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|. (FEMERALITIES

It [9] it was shown that if a Banach (or B) space 7, and its adjoint &',
have twice Fréchet (or F) differentiable norms, then & can be given an
equivalent norm under which it becomes a Hilbert space. From the point of
view of applications, it is desirable that ¥, in its original norm, is a Hilbert
space. For instance, if & is finite-dimensional, then the above conclusion
adds little. In reviewing [9] in Mathematical Reviews [Vol. 35 (1968), p. 402],
R. Bonic states: “This, however, is 2 more difficult problem and remains
open.” However, the characterization given above, in terms of equivalence
of norms, is the best possible result in the sense that there exist B spaces
satisfying the differentiability hypotheses but which are not Hilbert spaces
themselves, The following example illustrates this statement.

Recall that the norm || - || of 15 twice F-differentiable iff {— of and only if)

|2 + av || =1 % || + allag, ) + Ilu{:}’! ¥} o ofa®), (*)

for all x, , y in 5, the unit sphere of 2. Here G{xy , ) is the first and T, ( v, ¥)
the second F-derivation at x, when as « — (), the limits existing uniformly
in ¥ € 8. The proof of the result [9] consists in showing that T, (-, ) is a
bounded bilinear form which is positive definite on 2, =< &, , where
T, — {¥:G(xy, v} == 0}. (It is here that the twice differentiability of the
norm of ¥ is needed.} Clearly, for any x, e &, x;, =¥ + Agy, v, 6T,
i = 1, 2 and A, real, the representation being unique. The inner product

(%p 0 20) = Te(¥1. 78 + A [l =

gives the equivalent norm ||| »|| = (x, x):

alxP<lixll <gl=l, =0, i=12 (**)

With this set up, the counterexample is given as follows. Let

x]m — l) E

where 00 << & = 1, x == 0, is chosen such that ®{1) = ¥(1) = 1. The latter
is a convenient normalization (cf. [B]). The pair (@, V) becomes what is
called the complementary Young's functions (cf. Section 3 below). Let L? be
the space of (equivalence classes of) real measurable functions f on a general
space (22, X, p) such that Ny{ f} << oo, where

(Ifl

@[ﬂ=¢[-’; +§_ . e ——5 45 +%

"fu,(_f}-—mfik}ﬂ J‘ ) dge «:¢(1][

It is known [8, p. 683] that this particular space L? is a uniformly rotund
and smooth (= norm is F-differentiable) B space. By [12], rotundity and
smoothness are dual properties in reflexive B spaces, and need not be present
for the same space. However, the present L® has both, (cf. [8]). If

Kt)=No(fo + 1) Nolf) =1, f,=0, fele,

then an elementary computation shows:

K(0) = Glfo, ) = |_SO(L)
K(0) = Ty(f,f) = HK(O) (1 — K(O) + | &(fo) (f — Sk (0)) do

and similarly for the adjoint space L¥ of L?, Here @', ¥, &", ¥ are the first
and second derivatives of @ and ¥, Thus for the B space & = L?, the hypo-
thesis of the result stated above is satisfied so that  can be given an equiv-
alent norm, under which it becomes a Hilbert space. However (L%, Ny('))
is manifestly not a Hilbert space since ®(x) = 52, If p concentrates on a
finite number of points, one gets even a simpler (finite dimensional) example
from this one.

In view of the above discussion, it is necessary to strengthen the hypothesis
in order to assert that & is a Hilbert space. A slight strengthening makes the
problem very easy, however. Two simple results giving such characterizations
are included in the next section, The final section is devoted to some inter-
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CHARACTERIZING HILBERT SFPACE BY SMOOTHNESS *)
BY

M. M. RAO

(Communicated by Prof. H. FrEvpENTEAL at the meeting of June 25, 1966)

1. Introduction.

While diseussing the smoothenss properties of certain Banach (or B-)
spaces, in [1], Boxie and Frampron state: "It is likely that if a B-space
and its dual are (®-smooth, then it is a Hilbert space”. The purpose of
this note is to prove this statement in the following form.

Theorem 1. If # is a B-space and Z* ils dual and if the norms in
¥ and F* are twice Fréchet (or F-) differentiable al every point excepl
posaibly the origin, then & is {somorphic o a Hilbert space in the sense
that & may be provided with an inner-product in such a way that the resulting
(inner-product) norm iz eguivalent to the given norm of 2.

Even though there are several characterizations of the Hilbert space
(e.g., [3], [6], [8], [5]), they are mostly based on geometrie considerations,
The eorresponding characterizations based on smoothness properties are
of interest in certain analvtical work (cf. [1]). Such a method is considered
here. The terminology employed here essentially follows [2], and some
results of the latter will be used freely.

2, Proof. The proof obtains from the following seven steps starting
with the real case. Then the complex case will be obtained using ([3],
p. 335).

(1) If % is a B-space and the norm of &* is F-differentiable then &
is reflexive. If also the norm of & is F-differentiable then & and 3*
are homeomorphic (under a ‘spherical image map’, [2], p. 306).

For, by ([2], Cor. 3.18) the norm in &* is F-differentiable iff the unit
sphere of & is weakly uniformly rotund {and henee it is k-rotund, [2],
p. 309). This implies in turn (c¢f. [2], Thm. 5.4 (i)) that the unit ball of
& is weakly compact sinee & {8 complete. It follows that & is reflexive
([4], p. 38). The last statement is a consequence of ([2], Cor. 3.18 and
Thm. 4.18). Moreover, by a well-known result of Smuriax (cf. also [2],
p- 289), & and F* are simultaneously rotund and smooth.

(2) If ¥ is a B-space whose norm is twice F-differentinble and if Ty
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Smooth Banach Spaces*

KONDAGUNTA SUNDARESKN**

1. Imtroduction and basic definitions

This paper is the outcome of a study of the twice differentiability of the norm
of a real Banach space. The basic definitions of the varicus second order
differentials of the norm are formulated following the familiar pattern of the
first differential, Day [4]. The rest of the paper is divided into three sections.
In Section 2 some properties of the second derivative according to one or the
other of the definitions are established. With the help of these properties a polar
characterisation of the twice differentiability of the norm and some isomorphism
theorems are obtained. In particular it is proved that if the norms of a real
Banach space E and its adjoint E* are twice differentiable then E is isomorphic
to a Hilberl space. In Section 3 the equivalence of the several definitions of the
second order differentials of the norm when the space is finite dimensional is
studied. In Section 4 the order of differentiability of the norms of the familiar
fFlLP} spaces is obtained.

We state the notations and definitions required in what follows.

E denotes a real Banach space and E*, E** are its first and second duals.
BIE), #{E, E*) denote respectively the Banach space of bounded bilinear
functionals on E and the Banach space ol bounded linear operators on E into E*
respectively with the usual supremum norms. & denotes the linear isomorphism
on ¥ (E, E*) into B(E) defined by o(T)(x){y)=Tix. y). Let U{L'*) and S(5%)
denote respectively the unit ball and the unit sphere of E(E*). Once for all it is
assumed that the norm of E is once Fréchet differentiable so that the spherical
image map G on § into 5* is a function and indeed is continuous with respect
to the norm topologies relativised to § and §*, Cupia [3].

Definition 1, The norm [ || of the Banach space E is said to be fwice
directionally differentiable at an element x40 if there exists a symmetric
bounded bilinear function T, such that if y& § then

llx + ey = x|l + 1G{x) ¥+ > Tolw, 1) + B(0)

#
where #{t) depends on x and y and ~-—I{:]- —+ 0 as t— (). The Banach space E is said

* The paper is based on Part [ of a thests submitted in partial fulfillment of requirements for
the Ph. D1 degree of the University of Washington, S=attle. The author acknowledges his gratitude
to Professor V. L. KL for his advice and eriticism during the preparation of the manuscript,

** This work was suppotted in part by Contract NSF-GP 178,
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192 K. SUNDARESAN:

to be twice directionally differentiable if the norm s twice directionally dif-
ferentiable at all x 0.

Definition 2. The norm of E is said to be twice differentiable at x 5 0 if the
mapping G on E ~ {0} into E*, where Giz) is the first order derivative at z, is
differentiable at x; i.e, there exists a linear operator T', on E into E* such that

G(x + h) = G(x) + Tolh) + 6, (h)

8,(h)
Il
said to be twice differentiable.
Remark /. Tt is known {Dievponst [5]) that if there exists an operator T,
satisfying the condition in the preceding definition then T, is bounded,
Definition 3. The norm of E is said to be twice Fréchet differentiable at an
x < () if there exists a symmetric bounded bilinear functional T, such that

lIx+ hlt = llx]| + Glxhh+ T.th, h)+ 8.(h)

where —+0as [h—=0, If G has a derivative at all x =0 then the norm is

i
where —
ihl®

said to be twice Fréchet differentiable.

Remark 2. If the mapping x — T, where T, is the second derivative accord-
ing to definition 2 (3), is well defined in an open set 4 in E and is a continuous
mapping into #°(E, E*) {B(E))then the norm is twice continuously differentiable
(twice continuously Fréchet differentiable) in A,

Remark 3. It is directly verified that the norm is twice differentiable at
x =0l and only if it is twice Fréchet differentiable al x.

— 0 as | il = 0. As in definition 2 if T, exists for all x %0 then E is

2. Twice differentiability of the norm of a Banach space
In theorem 1 some useful properties of the second derivative of the norm
are established,
Lemma 1. [f the norm is once differentiable at x 0 then
fix + &l — x|
t

lim

lim =Gx) forall EeE.

Further, G{ix) exists for all 240 and
Glix)=signAGi{x). dAlso, [Gix)=1.

Thevrem 1. [f the norm is twice differentiable at x %0 and T, is the corre-

sponding derivative then
(1) T, is symmetric,

(1) Range T,C {x}*. i

{iii) If A%0then T,, existsand Ty, =—T,.

(iv) T(E 520 forall € E. 14

Proof. (i) The property (i) holds for any twice differentiable function,
DievponsE [5] theorem 8.12.2,
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MNow we proceed to characterize Hilbert spaces among iwice differentiable
Banach spaces. The Gateaux gradient of the norm in E* is denoted by G,

Theorem 5. If the Banach space E and its dual E* are twice differentiable
then E is isomorphic to a Hilbert space.

Proof. Let x€ § and let T, and Ty, denote the second derivatives of the
norms in E and E* at x and G{x) respectively. It is verified that G,(G(x))
=0 ﬁ where Jx is the canonical image of x in E**. Further we note that
the mapping @ is a linear isometric mapping on E into E**, Now vonsider any
y& E,. Since the norm in E* is twice differentiable at Gix) and G is a continuous
mapping on § into §* the following equations are obtained.

Gi[Gix+tyi]= 0 [Glx)] + Tyl Glx 1y — Gix)] + 8.41)
= Qx + T|l‘;|i[:||:'|:|:I T:Lv}} + ff}x‘.n + E,':ﬂ
= Qx+ t T T¥)] + Topmle(0) + 00t)

whereas ¢ — 0 we have '(P.;T[ﬂ —{and @ -0 since

i —
” {I+I'.:} l:ﬂH—*IIFI'";’iJr’III as -0,

Hence
Ot 0
TowlTy)] = ]i__"& —— B
_ i 26+ ) = lix + 1yl @x
e tlx+tyl
— lim Ox+10y—[14+tG(x) y+ 2 T (Y, ¥Y)+e(t)] Q(x)
o thx+tyl

= Qysince Gix)y=0 and ]im# =0 as -0,

Thus Ty [ T.(¥)]1=Qy for all ye E,. Since @ is an isometry, [T, [Tl

= |ly||. Clearly Ty, 40+ T,,and for ye E .S, | Ty} = .

1 TGl

Thus by theorem 4, E is isomorphic to a Hilbert space.

Remark 6. Since a Hilbert norm (and its dual norm) are twice differentiable
theorem 5 is a characterization of Hilbert spaces up to an isomorphism. Further
it is known that if the dual of a Banach space E is once differentiable then E is
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SMOOTHNESS OF ORLICZ SPACES ). TI

BY

M. M. RAO

{Communicated by Prof, A. (. Zaawew at the meeting of April 24, 1965)

4, Rotundity and smoothness

A B-space & is said to be rofund if its unit ball U={r: |z||<1} has
the property that every open segment in U is disjoint from the boundary,
§={z: |a]|=1}, (ef,, [3], p. 112). Also & is smooth if at every point of 8
there is only one supporting hyperplane of U. This concept is known
to be equivalent to the weak differentiability of the norm functional of
I at every point of 8. In [2], further classifications were introduced, but
the above terminology, which follows [3], will be sufficient in this paper.
A B-space % is uniformly rotund if x4 e U, yne U and |zn+yn| — 2
implies |wn—yal = 0. Also & is uniformly smooth if the norm is almost
additive in a narrow cone, ie., for e=0, there is #,>0, such that
llz—yll<n implies [e+yl(1+¢&)=|z+[lyl. As may be expected from
definitions, there iz a duality between smoothness and rotundity and the
results of the preceding section play a key role in what follows. It should
be remarked that rofundity and wniform rotundily are also referred to
(in the older literature) as strict convexity and uniform converity respectively.
The present nomenclature is due to Day, [3].

The first conditions on rotundity and smoothness are given by

Theorem 4. Let L® L¥ be (complementary) Orlicz spaces and @(-)
be strictly convex. Then L?® is rotund. In particular, if M®*=L*, M¥=L¥,
(and @', V' are continuous by normalizations) then L*[LY] iz both rotund
and smooth.

Proof. The last part is easy. For, by Corollary 1.1, L*[LY] is reflexive,
and (L®)*[(L*)*] is isometrically isomorphic to L¥[L*]. But in a reflexive
space, the unit ball is rotund (i.e., the space is rotund) if and only if the
unit sphere of its conjugate space is smooth, by ([3], p. 114; [2], p. 289).
Also by Corollary 2.1, since M¥=L¥, the norm in L¥ is strongly (hence
weakly) differentiable (and the same is true for L®). It follows that L®[L¥]
is both rotund and smooth.

For the more general case, it should be shown that L® is rotund if
@ is strictly convex. Suppose that the statement is false. Then there
exist fi, fz in 5%, fi#£1fz, a.e, (f scalar) and Ny(fi +fo) = Nalfi) + Nalfz),
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A uniformly convex space is a normed vector space such that, for every 0 < £ = 2 there is some
§ > 0 such that for any two vectors with ||z]| = 1 and |ly|| = 1, the condition

llz—yll >
implies that:
Ty
<1-4.
=]

Intuitively, the center of a line segment inside the unit ball must lie deep inside the unit ball unless the
segment is short.


Oleg
Highlight

Oleg
Highlight


L.3. Young's funetions

In his studies on Fourier series, W. H. Young has analyzed certain
convex functions @ : ! — R’ which satisfy the conditions: ${—z) =
&(r), #(0) = 0, and :ILr:}ﬂ f(z) = +oo. With each such function &,

one can associate another convex function ¥ : IR — " having similar
propetties, which is defined by

U(y) = supfely| — #(r) : 1 20}, ye R (1)

Then @ is called a Young function, and ¥ the complementary function
to &, It follows from the definition that T(0) = 0, P{=y) = $(y).
and, what is important, ¥{-) is a convex increasing function satisfying

lim ¥(y) = +oco. From (1) it is evident that the pair (®, ) satisfies

y—t 0o _
Young's inequality:

ry < (z)+W(y), r,vER. (2)
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Definition 1. A Young function & : IR — N7 is said to satisfy
the Az-condition {globally), denoted & € &g ( § € Ay (globally)) if

D(2r) < K&(x), zxrg20(zg=0) (1)

for some absolate constant ' > 0.

Considering ®(z) = |z|F, p> 1, wezee that K > 2. Alsoin (1), 2
can be replaced by a > 1, and one gets a condition equivalent to (1),
Further note that all @ : r + alr|?, p = 1,a > 0, belong to As. On the
other hand, if $5: r v eIl — 1, then this §, ¢ A,

In the opposite direction to (1), one can introduce the following
condition studied by Ando (1960},

Definition 2. A Young function $ : IR — IR* is said to satisfy
the Vi-condition (globally), denoted & € Vo (@ € Vo (globally)) if

d(r) < El'fﬂ'ifr}. rZzrg>0{1g=0) (2)

for some £ = 1.

For instance, if $(zx) = (1+ |z|)log(1 + |z|) — |z|; then its com-
plementary function ¥ is given by ¥(y) = ¥ — ly| — 1. Tt is quickly
verified that & € A; (but not V) and ¥ € V; (but not Ay ). We may
present a characterization of these conditions:
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Recall that if X' is a Banach space and &A™ its adjoint which is
always a Banach space under the adjoint norm, let (X'*)" be the second
adjoint, simply denoted X**. If the image ¥ of X is all of X'**, one says
that X is a reflezive Banach space, and writes X = X" where equality
is understood as isometric isomorphism (or topological equivalence if
equivalent [but different] norms are used). We can characterize the
reflexive Orlicz spaces using the preceding result.

Theorem 10. Let (2, X, u) be a measure apace and (&, ¥) be a patr
of complementary Young functions. Then L¥(u) [L¥(u) ] is reflezive
ff L*¥(u) = M* and L¥ () = MY, or equivalently both L®(4) and
LY () have absolutely continuous norms. In particular this holds if
both & and ¥ are Aq-reqular.
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