
and similarly for the adjoint space L"I' of1.•. Here tP', 'P',tP', 'P'arc the nl'ilt
and second derivatives of t1> and 'P.Thus for the B space.or = LO, the hypo­
thesia of the result stated above is satisfied so that !t call be given an equiv­
alent norm, under which it become. a Hilbert space. However (L·, N..(·})
is manifestly 711)1 a Hilbert space since c1>(.. ) ,p z'/2. U,. concentrates on a
finite number of points. one gets even a simpler (finite dimensional) example
from this one.
Inview of the above dile,wion, it is necessary to strengthen the hypothesis

in order to assert that 1it" is • Hilbert space. A slight strengthening makes the
problem very ea.y, however. Two simple results giving 9uch characterizations
are included in Ih. ne><tsection. The final section is devoted to some iater-

lItO)=GU. ,f) - 10/11>'(/0) dp,

k'(O) = T,.(/.!) .. 211'(0)(1 - k'(O» + J" 11>'(/.) (/ -/,/<'(0»' dp,

then an elementary computation shows:

NO(/.) = I,1«1) =N,(/. + 'I),

It is known [8, p. 683] tbat this particular space I,· is a uniformly rotund
and smooth (= norm is F-diffcrentiable) B space. By [12J, rotundity and
smoothness are dual properties in reflexiveB spaces, and Deed not be present
for the same space. However, the presentL<> has both, (cr. [8]).u

where 0 < Q ... I, x :;;.0, i. chosen such that c1>( I} -'- '1'( I) = J. The latter
is a convenient normalization (cf. [8]). The pair (11), '1') becomes what is
called the complementoty Young's functions (cf. Section 3 below). Let LO be
the space of (equivalence classes of) real measurable functions / on a genera'
space (12,E,,.) such that N.(f) < co, where

x a ([ 4 I'" )'P(x}=--+- I+-x -I2 12 Q '

With this set up, the counterexample is given as follow~. Let

(n)c, >O. i= I.2.

gives the equivalent norm IIIxIII - (x, .•):

(",....)= T",(y,,yJ +~,A.lI".11',

for aU"". y ill S, the unit sphere of !t•.Here G(x. ,y) i. the finl.nd T.••(y, y)
the second P·derivation at .'Co when as ('t: -0, the limits existing uniformly
in y £ S, The proof of the result [gJ consists in showing that 1',,(", .) i••
bounded bilinear form which is positive definite on 1it", X !t" where
.'l', - {y : G(.v•• y) "" OJ. (It is here th., the twice differentiability of the
norm of ~* is needed.) Clearly, for any :t, <;1it"•• ', - y,+~''''.'y, <;:{",.
; ~ I, 2 and ,\, real. the represemaricn being unique. The inner product

«1-
11"'0-I- "Y 1I-1I~'01l +"G{x. ,y}+T 1'.,(y,y) l· .(~'), (.)

In [9) il was shown that if a Banach (or B) space fr, .,,11 it. adjoint 1'1:""'.
have twice Fr6chet (or F) differentiable norms, then iJ,' tan bt given an
equivalent norm under which it becomes a Hilbert space. From the point of
view of application" il is desirable Ibal !t, in its origil\2l norm. i&a Hilbert
space. For instance, if !r is finite-dimensicnal, then the above conclusion
adds little. Tn reviewing [9] in Mathematical Reviews [Vol. 35 (1968), p.402].
R. Bouie stales: "This, however, is a more difficult problem and remains
open," However, the charaeterizaricn given above, in term, of equivalence
of norms, i. the bes; possible result in the sense that there e"i~1 8 spaces
satisfying the differentiability hypotheses but which are 001 Hilbert spoce.
themselves, The foUowing example illustrates this statement.

Recall thot the norm II '11"f,or is twice F-diiferentiabl. iff (- if snd Mly if)

Suinnilltd by R. J. Duffin

Notes on Characterizing Hilbert Space by Smoothness
and Smooth Orllcz Spaces"
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1. IrdTod'Uctio".
While discussing the smoothens. properties of certain Banach (or B-)

spaces, in [1]. BONICand FRAllY.l'ONstate: "It is likely that if a B-space
and its dual are O"-smooth.,then it is a Hilbert space". The purpose of
this note is t-o prove this statement in the following form.

Theorem J. If!!( is a B-lYpace and r:c' il<J dual and i/lhe norm.s in
!Jr. ana !!t., Q;retwice }'Techel· (or F-) diOlfrentiable at every point e:ecept
po~blll /~ origin, then !!r. i-s isomorphic /0 a Hilbert space in Ihe s€n.se
lI.at r:c may be provided with an inner-prOOI/.ctin 8'lwka way that the re8'ltlting
(inner-prOO,IC!)nOrm is equ.it-alent /Q the {liven Mml 01 r:c.
Even though there are several characterizations of the RUbert space

(e.g.• [3], (6). (8). (6). they are mostly based on geometric oonsldorations.
The corresponding oharacterizations based On smoothneas properties are
of interest in certain analytical work (of, [1]). Such a method is.considered
here. The terminology employed here essentially follows [2]. and some
results of the latter wilJ be used freely.

2. Proof. The proof obtains from the: following seven steps starting
with libe real case. Then the complex oase will be obtained using ([3].
p. 335).
(I) If!!( is (\ B--spaceand the norm of !Jr." is F-differentiable then ft:

is reflexive. If also the norm of !!( is F-differentiabJe .then ft: and !Jr.'
arc homeomorphic (under a 'spherical image map', [2], p. 306).
For, by ([2). Cor. 3.'18) the norm in fl'· is F-diffcrentiab"le iff the unit

sphere of r:c is weakly uniformly rotund (and hence it is k-rotund, [2).
p. 309). This implies in tum (ef, [2], Tlun. 5.4 (i» that tbe unit ball of
r:c is weakly compact since g: is complete. It follows that r:c is reflexive
([4]. p. 38). The last statement, is 11 consequence of ([2], Cor. 3.18 and
ThDl. 4.18). ]lloreover. by a well-known result of $~ruLIAN(of. also [2].
p. 2S9). r:c and $"" are Simultaneously rotund and smooth.

(2) If r:c is a B'spaoo whose norm is twice F-differentiable an d if T",

(Communicated by Prof. H. FruroDENTJIAL at t.ho meeting of dune 25. 1966)
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L Introduction and basic definitions
This paper is the outcome of a study of the twice differentiability of the norm

of a real Banach space. The basic definitions of the various second order
dilTerentials of the norm are formulated following tho familiar pattern of tbe
lirst differential, DAY(4). The rest of the paper is divided into three sections.
In Section 2 some properties of the second derivative according to one or the
other of the definitions are established. With the help or tbese properties a polar
characterisation of the twicediITerentiability of'the norm and some isomorphism
theorems arc obtained. In particular it is proved that if Ihe norms of. real
Banach space E and its adjoint E* are twice differentiable then E is isomorphic
to a Hilbert space. In Section 3 the equivalence of the several definitions of the
second order differentials of tbe Dorm when the space is finite dimensional is
studied. In Section 4 the order of dilTerentiability of the norms of the familiar
1.(Lp) spaces is obtained.

We slate tbe notations and definitions required in what follows.
E denotes a real Banach space and EO,E" are its first and second duals.

B(£), ..<e(£.EO) denote respectively- the Banach space of bounded bilinear
functionals onE and the Banach space of hounded linear operators on E into E"
respectively with the usual supremum norms. a denotes the linear isomorphism
on .Q'CE.E*) into B(E) defined by (f(T)(x)(y)= T{x,y}. Let U(U") and SIS")
denote respectively the unit ball and the unit sphere of £(£0). Once for all it is
assumed that the norm of E is once Frechet differentiable so that the spherical
image map G on S into S· is a function and. indeed is continuous with respect
to the norm topologies relativised to Sand S', CUDlA[3].

Definition t. Tbe norm Y.II of the Banach space E is said to be twice
directionally differentiable at an element x,,"O if there exists a symmetric
bounded bilinear (unction T. such 11131 ifYES then

IIx+ ryl = [x] + tG(x) y+ I'T.(y, y)+O(!)

where Ott) depends on x and y and*_0 as t- O. The Banach space E is said
t

• The p"pi:r'is based on Pan I of Il thesis submitted in partial fulfillment of requirements for
che Ph. O. degree of the University of\Vashington. Seattle. ''['he author acknowledges his-gratitude
to Professor V. L. KLf.l!for his advice-and.criticism during the preparation of the manuscript,

•• This·work. was supported ln pint" by Contract NSF-OP 318.
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Further. G(l.~)exists Jor all ),*0 and
G(h) = sigo).G(x). Also, IG(x)1I= 1.

Theor .... I. If the/lorm is twice differelllfable 01 x '* 0 and Tx is lite corre-
sponding derivative Ihen

(i) Tx Is symmetric.
(ii) Range TxC{X}L. I
(iii) If A* 0 Ihen T,. exists and T,.=- T,.
(iv) T.«. () 6;0 for all ~e E. 1).1
Proof. (il The property (i) holds for any twice differentiable function,

DreVOONNf [5] theorem 8.12.2.

2, Twice ditTorenliabilityof the nonn of. Banach space
10 theorem 1 some useful properties of tbe second derivative of the norm

are established.
Lemma t. If the 1I0rmis once·differentiable at"x4' 0 then

lim RX+l{lI- Ixll =G(x)~ for 0./1 ee E.
t-'O r

IIx+hll= IIxll+G(x) I. +TAh,h)+6.(1t)

where ~xl(h! -0 as IIhll-O. As in definition 2 if Tx exists for all x * 0 then I:: is
11,·11

said to be twice Frechet differellliable.
Remark 2. Jf the mapping .,,_ Tx. where T, is the second derivative accord­

ing 10 definition 2 (3), is well defined in an open set A in E and is a continuous
mapping into ~(E. EO)(B(E))tlten the norm is twice continuously differentiable
(twice cont.inuously Frechet differentiable) in A.

Remark 3. It is directly verified that the nonn is twice difforensiabte at
x *0 if and only if it is twice Frechet differentiable at x.

to be Mia dirtclionall.v differ~lIliable if the Dorm is twice directionally dif­
ferentiable at all x *O.

Definition 2. The norm of I:: is said to be twice differentiable at x *0 if the
mapping G on E-{O} into E'. where G(z) is the first order derivative at z, is
differentiable at x; i.e., there exists a linear operator T, on E into EO such lbat

G(x + h)= G(x) +TAb) +O.(h)

where ~x~~)~ 0 as (/,1 ....0. IfG has a derivative at all x *0 then the norm is
said to be twice differentiable.

Remark I. It is Known (DIEUDONNE [5]) that if there exists an operator T.
satisfying the condition in the preceding definition then Tx is bounded.

Definition 3. The Donn of E is said to be Iwice Frech" differenliable at artx'" 0 if there exists a 'symmetric bounded bilinear functional 1~such that

192
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Thus TG",,[T.(y)] =Qy for all y EE., Since Q is an isometry. ITG(x,[TAy)]U
I

= lIyll, Clearly Tu(., '* 0,* T.. and for y e E,f'lS, IIT,(Y)D!1; IITo.. )11

TIlus by theorem 4, S is isomorphic to a Hilbert space,
Remark 6, Since a Hilbert norm (and its dual Dorm) are twice differentiable

theorem 5 is a Characterization of Hilbert spaces up to an isomorphism, Further
it is known that if the dual of a Banach space E is Oncedifferentiable then E is

Q x+ty
• Qx

T. [T (y)] _ r OX + Iyll
0(%1 Ie - ,~~

I , _-Q:..:.(x_+---=:[,.;,-') -_;;_D.,_' +."...:.'Y,;:,II.::Q,-x= lm-'-0 tllx+tyll
= lim QX+IQY-[I+ IG(x)y+c'T.(Y, Y)+t{I)]Q(X)

,-0 tRx + tyq
, O( 0 d I' t(t) 0=QysmceGx)y= an tm-= as , ... 0,

t

Hence

G,[G(x+ty)) =G,[G(x)) + TG(><,[G(X+IY)- G(xJJ+ 8x(l)
=Qx+ TG(x)[I Tx(Y)] + 'l'x(l)+ 1I.(tl
=Qx + tTG(x,[T.(y')] + TG(,,(II'x(t) +O.(t)

'I'.(t) 0 (t) ,whereas t- 0 we have -- ~ 0 and _'- -_ 0 since
t I

IIG(x+I~)-G(x)II_IITx(Y)1I as [-·0,

Now we proceed to characterize Hilbert spaces among twice differentiable
Banach spaces, The Gateaux gradient of the norm in E· is denoted by G"

Theorem 5, If the Banachspace E. a"d tis dual E· are Iwice differenliable
Ihell E is isomorphi« to a Hiibertspace,

Proof. Let x e S and let T., and To",) denote the second derivatives of the
norms in E and E" at x and G(x) respectively, II is verified that G,(G(,<»

=Q II~Uwhere Qx is the-canonical image of x in E", Further we note that

the mapping Q is a linear isometric mapping on E into S", Now consider any
y E Ex' Since the norm in E* is twice differentiable at GCx) and G is a continuous
mapping on Sinto S' the following equations are obtained,
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4. RoI.mdily aM 611wo1htIMII

A B ....pace !r is said to be rotuM if its unit bull U- {"':11"'11<I} hes
the property that every open segment in U is disjoint from the boundary,
s- (x: IIxll-I), (of., [3], p. 112). Also f.t ill 8111001" if at every point of S
there is only one supporting hyperplane of U. '£hi6 concept is known
to be equlvalent to the weak differentiability of tho norm functional of
!r Q~ every point of S. In [2}, Iurther cla.ssifications were introduced, but
the above terminology, which follows ca}, will be 81lffioient in this paper.
A B·gpu.ce !r is uniformly rolund. .if z. E U, y. E a und 11x.+y.ll-+ 2
implies liz. - y.ll-+ O.Also f.t is uniformly 6moolh [f the norm is almost
additive in a narrow cone, i.e., for e> 0, there is '1.>0, such that
IIz-ym<'1. implies iJo:+yll(1+.»I~+IIyD· As may be expected from
definitions, there is a duality between smootbness and rotu.ndity and the
results of the preooding section playa key role in Wh8~followa. Ii should
be remarked that rolundily and uniform rolund.iJyare also referred to
(in the older literature) 88strictcmwexily and unifor", conuty respectively.
The present nomenclature i. due to DAY, [8).

The first conditions on 'rotundity and smootbness MO g;\"cn by

Theorem 4. Let L", L'" be (complementary)Ov-lic. 8Pacu and <P(.)
be .triclly convex. Then L";8 rotund. In particular, if At"-L·, Jl/'I'=L"',
(and </Y, 'J!' (Ire conl·inUOlt.8by normalizati01t.8) 111671 L"[L") i8 hoi'" i'oh.lId
atld s/IIooIh.

Proof. The J&&t part is easy. For, by Corollary 1.1, L-[L"j is reflexive,
and (L")'[(L"')'} is isometrically isomorphic to L"[L"]. But in It reflexive
space, the unit ball ia rotund (i.e., the space is rotund) if and only if the
unit sphere of ita conjugal .. spaoe is smooth, by ([31, p. 114; [2}, p. 289).
Also by Corolltu'y 2.1, since MY'=L"', the norm in L '" i8 8trongly (hence
weakly) differentiable (and the same is true for L·).H folloW8that L·(L"]
i. both rotund ond smooth.

For tho more general case, it should be shown that L" is rotund if
<P i8 8triotly COilvex. Suppose that the statement is false. Then there
exist fu /. in fr, /a.+t/2, a.e., (I scalar) and N..(f,+f.)-N ..(/,)+N..(/2),

(Communicated by pror. A. C. z....,~'E."ot the meeting or April 24, 1065)
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Intuitively, the center of a line segment inside the unit ball must lie deep inside the unit ball unless the
segment is short.

II x ; Y II ~ 1- o.
implies that:

A unifonnly convex space is a nooned vector space such that, for every 0 < e ~ 2 there is some
o > 0 such that for any two vectors with Ilxll = 1 and lIyll = 1, the condition

11:;;- yll ~ e
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(2)xv ~ <lI(x) + q,(y),

Then <lIis called a Young I<"'CI;071, and q, the cQrtlplementa.,·y function
to <lI. It follows from the definition that w(O) = 0, I{I(-y) = 4>(y).
and, what is imporram, 'iI(.) is a convex increasing function satisfying
lim q,(y) = +00. From (1) it is evident that the pair (<lI,q,) satisfies

y-+oo:
Young '. inequality:

(1)yER.q,(y) = sup{xllll- <lI(x): x;::: OJ,

1.3. YOl,lllg1s (unctions
In his studies on Fourier series, \\I. H. Young has analyzed certain

convex functions <lI: R -> 1R+ which satisfy the conditions: <lI{-x) =
<lI{x), <lI(O)= 0, and lim <lI(x) = +00. With each such function <lI,

e-eec

one can associate another convex function 'lJ : IR _.. m+ having sunilur
propert ics, which is defined by
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for some absolute constant I( > O.
Considering4>{x) = IxIP, ,,;::: I, we see that J(;:: 2. Also in {Il, 2

cun be replaced by 0 > I, and one gets a condition equivalent to [L].
Further note that al14>: x ......al",I', p;:: I,a >0, belong to Ll.,. On the
other hand, if 4>0::r ~ el<1-I, then this 4>0¢ Ll.,.

In the opposite direction to (I), one can introduce the following
condition studied by Ando (1960).

Definition 2. A YOWlg function W : IR. .... m+ is said to satisfy
the \7,-condition (globally), denoted <J> E \7, (<l> E \7, (globally» if

1<l>(.r)5U<l>(t:r), :r?xo>O{xo=O) (2)

for some t » I.
For instance, if <I>(:r) = (1 + Ixl) 10g(1+ Ixl) -1 ..1;then its com­

plementary function I!I is given by >li{ y) = e,•1 - Iyl- I. Tt is quickly
verified that WEOfl., (but not \7,) and IJI E '17, (but not A,). Wemay
present a. clmracterization of these condit ions:

( 1)x ;:::Xo 2: 0 (xo = 0 )~(2x) 5 J\~(x),

Definition L A Young function ~ : III ~ m+ is said to satisfy
the Ll.z-condition (globally), denoted ~ E Ll.z (~ E Ll., (globally» if
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Theorem 10. Let (n,E,I') be a mea.ure .pace and (4),Ili) be a pair
of co"'pleine1ttary Young junction •. TIlen L~(JI) (L"'(I')/ i.. roJleczive
iff L+(JI) = M+ and L"'(I') = M"', or equivalently both L+(I') and
L"'(I') h(Wf ab.olutely continuous norm s, In particular til... "old. if
both 4> and q, are ~2·regular.

Recall that if X is a Banach space and X· its adjoint which is
always a Banach space under the adjoint norm, let (X·)· be the second
adjoint, simply denoted X·'. rc the image ,y ofX is all ofX·', one says
that X is a reJlezivr. Banach space, and writes X = .:r•• where equality
is understood as isometric isomorphism (or topological equivalence if
equivalent [but different) norms are used). We can characterize the
reflexiveOrlicz spaces using the preceding result.
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