,Λ) | [g,GU(2n,A,Λ)] ⊆ GU(2n, I,Γ)}.

In some books, inluding [19℄, the group CU(2n, I,Γ) is de�ned di�erently.

However, in many important situations these de�nitions yield the same group.

4.2. Some basi lemmas. We us ollet several basi fats, onerning rela-

tive groups, whih will be used in the sequel. The �rst one of them, see [9,

Lemma 5.2℄, asserts that the relative elementary groups are EU(2n,A,Λ)-
perfet.

Lemma 2. Suppose either n > 3 or n = 2 and I = ΛI + IΛ. Then

EU(2n, I,Γ) = [EU(2n, I,Γ),EU(2n,A,Λ)].

The next lemma gives generators of the relative elementary subgroup

EU(2n, I,Γ) as a subgroup. With this end, onsider matries

Zij(a, c) =
Tji(c)Tij(a) = Tji(c)Tij(a)Tji(−c),

where a ∈ I, c ∈ A, if i 6= ±j, and a ∈ λ−(ε(i)+1)/2Γ, c ∈ λ−(ε(j)+1)/2Λ, if
i = −j. The following result is [9℄, Proposition 5.1.

Lemma 3. Suppose n > 3. Then

EU(2n, I,Γ) = 〈Zij(a, c) | a ∈ I, c ∈ A if i 6= ±j, and

a ∈ λ−(ε(i)+1)/2Γ, c ∈ λ−(ε(j)+1)/2Λ, if i = −j〉.

The following lemma was �rst established in [1℄, but remained unpublished.

See [19℄ and [9℄, Lemma 4.4, for published proofs.

Lemma 4. The groups

GU(2n, I,Γ) and CU(2n, I,Γ)

are normal in GU(2n,A,Λ).

In this form the following lemma was established in [31, Lemmas 7 and 8℄, see

also [30, Lemma 1B℄ for a de�nitive exposition. Before that [27℄, Lemmas 21�

23 only established weaker inlusions, with smaller left-hand sides, or larger

right-hand sides.
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Lemma 5. (A,Λ) be an assoiative form ring with 1, n > 3, and let (I,Γ) and
(J,∆) be two form ideals of (A,Λ). Then

EU(2n, (I,Γ) ◦ (J,∆)) 6[ FU(2n, I,Γ),FU(2n, J,∆)]

6 [ EU(2n, I,Γ),EU(2n, J,∆)]

6 [ GU(2n, I,Γ),GU(2n, J,∆)]

6 GU(2n, (I,Γ) ◦ (J,∆)).

�5. Unrelativization

Here we establish the �rst laim of Theorem 1, and thus also Theorems 2, 3

and 4. It immediately follows from the next two lemmas, the �rst of whih

addresses the ase of short roots, while the seond one pertain to the ase of

long roots.

Reall that for the easier ase of the general linear group over ommutative

rings this result was �rst established in 2018 in our paper [77℄. Then it was

generalized to arbitrary assoiative rings in 2019, together with the seond

laim of Theorem 1, see [76℄. The proof of the following results exploits the

same ideas as the proof of [76, Lemma 4℄, but is notieably more demanding

from a tehnial viewpoint.

The following two lemmas address the ase of short roots, where i 6= ±j,
and the ase of long roots, where i = −j, respetively

Lemma 6. Let (A,Λ) be an assoiative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). Suppose that a ∈ I, b ∈ J, r ∈ A, and i 6= ±j.
Then

[Tji(a), Zji(b, r)] ∈ [FU(2n, I,Γ),FU(2n, J,∆)].

Proof. For simpliity, we assume that ε(i) = ε(j). Pik an h 6= i, j with

ε(h) = ε(i). Then

x = [Tji(a), Zji(b, r)] = Tji(a) ·
Zji(b,r)Tji(−a) = Tji(a) ·

Zji(b,r)[Tjh(1), Thi(−a)].

Expanding the onjugation by Zji(b, r), we see that

x = Tji(a)[
Zji(b,r)Tjh(1),

Zji(b,r)Thi(−a)]

= Tji(a)[Tih(−rbr)Tjh(1− br), Thj(−arbr)Thi(−a(1− rb))]

= Tji(a)[yTjh(1), Thi(−a)z],

where

y = Tih(−rbr)Tjh(−br) ∈ FU(2n, J,∆),

z = Thj(−arbr)Thi(arb) ∈ FU(2n, (I,Γ) ◦ (J,∆)).
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Sine Thi(−a) ∈ FU(2n, I,Γ), the seond fator of the above ommutator be-

longs to FU(2n, I,Γ). Thus,

[yTjh(1), Thi(−a)z] = y[Tjh(1), Thi(−a)z] · [y, Thi(−a)z]. (1)

Now, the �rst ommutator on the right-hand side equals

y[Tjh(1), Thi(−a)] · yThi(−a)[Tjh(1), z].

The seond ommutator in the last expression belongs to EU(2n, (I,Γ)◦(J,∆)),
and remains there after elementary onjugations, while the �rst ommutator

equals

yTij(−a). But

yTij(−a) = [Tih(−rbr)Tjh(−br), Tij(−a)] · Tij(−a).

The �rst fat above lies in EU(2n, (I,Γ) ◦ (J,∆)), hene

yTij(−a) ∈ Tij(−a) EU(2n, (I,Γ) ◦ (J,∆)).

On the other hand, the seond ommutator of (1) equals

[y, Thi(−a)z] = [Tih(−rbr)Tjh(−br), Thi(−a)Thj(−arbr)Thi(arb)].

Expanding the ommutator above by its seond argument, we obtain

[Tih(−rbr)Tjh(−br), Thi(−a)Thj(−arbr)Thi(arb)]

= [Tih(−rbr)Tjh(−br), Thi(−a)]
Thi(−a)[Tih(−rbr)Tjh(−br), Thj(−arbr)Thi(arb)].

The seond fator above belongs to EU(2n, (I,Γ)◦ (J,∆)). And the �rst fator

above equals

Tih(−rbr)[Tjh(−br), Thi(−a)] · [Tih(−rbr), Thi(−a)]

= Tih(−rbr)Tji(bra) · [Tih(−rbr), Thi(−a)]

∈ [Tih(−rbr), Thi(−a)] · EU(2n, (I,Γ) ◦ (J,∆)).

Summarising the above, we see that

x ∈ [Tih(−rbr), Thi(−a)] · EU(2n, (I,Γ) ◦ (J,∆))

whih �nishes the proof. �

Lemma 7. Let (A,Λ) be an assoiative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). Suppose that a ∈ Γ, b ∈ ∆, and r ∈ Λ. Then

[T−i,i(a), Z−i,i(b, r)] ∈ [FU(2n, I,Γ),FU(2n, J,∆)].
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Proof. Without loss of generality, we may assume that i > 0. Pik an h > 0
with h 6= i. Then

x = [T−i,i(a), Z−i,i(b, r)] = T−i,i(a) ·
Z−i,i(b,r)T−i,i(−a)

= T−i,i(a) ·
Z−i,i(b,r)

(

Thi(−a) · [Th,−h(a), T−h,i(1)]
)

.

Thus,

x = T−i,i(a) ·
(

Z−i,i(b,r)Thi(−a) · [Th,−h(a),
Z−i,i(b,r)T−h,i(1)]

)

= T−i,i(a) · Th,i(−a(1− br)) · Ti,−h(λrbra)

×
[

Th,−h(a), T−h,i(1− rb) · Ti,h(λrbr)
]

.

Using the additivity of root unipotents, we an rewrite this as

x = T−i,i(a)Th,i(−a) · Th,i(−abr)Ti,−h(λrbra)

×
[

Th,−h(a), T−h,i(1)T−h,i(−rb) · Ti,h(λrbr)
]

.

Clearly,

Th,i(−abr)Ti,−h(λrbra) ∈ EU(2n, (I,Γ) ◦ (J,∆)).

On the other hand, the ommutator in the last expression equals

[

Th,−h(a), T−h,i(1)T−h,i(−rb) · Ti,h(λrbr)
]

=
[

Th,−h(a), T−h,i(1)
]

· T−h,i(1)
[

Th,−h(a), T−h,i(−rb) · Ti,h(λrbr)
]

= Th,i(a)T−i,i(−a) · T−h,i(1)
[

Th,−h(a), T−h,i(−rb) · Ti,h(λrbr)
]

.

Again, learly

[

Th,−h(a), T−h,i(−rb) · Ti,h(λrbr)
]

∈ [FU(2n, I,Γ),FU(2n, J,∆)].

On the other hand, the previous fators assemble to a left T−i,i(a)Th,i(−a)
onjugate of an element of EU(2n, (I,Γ) ◦ (J,∆)), whih is ontained in

[FU(2n, I,Γ),FU(2n, J,∆)].

This proves Lemma 7. �

Combined with Theorem 2, these results imply the �rst laim of Theorem 1.

�6. Elementary ommutators modulo EU(2n, (I,Γ) ◦ (J,∆))

Now we embark on the proof of the seond laim of Theorem 1. Our �rst

major goal is to prove that the ommutator [FU(2n, I,Γ),FU(2n, J,∆)] is en-
tral in EU(2n,A,Λ), modulo EU(2n, (I,Γ)◦ (J,∆)). Namely, here we establish

Theorem 5 and derive some orollaries to it. We prove the ongruene in The-

orem 5 separately for short root positions, and then for long root positions.
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Lemma 8. Let (A,Λ) be an assoiative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). For any i 6= ±j, any a ∈ I, b ∈ J, and any

x ∈ EU(2n,A,Λ), one has

xYij(a, b) ≡ Yij(a, b) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. Consider the elementary onjugate

xYij(a, b). We argue by indution

on the length of x ∈ EU(2n,A,Λ) in elementary generators. Let x = yTkl(c),
where y ∈ EU(2n,A,Λ) is shorter than x.

We start with the ase where k 6= ±l.

• If k, l 6= ±i,±j, then Tkl(c) ommutes with z = Yij(a, b) and an be

disarded.

• On the other hand, for any h 6= ±i,±j diret omputations show that

[Tih(c), z] = Tih(−abc− ababc)Tjh(−babc),

[Tjh(c), z] = Tih(abac)Tjh(bac),

[Thi(c), z] = Thi(cab)Thj(−caba),

[Thj(c), z] = Thi(cbab)Thj(−cba− cbaba),

Similarly, one has

[T−i,h(c), z] = [T−h,i(−λ(ε(h)+ε(i))/2c), z]

= T−h,i(−λ(ε(h)+ε(i))/2cab)T−h,j(−λ(ε(h)+ε(i))/2caba),

[T−j,h(c), z] = [T−h,j(−λ(ε(h)+ε(j))/2c), z]

= T−h,i(−λ(ε(h)+ε(j))/2cbab)

T−h,j(−λ(ε(h)+ε(j))/2cba− λ(ε(h)+ε(j))/2cbaba),

[Th,−i(c), z] = [Ti,−h(−λ−(ε(i)−ε(h))/2c), z]

= Ti,−h(−λ−(ε(i)−ε(h))/2abac)Tj,−h(−λ−(ε(i)−ε(h))/2bac),

[Th,−j(c), z] = [Tj,−h(−λ−(ε(j)−ε(h))/2c), z]

= Ti,−h(−λ(−(ε(j)−ε(h))/2abac)Tj,−h(−λ−(ε(j)−ε(h))/2bac)

All fators on the right-hand side belong already to EU(2n, (I,Γ) ◦ (J,∆)).
If (k, l) = (±i,±j) or (±j,±i), then we take an index h 6= ±i,±j and

rewrite Tkl(c) as [Tk,h(c), Th,l(1)] and apply the previous items to get the same

ongruene modulo EU(2n, (I,Γ) ◦ (J,∆)).
It remains to onsider the ase where k = −l.

• If k 6= ±i,±j, then Tk,−k(c) ommutes with z and an be disarded.
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• Otherwise, we have

[Ti,−i(c), z] =Ti,−i(c− (1 + ab+ abab)c(1 + ab+ abab))

Tj,−j(−λ(ε(i)−ε(j))/2babcbab)

Ti,−j(λ
(ε(i)−ε(j))/2(1 + ab+ abab)c(bab)),

[Tj,−j(c), z] =Tj,−j(c− (1− ba)c(1 − ba))Ti,−i(−λ(ε(j)−ε(i))/2abacaba)

Ti,−j(abac(1 − ba)),

[T−i,i(c), z] =[T−i,i(c), [Tij(a), Tji(b)]]

=[T−i,i(c), [T−j,−i(−λ(ε(j)−ε(i))/2a), T−i,−j(λ
(ε(i)−ε(j))/2b)]],

[T−j,j(c), z] =[T−j,j(c), [Tij(a), Tji(b)]]

=[T−j,−j(c), [T−j,−i(−λ(ε(j)−ε(i))/2a), T−i,−j(λ
(ε(i)−ε(j))/2b)]].

The last two ases redue to the �rst two. Hene all fators on the right belong

to EU(2n, (I,Γ) ◦ (J,∆)).
We have shown that for i 6= ±j,

xz ≡ yz (mod EU(2n, (I,Γ) ◦ (J,∆))) . �

Lemma 9. Let (A,Λ) be an assoiative form ring with 1, n > 3, and let (I,Γ),

(J,∆) be form ideals of (A,Λ). For any a ∈ λ−(ε(i)+1)/2Γ, b ∈ λ(ε(i)−1)/2∆, and
any x ∈ EU(2n,A,Λ), one has

xYi,−i(a, b) ≡ Yi,−i(a, b) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. We argue by indution on the length of x ∈ EU(2n,A,Λ) in elementary

generators as we did in the previous lemma. Let x = yTkl(c), where y ∈
EU(2n,A,Λ) is shorter than x.

We start with the ase where k = −l. Denote Yi,−i(a, b) = [Ti,−i(a), T−i,i(b)]
by z.

• If (k, l) = (−i, i), then

[T−i,i(c), z] = [T−i,i(c), [Ti,−i(a), T−i,i(b)]] = [T−i,i(c), Z−i,i(b, a)].

The same omputation as in Lemma 7 shows that

[T−i,i(c), z] ∈ EU(2n, (I,Γ) ◦ (J,∆)).

• If (k, l) = (i,−i), then

[Ti,−i(c), z]=[Ti,−i(c), [Ti,−i(a), T−i,i(b)]]

=[Ti,−i(c), [T−i,i(b), Ti,−i(a)]
−1]

=[T−i,i(b), Ti,−i(a)]
−1[[T−i,i(b), Ti,−i(a)], Ti,−i(c)][T−i,i(b), Ti,−i(a)].
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Now the inner fator [[T−i,i(b), Ti,−i(a)], Ti,−i(c)] falls into the previous ase,

hene belongs to EU(2n, (I,Γ) ◦ (J,∆)). But then the same applies also to its

onjugate

[T−i,i(b), Ti,−i(a)]
−1 ·

[

[T−i,i(b), Ti,−i(a)], Ti,−i(c)
]

· [T−i,i(b), Ti,−i(a)].

• If k = i and j 6= ±k, then

[Ti,j(c), z] = [Ti,j(c), [Ti,−i(a), T−i,i(b)]]

= Ti,j(−abc− ababc)T−i,j(−babc) · T−j,j

(

− λ(ε(j)−ε(i))/2(bc)a(bc)

− λε(j)((abc)b(abc) + (babc)a(babc))
)

.

Sine a ∈ λ−(ε(i)+1)/2Γ and b ∈ λ(ε(i)−1)/2∆, it follows that the right side

belongs to EU(2n, (I,Γ) ◦ (J,∆)).

• If k = −i and j 6= ±k, then

[T−i,j(c), z]=[T−i,j(c), [Ti,−i(a), T−i,i(b)]]

=[T−i,i(b),Ti,−i(a)][T−i,j(c), [T−i,i(b),Ti,−i(a)]]
−1[T−i,i(b),Ti,−i(a)]

−1.

By the previous ase,

[T−i,j(c), [T−i,i(b), Ti,−i(a)]] ∈ EU(2n, (I,Γ) ◦ (J,∆)).

As above, the normality of EU(2n, (I,Γ) ◦ (J,∆)) then implies that the whole

right side belongs to EU(2n, (I,Γ) ◦ (J,∆)).

• Finally, the ase where l = ±i and k 6= ±i redues to the ase of k = ±i
via relation (R1).

We have shown that

xz ≡ yz (mod EU(2n, (I,Γ) ◦ (J,∆))) .

By indution we get

xz ≡ z (mod EU(2n, (I,Γ) ◦ (J,∆))) . �

In partiular, these results immediately imply the following additivity prop-

erty of the elementary ommutators with respet to their arguments.

Theorem 10. Let R be an assoiative ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of R. Then for any i 6= j, and any a, a1, a2 ∈ (I,Γ),
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b, b1, b2 ∈ (J,∆) one has

Yij(a1 + a2, b) ≡ Yij(a1, b) · Yij(a2, b) (mod EU(2n, (I,Γ) ◦ (J,∆))) ,

Yij(a, b1 + b2) ≡ Yij(a, b1) · Yij(a, b2) (mod EU(2n, (I,Γ) ◦ (J,∆))) ,

Yij(a, b)
−1 ≡ Yij(−a, b) ≡ Yij(a,−b) (mod EU(2n, (I,Γ) ◦ (J,∆))) ,

Yij(ab1, b2) ≡ Yij(a1, a2b) ≡ e (mod EU(2n, (I,Γ) ◦ (J,∆))) ,

Yi,−i(b1ab1, b2) ≡ Yi,−i(a1, a2ba2) ≡ e (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. The �rst item an be derived from Lemma 8 for i 6= ±j and Lemma 9

for i = −j as follows. By de�nition,

Yij(a1 + a2, b) = [Tij(a1 + a2), Tji(b)] = [Tij(a1)Tij(a2), Tji(b)],

and it only remains to apply the multipliativity of ommutators in the �rst

fator, and then apply Lemma 8 and Lemma 9 respetively. The seond item

is similar, and the third item follows. The last two items are obvious from the

de�nition. �

�7. Rolling over elementary ommutators

Now we pass to the �nal, and most di�ult part of the proof of Theorem 1,

rolling an elementary ommutator over to a di�erent position. Sine we assume

that n > 3, the ase of short root type elementary ommutators is easy. It

is settled by essentially the same alulation as for the general linear group

GL(n,R), n > 3, see [76, 78℄. But for the ase of long root type elementary

ommutators we have to imitate the proof of [80, Theorems 4 and 5℄, for

Sp(4, R). In the presene of a nontrivial involution, nonommutativity, and

nontrivial form parameters, this is quite a hallenge. In �12 we make some

observations, to put this alulation in historial ontext.

Lemma 10. Let (A,Λ) be an assoiative form ring with 1, n > 3, and let

(I,Γ), (J,∆) be form ideals of (A,Λ). Then for any i 6= ±j, any h 6= ±l, and
any a ∈ I, b ∈ J, c1, c2 ∈ A, one has

Yij(c1ac2, b) ≡ Yhl(a, c2bc1) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. Take any h 6= ±i,±j, and rewrite the elementary ommutator z =
Yij(c1ac2, b) on the left-hand side of the above ongruene as follows

z = [Tij(c1ac2), Tji(b)] = Tij(c1ac2) ·
Tji(b)Tij(−c1ac2)

= Tij(c1ac2) ·
Tji(b)[Thj(ac2), Tih(c1)].
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Expanding the onjugation by Tji(b), we see that

z = Tij(c1ac2) · [
Tji(b)Thj(ac2),

Tji(b)Tih(c1)]

= Tij(c1ac2) ·
[

[Tji(b), Thj(ac2)]Thj(ac2), Tih(c1)[Tih(−c1), Tji(b)]
]

= Tij(c1ac2) ·
[

Thi(−ac2b)Thj(ac2), Tih(c1)Tjh(bc1)
]

.

Now, the �rst fator Thi(−ac2b) of the �rst argument in this last ommutator

already belongs to the group FU(2n, (I,Γ) ◦ (J,∆)). Thus, as above,

z ≡ Tij(c1ac2) ·
[

Thj(ac2), Tih(c1)Tjh(bc1)
]

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

Using the multipliativity of the ommutator with respet to the seond ar-

gument, anelling the �rst two fators of the resulting expression, and then

applying Lemma 8, we see that

z ≡ Tih(c1)[Thj(ac2), Tjh(bc1)]

≡ [Thj(ac2), Tjh(bc1)] (mod EU(2n, (I,Γ) ◦ (J,∆))) .

On the other hand, hoosing another index l 6= ±j,±h and rewriting the

ommutator [Thj(ac2), Tjh(bc1)] on the right-hand side of the last ongruene

as

[Thj(ac2), Tjh(bc1)] = [[Thl(a), Tlj(c2)], Tjh(bc1)],

by the same argument we get the ongruene

z ≡ [Thj(ac2), Tjh(bc1)] ≡ [Thl(a), Tlh(c2bc1)] (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Obviously, for n > 3 we an pass from any position (i, j), i 6= j, to any other

suh position (k,m), k 6= ±m, by a sequene of at most three suh elementary

moves. �

Lemma 11. Let (A,Λ) be an assoiative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). Then for any −n 6 i 6 n, any −n 6 k 6 n,

and any a ∈ λ−(ε(i)+1)/2Γ, b ∈ λ(ε(i)−1)/2∆, c ∈ A, one has

Yi,−i(cac, b)

≡ Yk,−k(λ
(ε(i)−ε(k))/2a,−λ(ε(k)−ε(i))/2cbc)·Yi,−k(λ

(ε(i)−ε(k))/2ca, λ(ε(k)+ε(i))/2cb)

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. Rewrite the elementary ommutator z = Yi,−i(cac, b) on the left-hand

side of the above ongruene as follows

z = Ti,−i(cac) ·
T−i,i(b) Ti,−i(−cac)

= Ti,−i(cac) ·
T−i,i(b)

(

[Tk,−k(λ
(ε(i)−ε(k))/2a), Ti,k(c)]Tk,−i(−ac)

)

.



COMMUTATORS OF RELATIVE ELEMENTARY UNITARY GROUPS 23

Expanding the onjugation by T−i,i(b), we see that

z = Ti,−i(cac)

×
[

T−i,i(b)Tk,−k(λ
(ε(i)−ε(k))/2a), T−i,i(b)Ti,k(c)

]

·T−i,i(b) Ti,−k(λ
(ε(i)−ε(k))/2ca).

Clearly, the last fator

y =T−i,i(b) Ti,−k(λ
(ε(i)−ε(k))/2ca)

an be rewritten as

[T−i,i(b), Ti,−k(λ
(ε(i)−ε(k))/2ca)] · Ti,−k(λ

(ε(i)−ε(k))/2ca)

whih gives us the following ongruene

y ≡ Ti,−k(λ
(ε(i)−ε(k))/2ca) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

On the other hand, the ommutator

u =
[

T−i,i(b)Tk,−k(λ
(ε(i)−ε(k))/2a), T−i,i(b)Ti,k(c)

]

in the expression of u equals

[

Tk,−k(λ
(ε(i)−ε(k))/2a), T−i,k(bc)T−k,k(−λ(ε(k)−ε(i))/2cbc)Ti,k(c)

]

.

Expanding this last expression, we get

u = [Tk,−k(λ
(ε(i)−ε(k))/2a), T−i,k(bc)]

× x[Tk,−k(λ
(ε(i)−ε(k))/2a), T−k,k(−λ(ε(k)−ε(i))/2cbc)]

× v[Tk,−k(λ
(ε(i)−ε(k))/2a), Ti,k(c)],

where

x = T−i,k(bc), v = T−i,k(bc)T−k,k(−λ(ε(k)−ε(i))/2cbc).

It is easy to see that

[Tk,−k(−λ(ε(i)−ε(k))/2a), T−i,k(bc)] ∈ EU(2n, (I,Γ) ◦ (J,∆)),

so we an drop it. Further, by Lemma 9, modulo EU(2n, (I,Γ) ◦ (J,∆)) the

seond fator an be simpli�ed as follows

x[Tk,−k(λ
(ε(i)−ε(k))/2a), T−k,k(−λ(ε(k)−ε(i))/2cbc)]

≡ [Tk,−k(λ
(ε(i)−ε(k))/2a), T−k,k(−λ(ε(k)−ε(i))/2cbc)]

(mod EU(2n, (I,Γ) ◦ (J,∆)).)
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Summarising the above, we get

z ≡ Ti,−i(cac) · [Tk,−k(λ
(ε(i)−ε(k))/2a), T−k,k(−λ(ε(k)−ε(i))/2cbc)]·

v[Tk,−k(λ
(ε(i)−ε(k))/2a), Ti,k(c)] · Ti,−k(λ

(ε(i)−ε(k))/2ca)

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

Thus, to �nish the proof it su�es to show that

x′ = Ti,−i(cac) ·
v[Tk,−k(λ

(ε(i)−ε(k))/2a), Ti,k(c)] · Ti,−k(λ
(ε(i)−ε(k))/2ca)

≡ Yi,−k(λ
(ε(i)−ε(k))/2ca, λ(ε(i)+ε(k))/2cb) (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Clearly, the seond fator of x′

v[Tk,−k(λ
(ε(i)−ε(k))/2a), Ti,k(c)]

an be rewritten as

v[Tk,−k(λ
(ε(i)−ε(k))/2a), Ti,k(c)] =

v(Ti,−i(−cac) · Ti,−k(−λ(ε(i)−ε(k))/2ca)).

Therefore we obtain

x′ = Ti,−k(−λ(ε(i)−ε(k))/2ca)[Ti,−k(λ
(ε(i)−ε(k))/2ca)Ti,−i(cac), v]

Expanding this last ommutator with respet to its �rst and seond ar-

guments, we express it as the produt of elementary onjugates of the four

following ommutators.

• [Ti,−i(cac), T−i,k(bc)],

• [Ti,−i(cac), T−k,k(−λ(ε(k)−ε(i))/2cbc)],

• [Ti,−k(λ
(ε(i)−ε(k))/2ca), T−i,k(bc)] = Yi,−k(λ

(ε(i)−ε(k))/2ca, λ(ε(k)+ε(i))/2cb),

• [Ti,−k(λ
(ε(i)−ε(k))/2ca), T−k,k(−λ(ε(k)−ε(i))/2cbc)].

A diret omputation onvines us that eah of these ommutators exept for

the third one belongs to the elementary subgroup EU(2n, (I,Γ) ◦ (J,∆)). This
�nishes the proof of the lemma, and thus also of Theorem 1. �

Lemma 12. Let (A,Λ) be an assoiative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). Then for any −n 6 i 6 n, any −n 6 k 6 n

with i 6= ±k and ε(i) = ε(k), and any a ∈ λ−(ε(i)+1)/2Γ, b ∈ λ(ε(i)−1)/2∆, one
has

Yi,−i(a, b) ≡ Yk,−k(a, b) (mod EU(2n, (I,Γ) ◦ (J,∆))) .
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Proof. Pik an integer l with −n 6 l 6 n. Applying Lemma 11 with c = 1,
we get

Yi,−i(a, b)

≡ Yl,−l(λ
(ε(i)−ε(l))/2a,−λ(ε(l)−ε(i))/2b) · Yi,−l(λ

(ε(i)−ε(l))/2a, λ(ε(l)+ε(i))/2b)

(mod EU(2n, (I,Γ) ◦ (J,∆)))

and

Yk,−k(a, b)

≡ Yl,−l(λ
(ε(k)−ε(l))/2a,−λ(ε(l)−ε(k))/2b) · Yk,−l(λ

(ε(k)−ε(l))/2a, λ(ε(l)+ε(k))/2b)

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

By Lemma 10, we obtain

Yi,−l(λ
(ε(i)−ε(l))/2a, λ(ε(l)+ε(i))/2b) ≡ Yk,−l(λ

(ε(k)−ε(l))/2a, λ(ε(l)+ε(k))/2b)

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

Therefore we onlude that

Yi,−i(a, b) ≡ Yk,−k(a, b) (mod EU(2n, (I,Γ) ◦ (J,∆))) . �

�8. Mat[h℄ing elementary ommutators of di�erent root lengths

In this setion we prove a ongruene relating elementary ommutators of

long root type with those of short root type. In the ase where one of the

relative form parameters is as small as possible (=minimal), this ongruene

an be used to eliminate long root type elementary ommutators. On the other

hand, when one of the relative form parameters is as large as possible (=equals

the orresponding ideal), one an abandon short root type elementary ommu-

tators.

Lemma 13. Let (A,Λ) be an assoiative form ring with 1, n > 3, and let (I,Γ),
(J,∆) be form ideals of (A,Λ). Then for any −n 6 i 6 n, any −n 6 k 6 n

with i 6= ±k , and a ∈ I, b ∈ λ(ε(i)−1)/2∆, one has

[

Ti,−i(a− λε(−i)a), T−i,i(b)
]

≡ [Ti,k(a), Tk,i(b)] (mod EU(2n, (I,Γ) ◦ (J,∆))) .

Proof. Pik an index k 6= ±i, and rewrite the elementary ommutator

z =
[

Ti,−i(a− λε(−i)a), T−i,i(b)
]

on the left-hand side as

z =
[

[Tk,−i(−1), Ti,k(a)], T−i,i(b)
]

=
[

Tk,−i(−1)Ti,k(a) · Ti,k(−a), T−i,i(b)
]

.
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Using the multipliativity of the ommutator with respet to the �rst argu-

ment, we see that

z = Tk,−i(−1)Ti,k(a)Tk,−i(1)[Ti,k(−a), T−i,i(b)] ·
[

Tk,−i(−1)Ti,k(a), T−i,i(b)
]

.

The �rst fator belongs to EU(2n, (I,Γ)◦ (J,∆)), so we leave it out. Thus, z is

ongruent modulo this subgroup to

[

Tk,−i(−1)Ti,k(a), T−i,i(b)
]

= Tk,−i(−1)
[

Ti,k(a),
Tk,−i(1)T−i,i(b)

]

= Tk,−i(−1)
[

Ti,k(a), [Tk,−i(1), T−i,i(b)]T−i,i(b)
]

= Tk,−i(−1)
[

Ti,k(a), Tk,i(b)Tk,−k(λ
(ε(−i)−ε(k))/2(b))T−i,i(b)

]

.

Expanding this last ommutator with respet to the seond argument, we see

that the seond and the third fators belong to EU(2n, (I,Γ) ◦ (J,∆)), so that
we an leave them out. Now we have

z ≡ Tk,−i(−1)
[

Ti,k(a), Tk,i(b)
]

(mod EU(2n, (I,Γ) ◦ (J,∆))) ,

as laimed. �

Corollary 1. Under the onditions of Lemma 13, further assume that b =
b′ − λε(i)b′ for some b′ ∈ J, then
[

Ti,−i(a− λε(−i)a), T−i,i(b− λε(i)b)
]

≡ [Ti,k(a), Tk,i(b
′)] · [Ti,k(a), Tk,i(−λε(i)b′)]

modulo EU(2n, (I,Γ) ◦ (J,∆)).

Proof. We keep the notation from the proof of Lemma 13. Under this addi-

tional assumption one has

z ≡ Tk,−i(−1)
[

Ti,k(a), Tk,i(b
′)Tk,i(−λε(i)b′)

]

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

Expanding the ommutator with respet to the seond argument again, we see

that

Tk,−i(−1)
[

Ti,k(a), Tk,i(b
′)Tk,i(−λε(i)b′)

]

= Tk,−i(−1)
(

[Ti,k(a), Tk,i(b
′)] · Tk,i(b

′)[Ti,k(a), Tk,i(−λε(i)b′)]
)

.

Applying Lemma 8, we get

z ≡ [Ti,k(a), Tk,i(b
′)] · [Ti,k(a), Tk,i(−λε(i)b′)] (mod EU(2n, (I,Γ) ◦ (J,∆))) ,

as laimed. �

Corollary 2. If I = Γ or J = ∆, then for the seond type of generators in

Theorem 1 it su�es to take one pair (h,−h).

Corollary 3. If Γ = I ∩ Λmin or ∆ = J ∩ Λmin, then for the seond type of

generators in Theorem 1 it su�es to take one pair (h, k), h 6= ±k.
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�9. Triple and quadruple ommutators

Atually Theorem 7 easily follows by indution on m from the following two

speial ases, triple ommutators, and quadruple ommutators.

Lemma 14. Let (A,Λ) be any assoiative form ring with 1, let n > 3, and let

(I,Γ), (J,∆), (K,Ω), be form ideals of (A,Λ). Then

[[ EU(2n, I,Γ),EU(2n, J,∆)],EU(2n,K,Ω)]

= [EU(2n, (I,Γ) ◦ (J,∆)),EU(2n,K,Ω)].

Proof. Let i, j, k ∈ {−n, . . . ,−1, 1, . . . , n} with i 6= ±j 6= ±k. For any a ∈
(I,Γ), b ∈ (J,∆) and c ∈ (K,Ω), we have

[Yk,−k(a, b), Ti,j(c)] = e

[Yk,j(a, b), Ti,j(c)] = Tij(cba+ cbaba)Tik(−cbab).

Both above ommutators land in [ EU(2n, (I,Γ) ◦ (J,∆)),EU(2n,K,Ω)]. By
Theorem 1, we dedue that

[[ EU(2n, I,Γ),EU(2n, J,∆)], Ti,j(c)]

⊆ [ EU(2n, (I,Γ) ◦ (J,∆)),EU(2n,K,Ω)].

Similarly, we have

[Yk,−k(a, b), Ti,−i(c)] = e,

[Yk,j(a, b), Ti,−i(c)] = e.

whih implies that

[[ EU(2n, I,Γ),EU(2n, J,∆)], Ti,−i(c)]

⊆ [ EU(2n, (I,Γ) ◦ (J,∆)),EU(2n,K,Ω)].

We �nish the proof by ombining all above results and applying Theorem 1. �

Now, for n > 4 the only new ase of quadruple ommutators is onsidered

in the following lemma, whih immediately follows from Lemma 14 and Theo-

rem 5. Of ourse, for the outstanding ase n = 3 it requires a separate proof. All
our assaults on this remaining ase were rippled by forbidding alulations.

Lemma 15. Let (A,Λ) be any assoiative form ring with 1 and let (I,Γ),
(J,∆), (K,Ω), (L,Θ) be form ideals of (A,Λ). If either n > 4 or there exists

an ideal that equals its orresponding relative form parameter and n > 3, then
[

[ EU(2n, I,Γ),EU(2n, J,∆)], [ EU(2n,K,Ω),EU(2n,L,Θ)]
]

= [EU(2n, (I,Γ) ◦ (J,∆)),EU(2n, (K,Ω) ◦ (L,Θ))].



28 N. VAVILOV, Z. ZHANG

Proof. From the previous lemma we already know that

[

EU(2n, (I,Γ) ◦ (J,∆)), [ EU(2n,K,Ω),EU(2n,L,Θ)]
]

=
[

EU(2n, (I,Γ) ◦ (J,∆)),EU(2n, (K,Ω) ◦ (L,Θ))
]

and that

[

[ EU(2n, I,Γ),EU(2n, J,∆)],EU(2n, (K,Ω) ◦ (L,Θ))
]

=
[

EU(2n, (I,Γ) ◦ (J,∆)),EU(2n, (K,Ω) ◦ (L,Θ))
]

.

Thus, it only remains to prove that

[Yij(a, b), Yhk(c, d)] ∈
[

EU(2n, (I,Γ) ◦ (J,∆)),EU(2n, (K,Ω) ◦ (L,Θ))
]

,

where a ∈ (I,Γ), b ∈ (J,∆), c ∈ (K,Ω), and d ∈ (L,Θ). Conjugations by

elements x ∈ EU(2n,A,Λ) do not matter, beause they amount to extra fators

from the above triple ommutators, whih are already aounted for.

Now, for n > 4 this already �nishes the proof, beause in this ase we an

move Yhk(c, d) modulo EU(2n, (K,Ω)◦(L,Θ)) to a position where it ommutes

with Yij(a, b)], either by Lemma 10 when i 6= ±j and h 6= ±k or by Lemma 12

when i = −j or h = −k.
Suppose that there exists an ideal that equals its orresponding relative form

paramerter, say I = Γ. If i 6= ±j, then by Lemma 13 we have

Yi,j(a, b) ≡ Yi,−i(a, b− λε(i)b).

For n > 3, we an move Yi,−i(a, b − λε(i)b) modulo EU(2n, (K,Ω) ◦ (L,Θ))
to a position where it ommutes with Yhk(c, d) by Lemma 10. Otherwise, if

i = −j, then we an also move Yi,−i(a, b) to a position where it ommutes with

Yhk(c, d) by Lemma 12. This �nishes the whole proof. �

�10. Elementary multiple ommutator formulas

In the urrent setion, we show that multiple ommutators of elementary

subgroups an be redued to double ommutators of these kind.

To state our main results, we have to reall some further piees of notation

from [22, 23, 27, 31, 33, 64℄. Namely, let H1, . . . ,Hm 6 G be subgroups of G.
There are many ways to form a higher ommutator of these groups, depending

on where we put the brakets. Thus, for three subgroups F,H,K 6 G one

an form two triple ommutators [[F,H],K] and [F, [H,K]]. Usually, we write
[H1,H2, . . . ,Hm] for the left-normed ommutator, de�ned indutively by

[H1, . . . ,Hm−1,Hm] = [[H1, . . . ,Hm−1],Hm].
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To stress that here we onsider any ommutator of these subgroups, with an

arbitrary plaement of brakets, we write JH1,H2, . . . ,HmK. Thus, for instane,
JF,H,KK refers to any of the two arrangements above.

Atually, a spei� arrangement of brakets usually does not play a major

role in our results � apart from one important attribute

3

. Namely, what will

matter a lot is the position of the outermost pairs of inner brakets. Namely,

every higher ommutator subgroup JH1,H2, . . . ,HmK an be written uniquely

as

JH1,H2, . . . ,HmK = [JH1, . . . ,HsK, JHs+1, . . . ,HmK],

for some s = 1, . . . ,m − 1. This s will be alled the ut point of our multiple

ommutator. Now we are all set to �nish the proof of Theorem 7. The proof is

an easy adaptation of the proof of [78℄, Theorem 1, but we reprodue it here

for the sake of ompleteness.

Proof. Denote the ommutator on the left-hand side by H,

H = JEU(2n, I1,Γ1),EU(2n, I2,Γ2), . . . ,EU(2n, Im,Γm)K.

We argue by indution onm, with the ases ofm 6 4 as the base of indution �

for the ase of m = 2 there is nothing to prove, the ase of m = 3 is aounted

for by Lemma 14, and the ase of m = 4 � by Lemma 14 if the ut point

s 6= 2, and by Lemma 15 when s is not 2.
Now, letm > 5 and assume that our theorem is already proved for all shorter

ommutators. Consider an arbitrary arrangement of brakets [[. . .]] with the ut

point s and let

JEU(2n, I1,Γ1),EU(2n, I2,Γ2), . . . ,EU(2n, Is,Γs)K,
JEU(2n, Is+1,Γs+1),EU(2n, Is+2,Γs+2), . . . ,EU(2n, Im,Γm)K,

be the partial ommutators, the �rst one ontaining the fators afore the ut

point, and the seond one ontaining those after the ut point.

• When the ut point ours at s = 1 or at s = m − 1, one of these

ommutators is a single elementary subgroup, EU(2n, I1) in the �rst ase or

EU(2n, Im−1) in the seond one. Then we an apply the indutive hypothesis

to another fator. For s = 1, denote by t = 2, . . . ,m − 1 the ut point of the

3

Atually, for nonommutative rings symmetri produt of ideals is not assoiative, so

that the initial braketing of higher ommutators will be re�eted also in the braketing of

suh higher symmetri produts.
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seond fator. Then by indutive hypothesis

H =
[

EU(2n, I1,Γ1),
q
EU(2n, I2,Γ2),EU(2n, I3,Γ3), . . . ,EU(2n, Im,Γm)

y]

=
[

EU(2n, I1,Γ1),
[

EU(2n, (I2,Γ2) ◦ . . . ◦ (It,Γt)),

EU(2n, (It+1,Γt+1) ◦ . . . ◦ (Im,Γm))
]

]

,

and we are done by Lemma 14. Similarly, for s = m − 1 denote by r =
1, . . . ,m− 1 the ut point of the �rst fator. Then by indutive hypothesis

H=
[q

EU(2n, I1,Γ1),EU(2n, I2,Γ2), . . . ,EU(2n, Im−1,Γm−1)
y
,

EU(2n, Im,Γm)
]

=
[

[

EU(2n, (I1,Γ1) ◦ . . . ◦ (Ir,Γr)),

EU(2n, (Ir+1,Γr+1) ◦ . . . ◦ (Im−1,Γm−1))
]

,

EU(2n, Im,Γm)
]

,

and we are again done by Lemma 14.

• Otherwise, when s 6= 1,m − 1, we an apply the indutive hypothesis to

both fators. Let as above r = 1, . . . , s − 1 be the ut point of the �rst fator

and let t = s+1, . . . ,m− 1 be the ut point of the seond fator. Then we an

apply indutive hypothesis to both fators of

H =
[q

EU(2n, I1),EU(2n, I2), . . . ,EU(2n, Is)
y
,

q
EU(2n, Is+1),EU(2n, Is+2), . . . ,EU(2n, Im)

y]

to onlude that

H =
[

[

EU(2n, I1 ◦ . . . ◦ Ir),EU(2n, Ir+1 ◦ . . . ◦ Is)
]

,

[

EU(2n, Is+1 ◦ . . . ◦ It),EU(2n, It+1 ◦ . . . ◦ Im)
]

]

,

and we are again done, this time by Lemma 15. �

�11. Further appliations

Now, we are in a position to �nish the proof of Theorem 8.

Proof. Sine (I,Γ) and (J,∆) are omaximal, there exist a′ ∈ I and b′ ∈ J
suh that a′ + b′ = 1 ∈ R. But then by Lemmas 10 and 13, for i 6= ±j one has

Yij(a, b) = Yij(a(a
′ + b′), b) ≡ Yij(aa

′, b) · Yij(ab
′, b) ≡ e
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modulo EU(2n, (I,Γ) ◦ (J,∆)).
For i = −j, one has

Yi,−i(a, b) = Yi,−i((a
′ + b′)a(a′ + b′), b) = Yi,−i(a

′aa′ + b′aa′ + a′ab′ + b′ab′, b).

Applying multipliativity of ommutators to the �rst argument of the above

ommutator and then using Lemma 9, we dedue that

z ≡ Yi,−i(a
′aa′, b)Yi,−i(b

′aa′, b)Yi,−i(a
′ab′, b)Yi,−i(b

′ab′, b)

(mod EU(2n, (I,Γ) ◦ (J,∆))) .

By Theorem 10, eah of the above fators is trivial modulo EU(2n, (I,Γ) ◦
(J,∆)). This �nishes the proof. �

Let us state another amusing orollary of Theorem 10. For the form ideals

themselves, one has an obvious inlusion

(

(I,Γ) + (J,∆)
)

◦
(

(I,Γ) ∩ (J,∆)
)

=
(

(I + J) ◦ (I ∩ J),Γmin((I + J) ◦ (I ∩ J)) + (Γ∩∆)(Γ + ∆) + (Γ+∆)(Γ ∩∆)
)

6
(

I ◦ J,Γmin(I ◦ J) +
JΓ + I∆

)

= (I,Γ) ◦ (J,∆).

Only very rarely this inlusion is always an identity.

Theorem 11. For any two form ideals (I,Γ) and (J,∆) of (A,Λ), n > 3, one
has

[

EU(2n, (I,Γ)+(J,∆)),EU(n, (I,Γ)∩(J,∆))
]

6 [ EU(2n, I,Γ),EU(2n, J,∆)].

Proof. The observation immediately preeding the theorem shows that the

level of the left-hand side is ontained in the level of the right-hand side,

EU
(

2n,R, ((I,Γ) + (J,∆)) ◦ ((I,Γ) ∩ (J,∆))
)

6 EU(2n,R, (I,Γ) ◦ (J,∆)).

Thus, it only remains to prove that the elementary ommutators Yij(a+b, c),
with a ∈ (I,Γ), b ∈ (J,∆), c ∈ (I,Γ) ∩ (J,∆), on the left-hand side belong to

the right-hand side.

By Theorem 10, one has

Yij(a+ b, c) ≡ Yij(a, c) · Yij(b, c)

(mod EU (2n,R, ((I,Γ) + (J,∆)) ◦ ((I,Γ) ∩ (J,∆)))) .

Thus, this ongruene holds true also modulo the larger subgroup

EU(2n,R, (I,Γ) ◦ (J,∆)).

On the other hand, Theorem 6 implies that

Yij(b, c) ≡ Yij(c,−b) (mod EU(2n,R, (I,Γ) ◦ (J,∆))) .
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Combining the above ongruenes, we see that

Yij(a+ b, c) ≡ Yij(a, c) · Yij(c,−b) (mod EU(2n,R, (I,Γ) ◦ (J,∆))) ,

where both ommutators on the right-hand side belong to

[EU(2n, I,Γ),EU(2n, J,∆)],

whih proves the desired inlusion. �

�12. Final remarks

Here we make some further observations onerning the ontext of this work

and also state some unsolved problems and reiterate some further problems

from [27, 31℄, whih are still pending.

12.1. How we got here. The study of birelative standard ommutator for-

mulas goes bak to the foundational work by Hyman Bass [10℄. As early su-

esses one should also mention important ontributions by Ale Mason and

Wilson Stothers [39�42℄ and by Hong You [84℄. Our own researh in this

diretion started in 2008�2010 in the joint works with Alexei Stepanov and

Roozbeh Hazrat [32, 74, 75℄ and was then ontinued in 2011�2017 in a series

of our joint works based on relative versions of loalization methods, in par-

tiular

4

[27�31,33℄. Simultaneously, Stepanov developed his universal loaliza-

tion and applied it to multiple ommutator formulas and ommutator width,

see [63, 64℄. One an �nd systemati desription of that stage of development

in our surveys and onferene papers [22�24, 30℄.

The present work is a natural extension of our more reent papers [71, 72,

76�80℄. It owes its existene to the two following momentous observations we

made in Otober 2018, and in September 2019, respetively.

In Otober 2018 the �rst author proved a speial ase of Theorems 2 and 3 for

the general linear group GL(n,R), n > 3, over ommutative rings, see [71℄. The

initial proof employed a version of deomposition of unipotents [65℄, whih was

already used for a similar purpose in his joint work with Alexei Stepanov [74℄.

The seond author then immediately observed that Theorem 2 implies the �rst

laim of Theorem 1 and that it should be possible to proeed onversely, �rst

establish a version of Theorem 1 by elementary alulations, and then derive

Theorems 2 and 3. This is exatly what was done for Chevalley groups in our

paper [76℄, again over ommutative rings.

In July�September 2019 the �rst author was disussing bounded generation

of Chevalley groups in the funtion ase with Boris Kunyavsky and Eugene

4

At least three our sheduled works of that period, whih were essentially ompleted

by 2016, viz., the general multiple ommutator formula for GL(n,R), unitary ommutator

width, and the analysis of the ase GU(4, R,Λ), still remain unpublished.



COMMUTATORS OF RELATIVE ELEMENTARY UNITARY GROUPS 33

Plotkin. One of the triks used in many published papers onsisted of splitting

an elementary onjugate/elementary ommutator and then reassembling it in

a di�erent position. We notied that the same alulation of rolling elemen-

tary onjugates to a di�erent position appeared over and over again in many

di�erent ontexts.

• Congruene subgroup problem. In a preliminary mode it was already present

in the preursory artile by Jens Mennike [43℄ and then already in full-�edged

form in the epoh-making memoir by Hyman Bass, John Milnor, and Jean-

Pierre Serre [12℄, behold the proof of Theorem 5.4.

• Bounded generation. Post fatum, we diserned the same alulation in the

lassial papers by David Carter, Gordon Keller, and Oleg Tavgen [15,68℄, but

we only beame aware of that perusing a reent artile by Bogdan Nia [44℄.

• In fat, Wilberd van der Kallen and Alexei Stepanov [34, 62, 63℄ used a

very similar alulation to redue the generating sets of relative elementary

subgroups.

Here we attahed merely a handful of referenes. Retrospetively, we spotted

the same or very similar alulations in oodles of further papers, but apparently

it was hardly ever applied in the birelative ontext.

At the end of September the �rst author used essentially the same alula-

tion

5

to prove that when R is ommutative and n > 3, the mixed relative om-

mutator subgroup [E(n,A), E(n,B)] is ontained in another birelative group

EE(n,A,B) = 〈tij(c), where c ∈ A, i < j, and c ∈ B, i > j〉,

see [72℄, Theorem 3. Within a few days of vehement orrespondene we observed

that everything works over arbitrary assoiative rings and an be further en-

haned to entail Theorems 1 and 5 for GL(n,R). This was done in [76℄, and

soon thereafter in a more mature form, implying also Theorems 6, 7 and 8,

in [78℄.

Morally, the present paper, and a parallel paper that addresses the ase

of Chevalley groups [80℄, are diret o�springs of this development. However,

tehnially these ases turned out to be way more demanding, and we had to

spend quite some time to supply detailed proofs of all auxiliary results.

12.2. Degree improvements. Of ourse, the �rst question that immediately

ours is whether Theorem 7 is true also for n = 3. For quasi�nite rings this is

indeed the ase [30℄, and we are pretty more inlined to believe in the positive

answer.

Problem 1. Prove that Lemma 15 and Theorem 7 hold also for n = 3.

5

Simultaneously and independently exatly the same alulation was applied by Andrei

Lavrenov and Sergei Sinhuk [38℄ at the level of K2.
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Getting a proof in the same style as that of Lemma 14 seems to be highly

nontrivial from a tehnial viewpoint. However, the possibility to onstrut a

ounterexample appears even more remote.

In the main body of the present paper we always assumed that n > 3. Obvi-
ously, due to the exeptional behavior of the orthogonal group SO(4, A), these
results do not fully generalize to the ase of n = 2. It is natural to ask whether

results of the present paper are true also for the group GU(4, A,Λ). However,
this obviously fails in general without some strong additional assumptions on

the form ring and/or form ideals.

Still, we believe they do generalize, provided ΛA + AΛ = A, or the like.

Known results

6

learly indiate both that this should be possible, and that

the analysis of the ase n = 2 will be onsiderably harder from a tehnial

viewpoint than that of the ase n > 3.

Problem 2. Generalize results of the present paper to the group GU(4, A,Λ),
provided that ΛA+AΛ = A, ΓJ + JΓ = I, ∆I + I∆ = J, or the like.

Atually, some 8 years ago we obtained various headways towards the rela-

tive standard ommutator formula and all that for GU(4, A,Λ), but even these

results are unpublished, due to their �erely tehnial harater.

12.3. Presentations and stability. As a ounterpart to Theorem 9 we an

ask, whether the stability map for this quotient is also injetive. A natural

approah to this would be to takle the following muh more ambitious projet.

Problem 3. Give a presentation of

[ EU(2n, I,Γ),EU(2n, J,∆)]/EU(2n,A, (I,Γ) ◦ (J,∆))

by generators and relations, does this presentation depend on n > 3 ?

In Theorems 6 and 10 and Lemma 13 we established some of the relations

among the elementary ommutators modulo EU(2n,A, (I,Γ) ◦ (J,∆)). How-
ever, easy arithmeti examples show this is not a de�ning set of relations, so

that there must be some further relations. Compare [76, 78, 79℄ for disussion

of a similar problem for GL(n,A).

12.4. Higher relations. In [79℄ we established some further ongruenes for

the elementary ommutators in GL(n,A), n > 3, where A is an arbitrary

assoiative ring. The highlight of that paper is the following remarkable triple

ongruene, a version of the Hall�Witt identity.

6

Compare the work by Bak and the �rst author [8℄, and referenes therein.
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Let I, J,K be two-sided ideals of R. Then for any three distint indies i, j, h
suh that 1 6 i, j, h 6 n, and all a ∈ I, b ∈ J , c ∈ K, one has

yij(ab, c)yjh(ca, b)yhi(bc, a) ≡ e (mod E(n,R, IJK + JKI +KIJ)) ,

see [79, Theorem 1℄. This identity has lots of appliations, inluding many new

inlusions among double and multiple mixed relative elementary ommutator

subgroups.

Spei�ally, it allows us to solve an analog of Problem 3 for GL(n,A) in the

partiularly agreeable ase of Dedekind rings. Thus, it would be most natural

to seek out similar higher ongruenes also in the unitary ase.

Problem 4. Generalize the results of [79℄ to the unitary groups GU(2n,A,Λ),
n > 3.

One suh ongruene among short root type elementary ommutators is

immediately lear. But the ongruenes involving long root type elementary

ommutators will be fanier and longer.

12.5. Other birelative groups. We brie�y disuss two further groups de-

pending on two form ideals of a form ring. First of all, it is the partially

relativized group FU(2n, I,Γ)FU(2n,J,∆)
. It seems that in view of the identity

FU(2n, I,Γ)FU(2n,J,∆) = [FU(2n, I,Γ),FU(2n, J,∆)] · FU(2n, I,Γ),

our Theorem 1 readily implies the following generalization of [9, Proposi-

tion 5.1℄, to FU(2n, I,Γ)FU(2n,J,∆)
. Namely, we assert that it is generated by

the appropriate elementary onjugates.

Problem 5. Prove that the partially relativized groups FU(2n, I,Γ)FU(2n,J,∆)

are generated by

Tji(b)Tij(a), where a ∈ (I,Γ), b ∈ (J,∆).

Another birelative group EEU(2n, (I,Γ), (J,∆)) is de�ned as follows

EEU(2n, (I,Γ), (J,∆)=
〈

Tij(a), where c∈(I,Γ), i<j, and c∈(J,∆), i>j
〉

.

The following problem proposes a unitary generalization of [72, Theorem 3℄,

where a similar result was established for GL(n,A).

Problem 6. Prove that

[FU(2n, I,Γ),FU(2n, J,∆)] 6 EEU(2n, (I,Γ), (J,∆)).
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12.6. General multiple ommutator formula. Now we reall another ma-

jor unsolved problem as stated already in [27, 30℄ and [31, Problem 1℄. We

pro�er to prove a general multiple ommutator formula for unitary groups.

Problem 7. Let (Ii,Γi), 1 6 i 6 m, be form ideals of the form ring (A,Λ) suh
that A is module-�nite over a ommutative ring R that has �nite Bass�Serre

dimension δ(R) = d < ∞. Prove that for any m > d one has

JGU(2n, I0,Γ0),GU(2n, I1,Γ1), . . . ,GU(2n, Im,Γm)K
= JEU(2n, I0,Γ0),EU(2n, I1,Γ1), . . . ,EU(2n, Im,Γm)K.

Observe that the arrangement of brakets in the above formula should be

the same on both sides beause the mixed ommutators are not assoiative.

A similar problem for algebrai groups over ommutative rings, in partiular

for Chevalley groups, was solved by Alexei Stepanov [64℄, by his remarkable

universal loalization method.

Reall that the proof of a similar result for GL(n,R) over nonommutative

rings is based on the following result of Mason�Stothers [42℄, Theorem 3.6 and

Corollary 3.9, see [30, Theorem 13℄, for an easy modern proof. Of ourse, that

we an unrelativize the right-hand side was only established in [76, Theorem 2℄,

so formally this theorem was never stated in this form.

Theorem 3. Let A be a ring, and let I and J be two two-sided ideals of A.
Assume that n > sr(R), 3. Then

[GL(n,A, I),GL(n,A, J)] = [E(n, I), E(n, J)].

For unitary groups, even suh basi fats at the stable level seem to be

missing.

Problem 8. Find appropriate stability onditions under whih

[GU(2n, I,Γ),GU(2n, J,∆)] = [FU(2n, I,Γ),FU(2n, J,∆)].

After that, the proof in our unpublished paper proeeds by indution on d,
whih depends on Bak's results [3℄, the preise form of injetive stability forK1,

suh as the Bass�Vaserstein theorem, et. It seems that to solve Problem 7 one

has to rethink and expand many aspets of the struture theory of unitary

groups, starting with stability theorems for KU1.

The �rst omplete

7

generally aepted proof of injetive stability for KU1

was obtained (but not published!) by Maria Saliani [56℄, and �rst published

7

In late 1960s and mid 1970s Anthony Bak and Manfred Kolster obtained stability un-

der stronger assumptions, with very skethy proofs. Leonid Vaserstein worked in smaller

generality as far as groups, and his proof of injetive stability for unitary groups ontained

serious gaps and inauraies. In 1980 Mamed-Emin Oglu Namik Mustafa-Zadeh announed

surjetive stability for KU2 � and thus also injetive stability for KU1 � in full generality.
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by Max Knus in his book [35℄. After that, generalizations and improvements

were proposed by Anthony Bak, Guoping Tang, Vitor Petrov, and Sergei

Sinhuk [5,7,60℄, and then very reently by Weibo Yu, Rabeya Basu and Egor

Voronetsky [14, 82, 87℄.

Problem 7 is also intimately related to the nilpotent struture of KU1. In the

absolute ase the orresponding results for unitary groups were obtained by

Roozbeh Hazrat in his Ph. D. Thesis [20,21℄, and in the relative ase in a joint

paper by Bak, Hazrat and the �rst author [4℄. To fully ope with Problem 7,

we need more powerful results on the superspeial unitary groups than what

was established in [4℄. Part of what is demanded here was reently established

by Weibo Yu, Guoping Tang and Rabeya Basu [13, 88℄, but there is still a lot

of work to be done.

12.7. Subnormal subgroups. Initially, one of our main motivations to pur-

sue the work on birelative ommutator formulas were prospetive appliations

to the study of subnormal subgroups of GU(2n,A,Λ). As was observed by

John Wilson [83℄, tehnially this amounts to desription of subgroups of

GU(2n,A,Λ), normalized by a relative elementary subgroup EU(2n, J,∆), for
some form ideal (J,∆).

A major early ontribution is due to G�unter Habdank [17, 18℄, who addi-

tionally assumed that the form ring was subjet to some stability onditions.

De�nitive results for quasi�nite rings were then obtained by the seond author

and You Hong [85,90�92℄. However, we are onvined that the bounds in these

papers an be further improved and hope to return to the following problem

with our new tools.

Problem 9. Obtain optimal bounds in the desription of subgroups of

GU(2n,A,Λ),

normalized by the relative elementary subgroup EU(2n, J,∆), for a form ideal

(J,∆) P (A,Λ).

Until reently, for the unitary groups the proofs of struture theorems were in

bad shape even in the absolute ase.

8

However, now the situation has hanged.

In 2013 Hong You and Xuemei Zhou [86℄ published a detailed proof for ommu-

tative form rings. Finally, in 2014 Raimund Preusser in his Ph. D. Thesis [49℄

However, a omplete proof was never published, and the exposition in his 1983 Ph. D. Thesis

is blurred by serious mistakes.

8

As indiated in [26℄, the proof in the work by Leonid Vaserstein and Hong You [69℄

ontained a major omission, and only established the weak struture theorem. The details

of the purported global proof by Bak and the �rst author, that was around sine the early

1990s, and that was harbingered in [9℄, remained unpublished.
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gave a �rst omplete loalization proof for quasi�nite form rings, whih was

published in [50℄.

In 2017 Raimund Preusser [51, 52℄ also �nally sueeded in ompleting a

global proof as envisaged in [9℄. These papers onstitute a major breakthrough

beause, at least for ommutative rings, they give expliit polynomial expres-

sions of nontrivial transvetions as produts of elementary onjugates of a

given matrix and its inverse. (See also [53, 55℄ for further results in this spirit

for GL(n,A) over various lasses of nonommutative rings.) The �rst author

immediately reognized that the results by Preusser proure an e�etivization

for the desription of normal subgroups in muh the same sense as the deom-

position of unipotents [65℄ does for the normality of the elementary subgroup.

This prompted him to all this method reverse deomposition of unipotents [70℄.

Moreover, he notied that in the ase of GL(n,A) these results an be gen-

eralized (with only marginally worse bounds) to the desription of subgroups

normalized by a relative elementary subgroups [73℄.

We are on�dent that, ombining the methods developed by Preusser in

the above papers with our methods, we ould easily improve bounds in all

published results for unitary groups. Of ourse, to prove that the bounds thus

obtained are themselves the best possible would be quite a hallenge.

12.8. Commutator width. Another related problem that initially moti-

vated our work was the study of ommutator width. Alexander Sivatsky and

Alexei Stepanov [61℄ disovered that over rings of �nite Jaobson dimension

j-dim(A) = d < ∞ any ommutator [x, y], where x ∈ GL(n,A), y ∈ E(n,A), is
a produt of at most L elementary generators, where L = L(n, d) only depends
on n and d. This result was then generalized to all Chevalley groups G(Φ, A)
by Stepanov and the �rst author [66℄, with the bound depending on the type

Φ and on d.
Ultimately, Stepanov disovered that for redutive groups similar results hold

for arbitrary ommutative rings and that the bound L therein depends on the

type of the group alone and not on the ring A. Also, he disovered that sim-

ilar results hold at the relative and birelative level, with elementary onju-

gates and our generators (like those in Theorem B) as the generating sets of

[E(Φ, A, I), E(Φ, A, J)], again with bounds that depend on the type alone, and

not on A, I, or J . See [24℄ for statements and a detailed disussion of these

results.

However, Bak's unitary groups are not always algebrai and similar results

on ommutator width are not yet published even in the absolute ase and even

over �nite-dimensional rings.
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Problem 10. Let (A,Λ) be a ommutative form ring suh that j-dim(A) < ∞.

Prove that the length of ommutators in [GU(Φ, A, I), E(Φ, A, J)] in terms of

the generators listed in Theorem 1 is bounded, and estimate this length.

Alexei Stepanov maintained that the above length is bounded in the absolute

ase, without atually produing any spei� bound. To obtain an exponential

bound depending on d by relative loalization methods [27, 30, 31℄ would be

simply a matter of patiene. Atually, this was essentially done by ourselves

and Roozbeh Hazrat, but even in the absolute ase all of this still remains

unpublished.

On the other hand, to ahieve a uniform polynomial bound, similar to the

one established in [61℄ for GL(n,A) but not depending on d, one would need

to ombine a full-sale generalization of Stepanov's universal loalization to

unitary groups, with full-sale unitary versions of deomposition of unipotents,

inluding expliit polynomial formulas for the onjugates of root unipotents.

This seems to be a rather ambitious projet.

12.9. Unitary Steinberg groups. It is natural to ask to whih extent our

methods and results arry over to the level of KU2.

Problem 11. Prove analogs of the main results of the present paper for the

unitary Steinberg groups StU(2n,A,Λ).

For the de�nition of unitary Steinberg groups, see [2,36℄ and referenes there

(or [37℄ for odd unitary Steinberg groups). Here, we do not disuss subtleties

related to the de�nition of relative unitary Steinberg groups, as also the rela-

tionship with exision in the unitary algebrai K-theory, et.

12.10. Desription of subgroups. The methods of the present paper may

have appliations also in desription of various lasses of subgroups of unitary

groups. Not in the position to disuss this at any depth here, we only ite

the works by Vitor Petrov, Alexander Shhegolev, and Egor Voronetsky [46,

57�59,81℄ where one an �nd many further referenes. Observe that the result

by Voronetsky [81℄ is espeially powerful, beause it simultaneously generalizes

also the desription of EU-normalized subgroups (in the ontext of odd unitary

groups!)

12.11. Odd unitary groups. Finally, we are positive that all results of the

present paper generalize also to odd unitary groups introdued by Vitor Petrov

[47, 48℄.

Problem 12. Generalize the results of [27,29,30℄ and the present paper to odd

unitary groups, under suitable isotropy assumptions.
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Of ourse, this is not an individual lear-ut problem, but rather a huge re-

searh projet. Clearly, in most ases the proofs in this setting will require muh

more onerous alulations. Let us ite some important reent papers by Yu

Weibo, Tang Guoping, Li Yaya, Liu Hang, Anthony Bak, Raimund Preusser,

and Egor Voronetsky [6, 54, 81, 82, 88, 89℄ that address normal struture and

stability for odd unitary groups.
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