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Abstract

Mood disorders, especially depression, are a major cause of human disability. The loss of 

pleasure (anhedonia) is a common, severely debilitating symptom of clinical depression. 

Experimental animal models are widely used to better understand depression pathogenesis, and 

to develop novel antidepressant therapies. In rodents, various experimental models of 

anhedonia have already been developed and validated. Complementing rodent studies, the 

zebrafish (Danio rerio) is emerging as a powerful model organism to assess pathobiological 

mechanisms of affective disorders. Here, we critically discuss the potential of zebrafish for 

modeling anhedonia and studying its molecular mechanisms and translational implications.  

Key-words: zebrafish; antidepressant; behavior; animal models; anhedonia.
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Introduction: anhedonia and its experimental models 

Affective disorders, especially depression, are a major cause of disability (Steel et al., 

2014). While the ability to experience pleasure and interest are essential for human wellbeing 

(Kent C. Berridge and Kringelbach, 2015),  the loss of pleasure (anhedonia) represents a 

common, severely debilitating clinical symptom of depression (Cooper et al., 2018; De Fruyt 

et al., 2020). Anhedonia is also highly comorbid with other prevalent psychiatric and 

neurological disorders, including schizophrenia (Gard et al., 2007; Association, 2013), chronic 

pain (Garland et al., 2020) and Parkinson’s disease (Loas et al., 2012). In humans, anhedonia 

manifests as losing interest in reward and activities, and spending less time experiencing and 

pursuing pleasure (American Psychiatric, 2013) (Table 1 and Fig. 1). Deficits in specific 

neuroanatomical areas (e.g., the prefrontal cortex, dorsal striatum, nucleus accumbens and 

amygdala (Rizvi et al., 2016; Auerbach et al., 2017)) and neurotransmitter systems (e.g., 

dopamine, serotonin, opioids, glutamate and gamma-aminobutyric acid, GABA) have been 

consistently implicated in clinical anhedonia (Barbano and Cador, 2007; van Zessen et al., 

2012). 

Experimental animal models, especially in rodents, are commonly used to study various 

aspects of anhedonia (Anisman and Matheson, 2005; Simona Scheggi et al., 2018a). For 

example, rodent anhedonia-like states can be induced experimentally by unpredictable chronic 

stress (UCS), social defeat- and early-life stress (Anisman and Matheson, 2005; Simona 

Scheggi et al., 2018a), often comorbid with anxiety- and depression-like behavior, including 

behavioral ‘despair’ (Brockhurst et al., 2015; Olejniczak et al., 2021), motor retardation 

(hypolocomotion) and social withdrawal (various social deficits) (Frenois et al., 2007; Wilson 

and Koenig, 2014). 

As various experimental manipulations can cause anhedonia-like phenotypes in 

animals, there are also reliable models to detect and quantify these phenotypes (Table 2). 

Page 4 of 40The International Journal of Neuropsychopharmacology



5

Specifically, rodent anhedonia-like states are traditionally assessed in the sucrose preference 

test (SP, behavioral test based on the animal's natural preference for sweet vs. neutral tastes), 

conditioned place preference test (CPP, a behavioral paradigm used to study rewarding or 

aversive properties) and social interaction test (a behavioral assay measuring time spent on 

social investigation, reflecting the animal's sociability) (Cunningham et al., 2006; Simona 

Scheggi et al., 2018a). For instance, mice exposed to UCS or repeated social defeat display 

reduced  SP (Strekalova et al., 2004) and social interaction (García-Pardo et al., 2015), whereas 

rats in the CPP model prefer reward- (e.g., amphetamine)-associated compartment, but not 

when exposed to UCS (Papp et al., 1991). Likewise, acute or chronic administration of 

phencyclidine, a non-competitive glutamate N-methyl-D-aspartate NMDA receptor antagonist, 

induces robust social withdrawal phenotype (Snigdha and Neill, 2008) that can be quantified 

using rodent social preference and social interaction paradigms (Wilson and Koenig, 2014).

Animal experimental models also emerge as a valuable tool to assess pharmacological 

rescue of anhedonia (Table 3), as chronic antidepressants relieve rodent anhedonia-like 

behaviors (Papp et al., 2003; Tsankova et al., 2006). For instance, following chronic stress 

exposure, vortioxetine, an antidepressant agonist of serotonin 5-HT1A receptors, reduces rat 

anhedonia (Martis et al., 2021), whereas agomelatine, an antidepressant MT1/MT2 melatonin 

receptor agonist and 5-HT2C serotonin receptor antagonist, rescues mouse anhedonia (Boulle et 

al., 2014). Likewise, a 24-h treatment with ketamine, a non-selective NMDA receptor 

antagonist, causes an antidepressant-like effect in the UCS model and corrects rat anhedonia in 

the SP test (Jiang et al., 2017). 

Anhedonia-like phenotypes can also be induced by various genetic manipulations 

(Pucilowski et al., 1993; Cinque et al., 2012; Lipina et al., 2013). For example, chronic 4-week 

UCS decreases SP in the hypercholinergic Flinders Sensitive Line (FSL) rats, a putative genetic 
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animal model of depression, vs. more ‘resilient’ Flinders Resistant Line (FRL) rats (Pucilowski 

et al., 1993). The Wistar Kyoto rats (WKY, originally bred as normotensive controls for the 

spontaneous hypertensive SHR rat line) are genetically prone to depression, and also display 

reduced SP (Wright et al., 2020), whereas juvenile -opioid receptor (MOP) knockout mice 

show anhedonia-like low interest in peers and socially rewarding environment (Cinque et al., 

2012). The disrupted-in-schizophrenia-1 (Disc1-Q31L) mutant mice also exhibit depression-

like behavior, reduced levels of monoamines in the nucleus accumbens, and overt social 

anhedonia (Lipina et al., 2013).  Moreover, environmental manipulations can also be used to 

induce anhedonia-like phenotypes in rodents (Ashkenazy et al., 2009). For instance, 

lengthening the light phase from a 12:12-h to a 22:2-h light–dark cycle induces a complex 

behavioral syndrome in the C3H mice that includes anhedonia in the SP test (Becker et al., 

2010). The loss of environmental enrichment (e.g., keeping animals in cages with crinkle paper, 

metal ladders, and plastic huts) can also elicit an anhedonia-like behavior in female rats 

(Morano et al., 2019).

Zebrafish models relevant to anhedonia

Complementing rodent models, the zebrafish (Danio rerio) has become a valuable 

model organism to study central nervous system (CNS) pathogenesis (Meshalkina et al., 2017; 

Fontana et al., 2018), including affective disorders (de Abreu et al., 2018; Konstantin A. Demin 

et al., 2020a). For example, various aquatic models of chronic stress (Marcon et al., 2016; Cai 

Song et al., 2018b; K. A. Demin et al., 2020b), social defeat (Nakajo et al., 2020) and early-life 

stress (Fontana et al., 2020; Fontana et al., 2021a; Hare et al., 2021) have recently been 

developed and successfully validated in zebrafish. Can these fish display a broader spectrum 

of evolutionarily conserved CNS traits and, for example, like mammals, develop anhedonia-

like phenotypes? Mounting evidence discussed further (Table 4) suggests potential relevance 

of zebrafish to modeling anhedonia. Here, we critically evaluate the developing utility of 
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zebrafish models of anhedonia in terms of mechanisms and uses to investigate novel therapies 

for anhedonia alongside their translational implications.

While rodent models are presently widely used in translational neuroscience and 

neuropharmacology research, they are relatively time-consuming, expensive and low-

throughput (M. Nguyen et al., 2014b). Thus, developing complementary model systems is a 

critically important strategy to further advance the field. In rodents and humans, stress-induced 

anhedonia is associated with hypertrophy of medium spiny neurons of the nucleus accumbens, 

modulation of various neurotrophins, cell adhesion molecules and synaptic proteins (Willner, 

2005; Bessa et al., 2009; Christoffel et al., 2011). Importantly, the nucleus accumbens is part 

of a complex network (receiving glutamatergic, monoaminergic and cholinergic afferents) 

(Bessa et al., 2013) involved in motivation, reward and reward-seeking behavior (Gold, 2015). 

In teleost fishes, including zebrafish, a putative homolog of the mammalian nucleus accumbens 

is the ventral and dorsal telencephalic nuclei, that are rich in gamma aminobutyric acid GABA 

(Kim et al., 2004) and dopamine receptors (O'Connell et al., 2011), and receive ascending 

dopaminergic inputs from the putative ventral tegmental area-like homolog (Rink and 

Wullimann, 2002; P Panula et al., 2010). Zebrafish also share with mammals all major 

neurochemical (e.g., dopaminergic, serotonergic and cholinergic) pathways (Rink and 

Wullimann, 2002; Filippi et al., 2010; M. O. Parker et al., 2013a) that are implicated in 

anhedonia pathogenesis. In general, several models and tests can be directly pertinent to 

studying anhedonia in zebrafish. One logical approach is to focus on reward-seeking behaviors, 

aiming to develop assays and tests that characterize deficits in such responses in zebrafish. 

Indeed, as these fish display a rich behavioral repertoire with a wide range of reward-related 

behaviors (Kalueff et al., 2013a), reduced reward-seeking behavior can be readily assessed in 

zebrafish by quantifying their impaired reward-like behavior in CPP and hypophagia models 

(A. D. Collier and Echevarria, 2013; Michael Nguyen et al., 2014a) (Table 2). In both adult and 

larvae zebrafish, CPP models assess reward-like phenotypes (Priya Mathur and Guo, 2010; P. 
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Mathur et al., 2011; Hinz et al., 2013; Adam D. Collier et al., 2014; Daniela Braida et al., 2020), 

hence reflecting their potential to characterize experimentally induced anhedonia-like states as 

well. Zebrafish do develop CPP towards a wide range of reward stimuli, including food, warm 

temperature (Rey et al., 2015) and various drugs, such as morphine, diazepam, fluoxetine, 

risperidone and buspirone (B. Y. Lau et al., 2011; Abreu et al., 2016). For example, in the CPP 

test, zebrafish prefer salvinorin A, hallucinogenic drug, and morphine, over drug-free 

compartment (D. Braida et al., 2007; P. Mathur et al., 2011). However, preference for some 

rewards is abolished in anosmic zebrafish (Abreu et al., 2016; Abreu et al., 2017), resembling 

smell loss-induced anhedonia in humans (Keller and Malaspina, 2013). 

Social motivation is another powerful drive of human and animal behavior, whose loss 

can generally trigger anhedonia (Chevallier et al., 2012; Fontana et al., 2021b) (Fig. 1). In fact, 

social anhedonia is one of the most common and debilitating types of anhedonia seen in clinical 

depression (Enneking et al., 2019). Importantly, like humans, zebrafish are highly social 

species (Suriyampola et al., 2016; Fontana et al., 2021b), and are therefore uniquely positioned 

to generate valuable translational insights into aberrant sociality linked to social anhedonia. 

Furthermore, multiple behavioral tests have been developed to assess zebrafish social 

phenotypes (Pham et al., 2012; Asahi Ogi et al., 2021), and are therefore highly relevant to 

measuring their social anhedonia as well. For example, the shoaling test examines group 

cohesion (e.g., shoal area and an average inter-fish distance) (Miller and Gerlai, 2007; M. O. 

Parker et al., 2013c; Robert Gerlai, 2014; Carreno Gutierrez et al., 2019), whereas the social 

preference test assesses the number of approaches and time spent near a conspecific (R. Gerlai 

et al., 2000; Norton et al., 2019). In contrast, exposure to acute and chronic stress decreases 

social interaction in adult zebrafish, manifested as shorter time near conspecifics in the social 

preference test and shorter average inter-fish distance in the shoaling test (Giacomini et al., 

2016; K. A. Demin et al., 2020b). 
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Animal anhedonia is also commonly associated with decreased novelty-seeking 

behavior, such as novel object or novel environment exploration (Strekalova et al., 2004). In 

zebrafish, various protocols have been developed to assess their exploration of a novel object 

(May et al., 2016; Gaspary et al., 2018; Magyary, 2019) or novel environments (Godwin et al., 

2012; A. M. Stewart et al., 2012), thereby providing a potential tool to assess fish anhedonia 

by measuring reduced novelty-seeking. Interestingly, exploration of an unfamiliar conspecific 

fish (Madeira and Oliveira, 2017; Ribeiro et al., 2020) may combine both types of appetitive 

(social preference and novelty-seeking) behaviors, whose inhibition may potentially reflect 

both aspects of anhedonia in zebrafish, and can conveniently be simultaneously assessed in one 

aquatic ‘combined’ test. Reduction in other appetitive behaviors, such as sexual interaction 

(Spence and Smith, 2006), palatable food consumption (B. Lau et al., 2006), preference for 

warm temperature (Rey et al., 2015),  social status (Dahlbom et al., 2011), can all potentially 

reflect anhedonia-like states in zebrafish, therefore warranting further studies. 

Various novel genetic models of zebrafish anhedonia can also be interesting to develop. 

For example, the too few zebrafish mutation reduces selective groups of dopaminergic and 

serotonergic neurons in the basal diencephalon, and generates normal food preference but no 

preference for morphine (B. Lau et al., 2006). In contrast, pretreatment with dopamine receptor 

antagonists abolishes morphine preference in the wild-type fish, suggesting that preference for 

natural reward and addictive drug in zebrafish can be dissociable by a single-gene mutation 

that alters subregions of brain monoamine neurotransmitter systems (B. Lau et al., 2006). As 

such, genetic models with impaired reward in zebrafish (e.g., similar to the too few mutation) 

can be developed with potential relevance to modeling anhedonia in this species.

Pharmacological models of anhedonia: from rodents to zebrafish?

Multiple pharmacological manipulations are used to treat depression pathogenesis 

(Table 3), and may therefore alleviate clinical anhedonia as part of their therapeutic profile 

(Cao et al., 2019). Paralleling clinical data, antidepressants fluoxetine and imipramine, as well 
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as typical and atypical antipsychotic drugs, reverse stress-induced neurochemical alterations 

and reduce rodent anhedonia (Noda et al., 2000; Vardigan et al., 2010; Chatterjee et al., 2012; 

Bessa et al., 2013).  

For instance, aripiprazole restores rodent motivation to receive reward impaired by UCS 

(S. Scheggi et al., 2018b), olanzapine not only prevents, but also reduces rodent stress-evoked 

anhedonia, whereas haloperidol prevents anhedonia when administered before (but not after) 

stress (Orsetti et al., 2006). In zebrafish, several anxiolytic, antipsychotic and  antidepressant 

drugs have also been tested following acute and chronic stress exposure (Konstantin A. Demin 

et al., 2020a). Zebrafish chronically treated with fluoxetine, bromazepam or nortriptyline 

display blunted behavioral and endocrine (e.g., whole-body cortisol levels) responses to UCS 

(Marcon et al., 2016; C. Song et al., 2018a). However, putative more specific roles of 

anxiolytic, antipsychotic and antidepressant drugs in zebrafish anhedonia-like phenotypes 

merits further scrutiny. 

Promises, problems and limitations of zebrafish models of anhedonia 

As there is an urgent need to develop novel translational animal models of anhedonia, 

using animal models to understand human diseases must consider widening the spectrum of 

model organisms used. Indeed, the greater number of species studied increases the behavioral 

repertoire that can be evaluated and may more fully mimic the observed behaviors in the human 

syndromes or symptoms of these disorders. In line with this, as already mentioned, zebrafish 

possess a generally similar brain architectonics to that of mammals (Wullimann et al., 1996), 

including the reward circuits and shared neurotransmitters and hormones (P Panula et al., 2010) 

traditionally associated with anhedonia states. Moreover, zebrafish models have also been 

developed for several common CNS disorders with frequent anhedonic phenotypes, including 

depression (Fonseka et al., 2016; de Abreu et al., 2018) and schizophrenia, as well as for 

chronic stress (Konstantin A. Demin et al., 2019; Gawel et al., 2019; Campbell and Granato, 
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2020; Costa et al., 2021). In addition, zebrafish also offer several clear advantages to study 

anhedonia and its therapy. For example, these fish have a high degree (~70%) of genetic 

homology to humans (Howe et al., 2013), including a large number of orthologous genes of the 

serotoninergic, dopaminergic, opioidergic, GABA-ergic systems (Kim et al., 2004; P. Panula 

et al., 2006; Lillesaar, 2011; Konstantin A. Demin et al., 2018) relevant to anhedonia. The 

availability of modern gene-editing tools for zebrafish remarkably surpasses that of rodents 

(Kaili Liu et al., 2019; Sharma et al., 2021). As such, developing innovative genetic models of 

anhedonia in zebrafish may be an important, feasible and promising strategy of research in this 

field. 

Likewise, adult and especially larval zebrafish are particularly suitable for medium- and 

high-throughput CNS drug screening (Adam Michael Stewart et al., 2015; Khan et al., 2017). 

As such, the possibility of testing multiple antidepressants in zebrafish models enables not only 

targeting anhedonia-like phenotypes as part of their broader antidepressant action, but also may 

help identify anhedonia-specific CNS drugs, as well as, eventually, discover drugs that can 

differentially correct various subtypes of anhedonic behaviors. Zebrafish have also 

sophisticated behavioral responses easily assessed using automated video-tracking systems, 

increasing the efficiency and speed of time-intensive manual coding (Kalueff et al., 2013b), 

that may be helpful for extracting anhedonia-related phenotypes and foster an in-depth 

investigation of pharmacological correction of anhedonia-like phenotypes. Collectively, this 

supports zebrafish as a promising species to explore pathobiology of anhedonia.

Notably, as depression is often triggered by stress, and given high sensitivity of 

zebrafish to chronic stress, this aquatic species may be suitable not only for modeling 

depression-like states in general (Marcon et al., 2016; C. Song et al., 2018a), but anhedonia in 

particular, as a core symptom of depression. For example, paralleling low dopamine levels 

(suggested to cause anhedonia in mammals (Gorwood, 2008)), UCS evokes depression-like 

motor retardation and reduced brain serotonin and dopamine levels in zebrafish (M. Nguyen et 
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al., 2014b; Zakaria et al., 2021). Likewise, chronic treatment of adult zebrafish with an 

antidepressant fluoxetine normalizes anxiety- and motor retardation-like behavioral deficits, as 

well as cortisol and pro-inflammatory cytokines induced by UCS (C. Song et al., 2018a). 

However, the effects of UCS on zebrafish anhedonic-like phenotypes are unclear, and 

necessitate further studies. The role of other factors that induce or promote mental disorders 

like depression  (e.g., psychological traumas associated with the loss of a family member) 

clinically can also be hypothetically used to develop models that induce stress-related 

(including socially-mediated) anhedonic-like phenotypes in zebrafish. If successful, such 

findings would further support zebrafish as a potentially promising candidate aquatic model 

organism to probe the link between chronic stress, depression- and anhedonia-like phenotypes. 

Furthermore, the sickness behavior, induced by infections and mediated by pro-

inflammatory cytokines (Maier and Watkins, 1998), is another pathological syndrome relevant 

to depression. Indeed, activated brain cytokines are associated with depression pathogenesis 

(Dantzer, 2001), which, in turn, shares considerable phenomenological similarities with 

sickness behavior (Dantzer, 2009; Maes et al., 2012). For example, they both share motor 

retardation, anorexia, weight loss, anhedonia, somatic (fatigue, hyperalgesia and malaise), 

anxiety and neurocognitive deficits (Maes et al., 2012). Similar to anhedonia, humans also 

exhibit decreased appetite during both illness and depression (Plata-Salamán, 1996; Simmons 

et al., 2016). Likewise, rodent infection and inflammation are commonly accompanied by 

reduced food intake (Bernstein et al., 1985; McHugh et al., 1993). For example, mimicking 

food anhedonia, the acute administration of endotoxin lipopolysaccharide (LPS) reduces self-

administration of sucrose pellets in rats (De La Garza et al., 2004). Similarly, rat sepsis model 

with polymicrobial abdominal infection evokes sickness behavior and fever, as well as 

anhedonia-like low activity/ energy (lethargy), SP and body weight loss (Pereira de Souza 

Goldim et al., 2020). 
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Strikingly paralleling rodent findings, sickness behavior can be induced in adult 

zebrafish by formalin-inactivated bacteria, reducing fish locomotor activity (motor retardation), 

social preference (social anhedonia) and exploration of a novel object (reduced novelty-seeking 

behavior), in addition to up-regulating brain expression of pro-inflammatory cytokines (e.g., 

interleukins IL-1β, IL-6, and tumor necrosis factor, TNF-) (Kirsten et al., 2018). In line with 

this, pharmacological therapies can revert some of these deficits in various animal models 

(Yirmiya, 1996; Yirmiya et al., 2001; Sammut et al., 2002; Merali et al., 2003). For example, 

chronic treatment with a tricyclic antidepressant, imipramine, or fluoxetine abolishes reduced 

rat SP produced by acute LPS (Yirmiya, 1996; Yirmiya et al., 2001), interferon (IFN)- 

(Sammut et al., 2002) or IL-1 (Merali et al., 2003).

Anhedonia can be conceptually modeled in animals as reduced reward in multiple ways, 

from targeting simpler cognitions (e.g., reward valuation assessed by delay or effort) and 

reward responsiveness (e.g., anticipation, initial response to it, its satiation), to recapitulating 

more complex cognitive processes, such as learning from the reward (e.g., by assessing 

probabilistic and reinforcement learning or reward prediction errors) (Simona Scheggi et al., 

2018a). Thus, zebrafish models based on reduced reward anticipation or impaired 

reinforcement learning may also be a promising avenue of translational research modeling 

anhedonia across taxa. At the same time, zebrafish models also have some clear limitations in 

terms of their translatability into human anhedonia, especially given certain differences from 

mammals in brain neuroanatomy  (Matthew O. Parker et al., 2013b). For example, cortex plays 

an important role in mammalian reward circuits (Haber and Knutson, 2010), in addition to the 

nucleus accumbens, ventral pallidum and orbitofrontal cortex (OFC) (Der-Avakian and 

Markou, 2012). The OFC and ventral striatum receive inputs from sensory cortices and 
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calculate the reward values, while the OFC projects reward value information to the rostral 

anterior cingulate cortex projecting to the prefrontal cortex. The latter has bidirectional 

connections with multiple areas, including the dorsal raphe, ventral tegmental area, and locus 

coeruleus, which play an important role in adaptive responses to reward and decision-making 

(Der-Avakian and Markou, 2012).  However, since zebrafish lack cortex (Matthew O. Parker 

et al., 2013b), they may not be appropriate models to study various aspects of cortically driven 

modulation of anhedonia. 

Moreover, small body size (Lakstygal et al., 2018) of zebrafish not only complicates 

their video-recording, but also the development of operant and/or touchscreen-based assays for 

studying CPP deficits that are relevant to modeling anhedonia. The small size of zebrafish brain 

also complicates the development of intracranial self-stimulation protocols, commonly used to 

study anhedonia in rodents (Simona Scheggi et al., 2018a), as well as real-time analyses of 

neurochemical markers in specific brain regions (L. J. Jones et al., 2015). 

Inadequate maternal behavior is an important factor in triggering anhedonia in both 

humans (Widom et al., 2007) and rodents (Molet et al., 2016). For example, FSL  rats display 

reduced motivation to lick, contact and care for pups (Lavi-Avnon et al., 2005), which may 

underpin their anhedonia-like behavior as adults (Lavi-Avnon et al., 2005). However, maternal 

behavior is absent in some fishes, including zebrafish (Perrone Jr and Zaret, 1979), and 

therefore cannot be used to develop translationally relevant models of anhedonia based on 

maternal influences. Likewise, social defeat is a common model to induce depression-like 

anhedonia phenotypes in rodents (Hollis and Kabbaj, 2014; Riga et al., 2015), but is less 

straight-forward in zebrafish., whose  repeated social defeat (e.g., by social subordination for 6 

days) reduces the motivation to fight, likely representing a more specific and distinct, social 

subtype of anhedonia (Nakajo et al., 2020).
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Although anhedonia is commonly found in patients with chronic pain (Garland et al., 

2020), and zebrafish present robust models to study pain (Costa et al., 2021), their potential to 

evoke anhedonia is unclear (Table 4). In addition, robust sex differences are also reported in 

anhedonia, as men score higher on physical anhedonia and social anhedonia scales (Miettunen 

and Jääskeläinen, 2010) and display greater anhedonic depression than women (Langvik et al., 

2016). Likewise, female mice display longer latency to eat in the novelty-suppressed feeding 

test (Paden et al., 2020). Although robust sex differences are also noted for zebrafish behaviors 

(e.g., UCS increases aggression in males, but not in females (Rambo et al., 2017)), the role of 

sex in zebrafish anhedonia-like phenotypes remains unclear (Table 4), and warrants further 

studies. 

Modeling zebrafish anhedonia also meets some translational challenges. For example, 

it is difficult to measure in fish several key clinical symptoms of anhedonia, such as negative 

feelings, and reduced emotional verbal or nonverbal expressions. In addition, anhedonia is a 

highly heterogeneous phenotype, and in depressed patients it may differ from that in 

schizophrenic patients (Culig and Belzung, 2016).  For example, the latter may be characterized 

by a disorganization, rather than a deficiency, in reward processing and cognitive function, 

including inappropriate energy expenditure and focus on irrelevant cues. In contrast, depressed 

patients display deficits in anticipatory pleasure, development of reward associations, and 

integration of information from past experience (Lambert et al., 2018). Thus, the possibility to 

distinguish between different types of experimental anhedonia in animals, including both 

rodents and zebrafish, is yet to be established. Likewise, animal models cannot assess some 

other anhedonia-related feelings (e.g., sadness, guilt or suicidal thoughts), as such symptoms 

are limited to humans (Nestler and Hyman, 2010). Thus, modeling some subtypes of anhedonia 

(e.g., sadness-related anhedonia) in animals may be problematic. Nevertheless, it is possible to 
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model some other related anhedonia-like phenotypes (e.g., pessimistic bias), as telomerase-

deficient zebrafish display more negative judgements in response to ambiguous stimuli than 

wild-type zebrafish (Espigares et al., 2021).  Some other important conceptual questions remain 

in regard to animal anhedonia models in general, including zebrafish anhedonia (Table 4). For 

example, is animals’ behavior anhedonic-like because they are ‘depressed’, or, alternatively, 

does depression emerge first and then induce anhedonia-like states? These two possibilities 

must clearly be considered when planning experimental protocols to study complex dynamics 

of anhedonia pathogenesis in zebrafish and other species. 

Despite these challenges, mounting evidence summarized here indicates several key 

characteristics – the presence of selected anhedonia-related behaviors in zebrafish and the 

availability of sensitive behavioral tests capable of assessing these anhedonic phenotypes, that 

together with the growing number of experimental models evoking anhedonia-like states, 

support the zebrafish as a promising experimental model to probe the pathobiology of 

anhedonia. However, as many questions regarding anhedonia in zebrafish remain open (Table 

4), further studies are needed to better understand the pathobiology of zebrafish anhedonia-like 

states, as well as to develop novel therapies to correct these phenotypes in zebrafish-based 

screens. Overall, all advantages of zebrafish models discussed here make this animal a valuable 

and unique species to study anhedonia pathobiology. 
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Figure 1. Summary of anhedonic phenotypes in humans, rodents, and zebrafish (see Tables 1 and 2 for details). Left panel shows that rodent 

anhedonia-like behavioral responses can be assessed by conditioned place (CPP) or sucrose preference (SP) tests (Cunningham et al., 2006; Simona Scheggi 

et al., 2018a). For example, male C57BL/6 mice exposed to chronic stress display reduced SP, a behavioral sign of anhedonia (Strekalova et al., 2004). 

Right panel illustrates zebrafish CPP models developed to measure reward-like phenotypes, hence reflecting their potential to assess anhedonia (Priya 

Mathur and Guo, 2010; P. Mathur et al., 2011; Hinz et al., 2013; Adam D. Collier et al., 2014; Daniela Braida et al., 2020). For example, zebrafish clearly 

prefer reward-associated CPP compartments (e.g., paired with morphine, diazepam, fluoxetine, risperidone, and buspirone) (B. Y. Lau et al., 2011; Abreu 

et al., 2016), and also offer several other behavioral tests assessing social phenotypes (relevant to social anhedonia) (Pham et al., 2012; Asahi Ogi et al., 

2021), as well as novelty-seeking behavior (novel object or environment exploration (Strekalova et al., 2004)), reflecting decreased exploration of novelty. 

Finally, like humans, zebrafish present generally similar, conserved brain structures and circuits (Matthew O. Parker et al., 2013b), including serotonergic 

and dopaminergic systems strongly involved in anhedonia pathogenesis. 
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Table 1. Summary of key anhedonic phenotypes in humans, rodents and zebrafish

Humans Rodents Zebrafish  

Reduced interest in activities and 
in the time spent on activities and 
experiencing pleasure 

Reduced reward behavior (e.g., in 
conditioned place preference 
(CPP) tests)

Reduced reward behavior (e.g., in 
CPP, hypophagia) 

Loss of appetite Reduced consumption of 
palatable food

Loss of food preference in the CPP

Social withdrawal Social deficits (reduced social 
interaction or preference, low 
social hierarchy)

Social deficits (reduced social 
interaction, social preference and 
shoaling behavior, low social 
hierarchy)

Lethargy, hypoactivity (motor 
retardation), loss of energy

Hypoactivity (motor retardation) Hypoactivity (motor retardation)

Loss of libido Reduced sexual behavior Reduced sexual behavior
Reduced emotional abilities (e.g., 
having less verbal or nonverbal 
expressions)
Reduced ability to learn from 
reward

Reduced ability to learn from 
reward

Reduced ability to learn from 
reward

Sensitivity of anhedonic 
phenotypes to antidepressants

Sensitivity of anhedonia-like 
phenotypes to antidepressants

Sensitivity of anhedonia-like 
phenotypes to antidepressants
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Table 2. Selected tests to study anhedonia in humans, rodents and zebrafish (see 

(Thomsen, 2015) for details).

Anhedonia-like 
phenotypes

Humans Rodents Zebrafish

Impaired ability to 
learn about reward 

Conditioned preference to a 
methamphetamine-
associated contextual cue 
(Mayo et al., 2013; Mayo 
and de Wit, 2015), 
Pavlovian-to-instrumental 
transfer task (Garofalo et al., 
2020) 

Conditioned place 
preference (CPP) 
(Tzschentke, 1998, 2007) 
and avoidance (CPA)(Zang 
et al., 2020)

CPP (Wong et al., 
2014) and CPA(Wong 
et al., 2014)

Impaired ability to 
pursue reward (e.g., 
food or sex)

Incentive key press/force 
grip (Aharon et al., 2001; 
Parsons et al., 2011), 
attentional blink (Field et 
al., 2009; Tibboel et al., 
2010), effort expenditure for 
rewards task 
(EEfRT)(Treadway et al., 
2009)

Effort to obtain reward (K. 
C. Berridge and Valenstein, 
1991; Pecina et al., 2003), 
palatable food intake 
(Salamone et al., 1994; 
Salamone et al., 2007), 
Pavlovian instrumental 
transfer (Wyvell and 
Berridge, 2000, 2001), 
female urine sniffing test 
(Malkesman et al., 2010)

-

Impaired ability to 
experience pleasure

Self-reports (Jarratt-
Barnham et al., 2020; El 
Sayed et al., 2021),  facial 
expressions (Bylsma et al., 
2008), rectal pressure 
variability(Georgiadis et al., 
2006)

Facial “liking” reactions and 
“disliking” reactions (Grill 
and Norgren, 1978b, a)

-

- Social interaction test (File 
and Hyde, 1978)

Social preference (A. 
Ogi et al., 2020)

- Sucrose preference (SP) test 
(M. Y. Liu et al., 2018)

Food size preference 
(Onal and Langdon, 
2016)

General anhedonia

Self-administration (J. D. 
Jones and Comer, 2013)

Intracranial self-stimulation 
(Redgrave and Dean, 1981), 
self-administration 
(Figlewicz et al., 2011; 
Huyts et al., 2019)

Self-administration 
(Bosse and Peterson, 
2017)
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Table 3. Selected clinically relevant drugs to treat affective anhedonia-related phenotypes in 

humans, rodents and zebrafish 

Substance Human effects Rodent effects Zebrafish effects References

Agomelatine Reduces severity of 
anhedonia, depression 
and anxiety

Reduces anxiety- depression-
like behaviors

(Gargoloff et al., 
2016; Lapmanee et 

al., 2017)
Amantadine Antidepressant effect in 

bipolar depression

Antidepressant-like effects in 
the forced swim test, chronic 
mild stress paradigm, and 
reserpine test

(Raupp-Barcaro et 
al., 2018; Krzystanek 

and Pałasz, 2020)

Bupropion Antidepressant effect 
with robust improvement 
of self-reported 
anhedonia.

Causes social anhedonia (Tomarken et al., 
2004; Lipina et al., 

2013)

Flibanserin Improves libido in 

depressed women

Increased sucrose intake in 
stressed mice

(D'Aquila et al., 
1997; Kennedy, 

2010)
Fluoxetine Improves at endpoint on 

the Montgomery-Asberg 

Depression Rating Scale 

(include anhedonia)

Increased palatable sweet 
solution intake in stressed 
mice

Chronic 
administration 
promotes 
exploration and 
lowers whole-
body cortisol 
levels

(Muscat et al., 1992; 
Corrigan et al., 2000; 

Egan et al., 2009; 
Cachat et al., 2010)

Ketamine Reduced anhedonia in 
depressed patients

Increased sucrose preference 
in rats exposed to 21-day 
unpredictable chronic stress

  (Nanxin Li et al., 
2011; Lally et al., 
2014; Lally et al., 

2015; Ballard et al., 
2017)

Maprotiline Antidepressant effects Antidepressant effects, 
reversed stress-induced 

anhedonia

(S. W. Li and Yan, 
1989; Muscat et al., 

1992)

Moclobemide Antidepressant effect, 

reduced social phobia

Reversed stress-induced 

anhedonia

(Moreau et al., 1993; 

Bonnet, 2003)

Pramipexole Antidepressant effect Reversed stress-induced 

anhedonia

(Willner et al., 1994; 
Corrigan et al., 2000)

Sertraline Antidepressant effect, 

reduced anhedonia in 

patients with major 

depression

Antidepressant effects Reversed 

reserpine-induced 

depression and 

cognitive deficits

(Boyer et al., 2000; 

Ulloa et al., 2010; 

Zhang et al., 2018)
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Table 4. Selected open questions related to zebrafish anhedonia models.

Questions 
 Are there individual, strain and sex differences in anhedonic responses in zebrafish?
 What are reliable physiological (non-behavioral) biomarkers of anhedonia in mammals? Are these 

biomarkers shared between mammals and zebrafish?
 Do anhedonia-like and sickness behavior-like phenotypes overlap in zebrafish models?
 Do olfactory deficits (e.g., long-term anosmia) translate into zebrafish anhedonia?
 Is there a clear hierarchy of motivations in animals and humans, and how it relates to anhedonia in 

zebrafish?
 Since depressive disorders are a heterogeneous group, where is anhedonia in these clusters of 

endophenotypes?
 Are there differences across age in zebrafish anhedonic response? Can anhedonia-like phenotypes be 

measured in zebrafish larvae?
 Can specific gene mutations influence anhedonia-like behaviors in zebrafish? 
 How gene expression correlate with anhedonic responses in zebrafish models?
 Can zebrafish anhedonia, if it exists, be epigenetically regulated?
 What are specific neural circuits (e.g., involving habenula) implicated in zebrafish anhedonia-like states?
 Can zebrafish models based on light or temperature be developed to assess zebrafish anhedonia?
 Can zebrafish chronic pain models induce anhedonia-like phenotypes?
 Can there be fully automated models and tests to assess zebrafish anhedonia?
 Do zebrafish temperamental traits (e.g., boldness/shyness, pessimistic/optimistic bias) correlate with 

anhedonia-like states?
 How can anhedonia be separated from fatigue in animal models, including zebrafish?
 Can we model complex cognitive phenomena, such as motivation loss and avolition, in relation to 

zebrafish anhedonia?
 Can different subtypes of clinical anhedonia be modeled in zebrafish? Are there state vs. trait anhedonia 

models in zebrafish?
 Can zebrafish models be developed for both specific and generalized anhedonia states? 
 Can zebrafish models of anhedonia overlap with (and be relevant to) some other related CNS states, such 

as cognitive inflexibility?
 What is the complex dynamic relationship between depression and anhedonia? For example, is animals’ 

behavior in some models anhedonic-like because they are ‘depressed’, or, alternatively, can depression 

emerge first, and then induce secondary anhedonia?
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