

CONFERENCE ABSTRACTS

International Student Conference

"Science and Progress"

St. Petersburg — Peterhof November, 9–11 2021 CONFERENCE ABSTRACTS
International Student Conference "Science and Progress" — SPb.: SBORKA, 2021-224 p.p.
ISBN 978-5-85263-109-1

Structure and Electrokinetic Potential of Nanoporous Glasses Doped with Silver Halides

<u>Kuznetsova Anastasiia</u>^{1,2}, Ermakova L.E.¹, Girsova M.A.², Kurylenko L.N.², Antropova T.V.² <u>a kuznetsova95@mail.ru</u>

¹Saint Petersburg State University, Saint Petersburg, Russia ²Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, Saint Petersburg, Russia

The development of modern technologies sets the task of developing practically significant high-performance materials with functional properties. One of the classes of such materials are light-sensitive silver-containing vitreous nanocomposites used for optical instrumentation. In this work, micro- (MIP, average pore radius is 1.5 nm, porosity is 25 %) and macroporous (MAP, average pore radius is 17 - 21 nm, porosity is 50 - 59 %) high-silica glasses were used as matrices, which were impregnated in two stages with AgNO, solutions, and then with KHal (Hal = Cl, Br, I) solutions [1]. It is known that the properties of nanostructured materials and their functional characteristics are primarily determined by the structural parameters and the state of their surface [2]. In connection with this, the work investigated the structure and electrokinetic potential of silicate porous glasses (MIP and MAP) and glasses modified with silver halides (MIP-AgCl, MAP-AgCl, MIP-AgBr, MAP-AgBr, MIP-AgI, MAP-AgI) in 0.01 M solutions of indifferent NaNO, electrolyte and AgNO₃ solutions containing potential-determining Ag⁺ ions. The content of Ag₂O found by X-ray fluorescence analysis was (wt. %): MIP-AgCl 0.322, MAP-AgCl 1.122, MIP-AgBr 0.322, MAP-AgBr 1.992, MIP-AgI 0.239, MAP-AgI 0.801. The presence of phases of Ag,O and AgHal was proved by X-ray phase analysis of silver-containing porous glasses. The electrokinetic potential (ζ) of porous glass particles was found by laser Doppler electrophoresis. It was found that the modification of porous silicate glass leads to an increase in the $|\zeta|$ values.

Acknowledgments: This study was supported by the Russian Foundation for Basic Research (project no. 20-03-00544a). The part of the study related to the synthesis of the studied materials was carried out as part of a state assignment of the Institute of Silicate Chemistry, Russian Academy of Sciences (IChS RAS) with the support of the Ministry of Education and Science of Russia (project AAAA-A19-119022290087-1). The measurements were performed at the Research Park of St. Petersburg State University (Interdisciplinary Resource Centre for Nanotechnology, Centre for X-ray Diffraction Studies and Center for Chemical Analysis and Materials Research).

References

- 1. M.A. Girsova, I.A. Drozdova, T.V. Antropova // Glass Physics and Chemistry, v. 40, № 2, p. 162-166 (2014).
- 2. A.S. Kuznetsova, L.E. Ermakova, M.A. Girsova, T.V. Antropova // Glass Physics and Chemistry, v. 47, № 4, 390-393 (2021).