1 Introduction

On the other hand, the eigenvalues result do not give a possibility to find
out whether the above result on the factorization of 7" through an S,-operator
is the best one in the scale S, ;. We need to proceed in another way.

A result of G. Pisier [16] gives us a possibility to get one more negative
answer to the question considered in [I7] on the product of two nuclear
operators (see below..!I!). G. Pisier has shown that if a convolution operator

*xf: M(G) = C(G),

where G is a compact Abelian group, M(G) = C(G)* and f € C(G), can be

factored through a Hilbert space, then f has the absolutely summable set of

Fourier coefficients. It is clear that the condition "the convolution operator
. can be factorized through a Hilbert space"

*xf : M(T) - H— C(T)

is the same as the condition "the operator xf can be factored through a
bounded operator U in a Hilbert space":

«f : M(T) — H % H — C(T).

We are going to generalize this result, so let us give some notes about it.

Let S(H) be an ideal in the algebra L(H) of all bounded operators in
H (e.g., the ideal of compact operators). What is the condition on the
set {f(n)} that gives a possibility to factorize the operator xf through an
operator from S(H)?

wf : M(T) — H 258 H — C(T).

We present some generalizations of the result of G. Pisier, giving answers to
the question for the ideals S, ,(H) of operators from the Lorentz-Schatten

classes (operators, whose singular numbers are in the Lorentz sequence space
l,,) and for general compact Abelian groups G :

*xf: M(G)— H 57;) H — C(G), feC(G).

Moreover, we will consider even convolution operators in vector-valued func-
tion spaces, generalizing the result of G. Pisier and a result of P. Saab [19],
Theorem 4.2, where it was shown that the Pisier’s techniques in the scalar
case can be extended to the vector-valued case (factorizations of a vector



valued convolutions through Hilbert spaces). We will get also two theorems
which are very close to to some generalizations of main theorem from [19].
generalizing also main results of P. Saab from [19].

2 Preliminaries

All the spaces X,Y, Z, W, ... are Banach, x,x,,y, yx, ... are elements of
spaces X, Y, ... respectively. All linear mappings (operators) are continuous;
as usual, X* X** ... are Banach duals (to X), and 2/,2",... (or¢/,...) are
the functionals on X, X* ... (or on Y,...). By my we denote the natural
isometric injection of Y into its second dual. If z € X, 2" € X* then (x,2') =
(x',xy = 2'(z). L(X,Y) stands for the Banach space of all linear bounded
operators from X to Y. We always consider the space X as the subspace
mx(X) of its second dual X** (denoting, if needed, by myx the canonical
injection).

2.1 Analysis on Groups

We refer to [I8] on general topics of this subsection and to [4] for the infor-
mation on vector-valued function spaces and vector measures.

Let G be a compact Abelian group, m be a Haar measure on G (i.e. the
unique translation invariant normalized regular Borel measure, or, what is
the same, Radon probability), I" be the dual group of G, i.e., the group of
all characters on G (multiplicative continuous complex functions v so that
|7(t)| = 1 for all t € ). Note that I' is discrete. C'(G) is the Banach space
of all continuous (complex-valued) functions on G with the natural uniform
norm: if ¢ € C(G,) then

[lplloo := sup [o(2)].
tea

L,(G), 1 < p < oo, — the Banach space of all (m-equivalent classes of)
absolutely p-summable Borel functions on G,

el o= ([ o dm)? < o0 for ¢ € L,(G).
G
M (G) is the Banach space of all (complex-valued) finite regular Borel mea-
sures on (G with the variation norm |u|(G) (or, what is the same, with the

norm induced from C*(G) by the Riesz Representation Theorem).
If feL,(G),1<p<oo,and u € M(G), then

f*p(g) = /Gf(g —h)du(h) for g € G,

1 % wally < {111y ]
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If f e C(G), then

frug) € C(G) and [|f* plloo < [ floo [l

If f e Li(G), and p € M(G), then the Fourier transform of f and u are
defined by

F(y) = /G YR f(h) dm(h) for ~ € T

(maps Ly (G) = Co(L), || flloe < ||fI1) and

Aly) = /G (R dyu(k) for € T.

Here Cy(I") is the subspace of C(I'), consisting of all functions which vanish
at infinity.

2.2 Tensor products and summing operators

We refer to [4, Bl [6, 20] on tensor products of Banach spaces and to [15] 3]
for the information on p-absolutely summing operators.

2.2.1 Tensor product and integral operators

For Banach spaces X, Y, denote by F'(X,Y") the linear subspace of the space
L(X,Y,) consisting of all finite rank operators. Algebraic tensor product
X*®Y will be identify with the linear space F'(X,Y) : every tensor element
z = ZnN:1 x ® y, can be considered as an operator z(-) := ZnNzl(:p’n, VYn.-
Also, X ® Y can be considered as a subspace of the vector space F(X*,Y)
(namely, as vector space of all linear weak*-to-weak continuous finite rank
operators). We can identify also the tensor product (in a natural way) with a
corresponding subspace of F(Y*, X). If X = W*, then W* ® Y** is identified
with F(X,Y™) (or with F(Y™*, X*).
The projective norm of an element z € X ® Y is defined as

N N
[1zlln = f Y Haall llyall = 2 =D 20 @y, (20) € X, () C YD

n=1 n=1

The completion of the normed space (X ® Y, || - ||1) is called the projective
tensor product of Banach spaces X and Y and denoted by X®Y. Every
element can be written in the form

2= @y @y with Y ||zl [[ynll < oo (2.1)
n=1 n=1
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Note, that X®Y = Y®X in a sense. Every element z of X®Y generates
an operator z : X* — Y : If z has a representation 21} then z(2') :=
> et {Tn, T)Yn-

A linear functional "trace" is defined on each tensor product z € X*® X :
If 2 =N 2/ ®,, then trace z = 32 (2/,z,) and the last sum does
not depend on a representation of z. This functional has a unique extension
to the completion X*®X and its value at an element z € X*®X is denoted
again by trace z. If 2 =3 ° , ® x,, then trace z =z=> " (z),x,).
A dual space of the tensor product X®Y is L(Y, X*) with duality defined

by

(T, z) :=trace T oz = Z(:cn,Tyn), 2 € XR®Y, T € LY, X™).

n=1

Here, T'oz is an element S°°° | x, @ Ty, € X®@X*. In particular, (X*®Y)* =
LY, X*) = L(X*, V).

If Ae LIX,W), Be L(Y,G) and x @ y € X ®Y, then a linear map
ARB: X®Y — W®G is defined by A® B((z ®y) :== Axr ® By (and then

extended by linearity). Since A ® B(z) = BzZA* for z € X ® Y, we can use
notation Bozo A* € W ® G for A® B(z).

There is another natural norm on the tensor product X ® Y, namely, the
norm induced from L(X*,Y’), that is the uniform norm. The completion of
X ® Y with respect to this norm coincides with the closure of X ® Y in
L(X*,Y), is denoted by X®Y and is called the injective tensor product of
X and Y. In particular, the injective tensor product X*®Y is exactly the
closure of all finite rank operators in L(X,Y’) and contained in the Banach
space K(X,Y) of all compact operators from X to Y.

The dual space to X®Y can be identify with so-called integral operators
from Y to X*. We will use the following definition of an integral operator
in Banach spaces: An operator T': Z — W is said to be integral (they say
also "integral in the sense of Pietsch") if there exist a compact space K, a
probability measure p € C*(K) and two bounded operators A : Z — C(K)
and B : Li(K, ) — W so that T admits the following factorization:

T=BjA: Z 30K D LK, ) 2w

where j is a natural inclusion. With the norm i(7") := inf ||A]|||B|| the
space I(Z,W) of all integral operators is Banach. For any z = )"z, ®
Yo € X ®Y and V € I(Y, X*) the composition V o z lies in X ® X* and
[[V o z|[x <||Z]|i(V). Thus V generates a linear continuous map from X®Y
into X®X*, the trace of V o A is well defined for every A € X®Y and
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| trace VoA| < ||A]|i(V). The linear continuous functional trace V o- defines
a duality between the spaces X®Y and I(Y, X*) and the last space is the
dual to the injective tensor product X®Y with respect to this duality.

Let us mention that the above norms in ® and in ® are the greatest and
least crossnorms respectively (see, e. g., [4], p. 221). Projective and injective
tensor products of several Banach spaces can be defined by induction.

Two important notion in connection with the just introduced notions:
They say that a Banach space X has the approximation property if for every
Banach space Y the natural mapping Y*®X — L(Y, X) is injective; X has
the metric approximation property if for every Banach space Y the natural
mapping Y*®X — I(Y, X**) is an isometric embedding. Such spaces as
L,(1),C(K), M(G) = C*(G) and all their duals have the metric approxima-
tion property [5].

2.2.2 Absolutely summing operators

A series ) _, cox, in a Banach space X is unconditionally convergent if for
every permutation 7 : N — N of the natural numbers the series Y | @)
is convergent too. It is the same as the convergence of the series Y, bz,
for every bonded sequence (b,) (see [3], 1.9). An operator T': X — Y is
said to be absolutely p-summing if it takes any unconditionally convergent
series in X to a absolutely convergent series in Y. A famous Dvoretzky-Rogers
theorem says that the identity map in X is absolutely summing iff the space
X is finite dimensional (see, e. g.,[3], 1.2).

Example: An inclusion j : C(K) — Li(K, ), where p is a probability
measure on a compact set K.

An operator T': X — Y is said to be 2-absolutely summing if there is a
constant C' > 0 such that for every finite sequence () C X one has

N N
> NTa|l? < 6% sup |y [{wa, )|
n=1 ll="]|<1 n=1

The set II5(X,Y") of all such operators is Banach with a norm m9(7") = inf C.
Examples: 1) An inclusion j : C(K) — Lo(K, i), where p is a probability
measure on a compact set K. 2) Ilo(H, H) = So(H, H). 3) Any operator from
C(K) to M(K) = C*(K) is 2-absolutely summing.
Generally, let 0 < r < oo. An operator T' : X — Y is said to be r-
absolutely summing if there is a constant C' > 0 such that for every finite
sequence (x,)Y C X one has

N N
STl < 0 sup |3 [ a)]7|
n—1 llz'[1<1 |5
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The set I1,.(X,Y) of all such operators is (quasi)Banach with a (quasi)norm
m-(T) = inf C.

2.3 Lorentz-Schatten classes of operators in Hilbert spaces

The Lorentz-Schatten class 5,4, 0 < p,q < 00, considered for the first time
by H. Triebel in [21], can be defined in the following way. Let U be a compact
operator in a Hilbert space H and (s,,) is the sequence of its singular numbers
(see, e. g., [14], 2.1.13). An operator U belongs to the space S, ,(H), if
(Sn) € lpq- (see, e. g., [14], 2.11.15). The space S, ,(H) has a natural quasi-

norm 1/
q
Tpa(U) = (1) |lp.g = (Zan ) -

If p = q, then S, , coincides with the class S, (with a quasi-norm o,). Let us
mention that, for p,q € (0, 1], we have the equality N, ,(H) = S, ,(H) (see,
e. g., [7]) and the inclusions S, , C S, 4, f 0 <p < ooand 0 < ¢ < ¢ < o0
or S, C Sy if0<p<yp < oo,O < q,q < oo (see [21], Lemma 2) and

Spq©Syqy CSsry 1/p+1/p=1/s,1/qg+1/qd =1/r.

Moreover, if V € S,, and U € Sy 4, then o,,(UV) < 2Y%0, ,(U) 0, ,(V)
(see [13], p. 155). In the case where p = ¢q,p’ = ¢/, one has the constant 1
instead of 21/¢ in the last inequality [8], [14], p. 128, [1], p.262.

Examples of the S, ;-operators are the diagonal operators D in [y with
the diagonals (d,,) from [, ,; in such cases we write D = (d,,).

Given two complex Hilbert spaces H; and Hs, we denote by Hy ®9 Hs the
completion of the tensor product H; ® Hy with respect to the natural scalar
product.

3 On a Pisier’s result

In this section we are going to prove some generalizations of the Pisier’s the-
orem mentioned in Introduction to the cases of S,-factorizations of operators
for scalar cases. Some applications are given

3.1 Definition. An operator T € L(X,Y) is said to be r-nuclear, where
0 <r <1, if it admits a representation

T:E—Z,un )Yp, for ze X, (3.2)



where (x,) € X, (yn) €Y ||zn|| < L ||ynll £ 1 and (1) € .. We put v,.(T) =
inf ||(pn)|i,, where the infimum is taken over all possible factorizations of T

in the form (3.2).

It is clear that we can assume that u, are real and non-negative. With
the quasi-norm v,, the space N,.(X,Y’) of all r-nuclear operator from X to
Y is a complete quasi-normed space. We need the following well known fact.
The proof is given for completeness.

3.3 Proposition. If T € N.(X,Y) (0 < r < 1), then T can be factored
through an operator from S,(H), where 1/v = 1/r — 1. Moreover, g, (T) <
v (T)

Proof. T : X — Y admits the following factorization:
T x5%1.58,5%Y, (3.4)

where ||V]|| = ||[W]| = 1 and A is a diagonal operator with a diagonal
(d,) € l,. Indeed, it is enough to put Wz = ((z},,x)), V(an) == Y anyn
and A(S,) = (d.B,) (where d,, := p,). rewrite the factorization (3.4]) as

follows:

T: X518, L,%, 5y, (3.5)
where A; := (\/d"), Ay := (y/d") and Ag := (d}77).
Suppose that € > 0 and in the factorization [34) ||V|| = |[[W]| = 1 and
[|[(dn)]]1, < (1 +¢€)v,(T). Then
Aol = [|A4]] < ma(Ar) < [[(V/d})]l, (3.6)

= (@), < [+ (D)2

Also Ay € S,(l2), where 1/v = 1/r — 1. Moreover, since 1 —r = r /v, we have

n(ag) = ()" (37

= ()" < [0
]

3.8 Remark. As a matter of fact we see that T = AAqB, where A €
ngal(lg,Y), B e HQ(X, lg) and AO € SU(ZQ,ZQ).

3.9 Example. Let T' € N.(X,Y) and U € Ny(Y, X), where 0 <r < 1. We
have the diagram

UT: X B 1,20, 8y 5, 4 x,

7



where By, By € Ily and Ay € Sy(l2), 1/v = 1/r — 1. Eigenvalues of UT are
the same as ones of the operator V := AgAsB1A1Bs :

L2, By B, 2 x5y

Since By, By € 11y, we have AyB1 A1 By € S1(ls). Therefore, V € S, (1+1/v =
1/r). Thus, the sequence of all eigenvalues of UT lies in .

3.10 Remark. It can be shown that if U € N,(Y, X) in Example[3.9, then
eigenvalues of UT belong to the Lorentz space l;, with 1/s = 1/r+1/p—1
and 1/q = 1/r+1/p. Example[3.9 shows the specificity of the particular case
p=1.

We are going to show that the results from Proposition 3.3l and Example
are sharp. For this we need the following first generalization of the Pisier
result, mentioned in Introduction.

3.11 Theorem. Let f € C(G),0 < s <1 and 1/r =1/s — 1. Consider a
convolution operator xf : M(G) — C(G). The set of Fourier coefficients f
belongs to ls if and only if the operator xf can be factored through a Schatten
S,.-operator in a Hilbert space.

Proof. 1) Let there exists U € S,.(H) such that
«f=AUB: M(G) 2 HS HA ).

If j: C(G) — M(G) is a natural injection, then the Fourier coefficients
of f are the eigenvalues of the operator AUBj : C(G) - M(G) — C(G).
Consider a diagram

O (O =Y Y el e) BV (&) I

The operators AUBj and BjAU have the same sequences of eigenvalues.
Since B € lIL,(M(G),H) j : C(G) = Ly(G) — M(G) € IL,(C(G), M(G))
and U € S,., we get that

() BjAU € S, 05, C S,

where 1/s = 1+1/r. Therefore, the eigenvalues of AUBj liein I,. So {f()} €
ls.

2) Suppose that {f(y)} € l;, where 1/s = 1+ 1/r. Let {c,, = |f(7)|}
Consider the operators B : M(G) — Lo(G), U : Ly(G) — Lo(G) and A :
Ly(G) — C(G), defined by

Bu:=> (1), Up = @) "
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and

A=Y " d(m) signf (1)es
The operators are well defined since the series

> () signf(ya)e P

is absolutely convergent.
We have
«f =AUB: M(G) 21, %1, 4 (@),

where A, B are bounded and U is from S, (ls). O

3.12 Corollary. Let f € C(G), 0 < s < 1 and 1/r = 1/s — 1. For the
convolution operator xf : M(G) — C(G), The following are equivalent:

1. xf can be factored through a Lorentz-Schatten S,.-operator;

2. fe lg;

3. xf € Ns(M(G),C(Q)).

Proof. 3) = 1) is valid for any s-nuclear operator (Proposition B.3)).
2) = 3). It is enough to consider the diagram

«f =AUB: M(G) 2 1. 31 3 CG),

where Bu = {a(1)}, Aa,} == {0}, Afb,} =3, signf()by. O

It follows from the above corollary that the result of Proposition B.3 is
sharp.

We now give an application to the products of two nuclear operators .
A. Grothendieck [5] proved that the eigenvalue sequence of a product of two
nuclear operators is absolutely summable. The following corollary shows that
the result is sharp in the scale [, ;.

3.13 Corollary. There exist two nuclear operators t1 and ty whose product
has the eigenvalues in Iy \ Us<1ly .

Proof. Let f € C(G) with | € Iy \ Useilys, Ty = xf : M(G) — C(G) and
Ty : C(G) — M(G) be a natural inclusion. By Corollary B:12] the operator
T, is nuclear. By using a natural factorization of 77 through a diagonal
operator from [, to l;, we can represent 77 as a product kt; of a nuclear
operator t; : M(G) — l; and a compact operator k : I; — C(G). Since Ty
is an integral operator, the product operator Tyk is nuclear. Put ¢y := Tk.
Then, #t; = T5T;. The sequence of the eigenvalues of tst; coincides with

I O



3.14 Remark. Of course, the assertion of the corollary follows implicitly
from the Pisier’s theorem. Also, note that Corollary[3.12 gives us one more
proof of the sharpness of the Grothendiek’s theorem about eigenvalues of nu-
clear operators as well as his factorization result (take p = q =1 and f with

J/C\G ll \ Us<1l1,s)-
A slightly more general corollary (compare Example [3.9):

3.15 Corollary. For every r € (0,1) there exist two nuclear operators t; €
N, and ty € Ny whose product has the eigenvalues in I, \ Us<,l, .

Proof. Take f € C(G) with J?E I, \ Us<rlrs and proceed as in the previous
proof. O

3.16 Remark. The same can be done for the products of type

NiN,NiN, - -- NiN,.

4 Around Saab’s theorem

Following [19], for f € C(G, X), define a convolution operator xf : M(G) —
C(G, X) as

) =Tents) = [ T =) e X

4.1 Definition. T'" € L(X,Y) possesses the property (1) if for every fe
C(G, X) such that xf can be factored through a Hilbert space

«f:MG) A HE G, X)

the family T? 15 absolutely summable.

4.2 Theorem. For functions f € C(G,X), consider the convolution oper-
ators xf : M(G) — C(G,X) and let T € L(X,Y). Consider the following
assertions:

1) T € L(X,Y) possesses the property (I).

2) T € IL(X,Y).

8) If d € 1¥*(X) N 1y(X), then Td € 1;(Y).

We have: 1) = 2) and 3) = 1).
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Proof. 1) = 2). Fix any infinite sequence (7,) of distinct elements of T'.

Take a weakly 2-summable family (z,,)° € X. It is enough (by a theorem of E.

Landau) to show that for every sequence a = (ay) € 15° >0, ||Tw||ar, > oc..
Fix a = (ax) € I3° and consider the series

Z AT Yk (4.3)
k=1

Since for n,m € N

n+m n—+m
H Z%M%HC(GX = sup sup | Zakfb’k%( ) />‘ <
— s€G ||l2'|<1 1
n+m
Z |a|?,| sup Z| T, ') [?
k=n ll2/l[<1 32y

and the space C(G, X) is complete, the series (4.3) converges in C(G, X).
Now fix s € G and take an 2/ € X* with ||2/|| < 1. For the operator
u:ly — C(G, X), defined by ub:=>"7" byxyyg for b:= (by) € I we have

Zbkfb’k, )Vi(s \2<Hb||Z|:ck,

Hence,
1> bemn(s)|x < sup ([P [(wn, 2
— l2/]|<1 —
and
||ubl|* = SUPH Zbkl’k% s)|[% < [[bl]” ISIip Z| Tk, T
Therefore,

[Jul[* < sup ZI Tk,

[l ]<17%
~ (4.4)
< sup Y e PP = [l = fulF
Fec(G,X)* 1
IFl[<1
Thus, we have:
[ (i)l = [full (4.5)
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Now, for our fixed sequence a = (aj) € Iy define an operator A : M(G) —
lg by
Ap = (arfi(k)), p € M(G).
For s € G, put f(s) := Y2 | an@nyn(s). Then f € C(G, X) and

uAp = Z apfi(Ye) e = *f ().
k=1

By assumption, the family (7T'f) is absolutely summable. It means that
(a,Txy,) € [;(Y) and this is true for any sequence a € ly. Therefore, (T'z,) €
(V).

3) = 1). We may (and do) assume that X is separable (since the
subspace f(G) C X is separable).

Let xf = BA be a continuous factorization of x f through a Hilbert space:

«f: M(G) 3 HE (G, X)=C(G)RX.

Note that, for s € G, v € T,
f(yat)(s / Ft)y(s —t)dt = / f(t) =(s)f (7).
Also, T o f maps 7 to WT(?(W)) (we identify ydt with ). Let

=f(7), 4, =T, (s0 7y, =7 @y, € C(G)BY).
If ' € X* and i : O(G) — C(G) is the identity map, then (', f(-)) € C(G)
and we have a diagram:
2 oBA: «f : M(G) 3 H B 0@ X)=0@)aX Z5 0G)

with 2’ 0o BA: xf(y) = (2/,z,)7. By the Pisier’s result, for every 2/ € X the
series ) [(z',2,)| is summable. Hence, only countably many of x,’s are not
zero (recall that X is assumed to be separable). Since A € II;(M(G), H),

the mapping xf = BA is absolutely 2-summing. So, the family (z,) is
stronly 2-summable (and countable). Thus, (z,) € [P**(X) N 1y(X). By 3),
(y7) = T(zy) € L(Y). [

It follows immediately:

4.6 Corollary. If T € II;(X,Y), then T € L(X,Y) possesses the property

(D).
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Consider a generalization of Definirion AT]

4.7 Definition. Let0 < s <1land1/r =1/s—1.T € L(X,Y) possesses the
property (1.) if for every f € C(G, X) such that xf can be factored through
an S,.-operator in a Hilbert space

MG AHSHE WG X)

the family T? 1s absolutely s-summable.

The proof of the following result is the same as the proof of the implication
3) = 1) of the previous theorem (but instead of the Pisier’s result one
must use Theorem [B.11] for the general case).

Now, some concrete corollaries from the theorems.

4.8 Corollary. For 1 < p < 2 it follows from T € Iy(L,(v),Y) that T
possesses the properties (L) for all v € (0,1]. On the other hand, T € (1)
implies T € 111 (L,(v), Y).

Indeed, as is well known, for any s € (0,2] we have II;(L,(v),Y) =
I (Ly(v),Y) (see [15]).

5 On a Pisier’s result: Vector-valued case

In this section we are going to give some generalizations of the Pisier’s the-
orem mentioned in Introduction to the cases of S, ,-factorizations of opera-
tors for vector-valued cases. We will generalize also a result of P. Saab [19],
Theorem 4.2, where it was shown that the Pisier’s techniques in the scalar
case can be extended to the vector-valued case (factorizations of a vector
valued convolutions through Hilbert spaces). In the end of the section, we
consider the factorizations through S, ,~operators linear mappings between
tensor products of several Banach spaces.

Let f € C(G) and T € L(X,Y). All operators under considerations are
supposed to be not identically zero.

Denote by M (G, X) the Banach space of all regular Borel X-valued mea-
sures of bounded variation, C(G,X) the Banach space of all continuous X-
valued functions defined on GG equipped with the supremum norm.

Note that

M(G)® X c M(G)&X c M(G,X),

where ® is the projective tensor product.
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Define a map Ty :=T oxf : M(G,X) = C(G,Y) by

Ty()s) = [ (s =) aTr(0), 7 € M(G.X).

5.1 Theorem. Let f € C(G), 0 < r,s < oco. Consider a convolution operator
*xf : M(G) — C(G) and an operator T : X — Y. If the operator

T;: M(G,X) - C(G.,Y)

can be factored through an S, s-operator then the operators xf and T possess
the same property. The same is true for the case where r = s = oo (or
G =q=1).

Proof. We may (and do) assume that 7" # 0 and f # 0.

We use partially (in the first part of the proof) an idea from [19]. Let Ty =
BUA, where A € L(M(G,X),H), U € S, ,(H) and B € L(H,C(G,Y). Fix
a point sg € G for which f(sg) # 0. Define the operators i : X — M (G, X)
and j : C(G,Y) = Y by ix = 6. ® x (e is a neutral element of G) and
jh = h(so)/f(s0). For s € G

(Tyin)(s) = [ F(s =) dT(. 0 )0

— /Gf(s — )Tz dé.(t) = f(s)Tx € C(G,Y).

Hence, jTyix = f(so)Tx/f(so) = Tz or T = jBU Ai.

Now, let k : M(G) — M(G,X) be defined by ku = p ® xy, where
xo is such that ||Txo|| = 1. Then BUAkpu(M(G)) =: C; C C(G,Y) and
UAk(M(G)) = Hy C H. Denote by P an orthogonal projector from H
ontoH; and by R the composition Bl, where | : Hy — H is the identity
injection. We have a diagram:

(5.2)

MG Eme,x)3 a5 EE5 H B0 coeGy).
If w € M(G), then
RPUAkp = Trkp =Ty (p ® x0) = TSL’O/ fC =t du(t) =Txo f * p.
e
Therefore, Cy = {Txog fxp: p € M(G)} € C(G) @ span{Tzo} C C(G,Y).
Take a functional y' € Y* with (y/,Tz,) = ||y/|]] = 1 and define an op-
erator V : C(G) ® span{Tzy} — C(G) putting V(h ®@ y) = h(y',y) for
y € span{Tzo}. Then, for u € M(G),
VRPUAkpu =V (f *x u® Txg) = f * p.
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Thus, the convolution operator xf is factorized through an operator from
Srs- O

5.3 Remark. [t is clear from the proof that the condition "the operator
Ty : M(G,X) = C(G,Y)" can be changed by the condition "the restricted
operator Ty - M(G)®@X) — C(G,Y)."

5.4 Corollary. Let f € C(G), 0 < p < oo. Consider a convolution operator
*f : M(G) — C(G) and an operator T : X — Y. If the operator

Ty : M(G,X) = C(G,Y)

can be factored through an S,-operator then the operators xf and T' possess
the same property.

In a partial case where X =Y, T'=idx and p := p; = p; = 0o we get a
result of E. Saab [19)]:

5.5 Corollary. Let f € C(G), Consider an operator T : X — Y and a
convolution operator xf : M(G) — C(G). If the operator

Ty : M(G,X) = C(G,Y)
can be factored through a Hilbert space then f €ly and X = H.

We proof now a general theorem:

5.6 Theorem. Let 0 < s <r <oo, T; € L(X;,Y;) fori=1,2,...,m. If the
operators T; can be factored through the S, s-operators then the tensor product

T := T1®T2®"'®Tm:X1®X2®---®Xm —>Y1®}/§®---®Ym
possesses the same property.

Proof. 1t is enough to consider the case of the product of two operators. Let

T X 23 m %oy,
be the factorizations of operators T;,i = 1,2, Here A; € L(X;, H;),B; €
L(H;,Y;) and U; € Ss,.(H;) for i = 1.2. Let U; := Y07 stel, @ fi, where
(€!), (fi) are orthonormal systems in corresponding Hilbert spaces and (s') €
L5 are the sequences of singular numbers of the operators U; (i = 1, 2.) Tensor

product U; ® U, has the following representation:
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Uy @ Up(hy @ ha) =Y sh(hu,en) fo @ silha, ef) f
n=1 k=1 (57)
= sisp(hi®@ha e, @€p)fr @ fF.
k.n

The last series is convergent in H; ®, Hs since it follows from the con-
ditions on r,s that, e. g., Uy ® Uy € Sy, (we have Y7, (s;)*"(s7)*" < 00).
Therefore, the sequence (sl s?)., is the sequence of all singular numbers of
Uy @Us. Thus, Uy @Us = 3, . spsile, ®@e;) @ (f, @ f7). Since the sequences
(sh) and (s?) belong to I, and r < s, their product (s}s?) is also in I, by
the O’Neil’s theorem (see [?], Theorem 7.7).

Now, consider the mappings A; ® A, and By ® Bs. The first one acts
from the projective tensor product X;®X, to the projective tensor prod-
uct H1®H,. The second one maps HiQH, to Yi®Ys. Denoting by ¢ and
v the canonical injections H\®Hy — Hy; ®y Hy and Hy, ®9 Hy — H @ H,
respectively, we obtain a factorization of 77 ® T4 through an S, ; — operator :
T =By ® BoypUy @ UypAy @ Ay -

T: X1®X2 AL@I?Q H1<§>H2 % H, ®4 Hy UL@E{Q Hy ®y Hy BL@B;Q Y1®Y2-

O

5.8 Remark. The converse of the theorem is also true (cf. the proof of
Theorem [5.1)).

For the case where one of the space is M(G) we can get a more general
result. Recall that if the space X has the RN property, then M (G, X) =
M(G)®X. This is rather simple: Let 7 € M(G, X.) If X € RN, then there
is a function f € L'(G, |u|; X) such that f(E) = [, fd|p]| for every Borel
set E. Identifying the space L'(G, ||; X) with a subspace of M(G, X) in a
natural way, we see that 77 € L'(G, [i|; X) = L(G, [A))®X (see [4]).

Thus, it follows from the theorem above that if 0 < s < r < oo and
X € RN, then the possibility of factorization through S ,-operators of the
operators xf : M(G) — C(G) and T : X — Y implies the possibility of such
a factorization for the operator Ty : M (G, X) — C(G,Y). However, we can
prove such a theorem without any assumption on the Banach space X.

Below we will use the following simple fact: If an operator S : Z — W in
Banach spaces can be factored as
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and Wy := S(Z) C W, then there is an operator My : H — W) such that S
has the factorization

s.zh g% gMw, I w,

where j is an inclusion. Indeed, consider the subspace Hy := VL(Z) C H,
take an orthonormal projector P : H — Hy. Put My :== M|y, PV L.

5.9 Theorem. Let f € C(G), 0 < s < r < oo. Consider a convolution
operator xf : M(G) — C(G) and an operator T : X — Y. If the operators
*f and T" can be factored through the S, s-operators then the operators

Ty : M(G,X) — C(G,Y)
possesses the same property.

Proof. Denote the restriction of the operator T onto M(G)®X by ff We
have:

M(G,X)=I(C(G),X) and (X*®C(G))* =I1(C(G),X*) > M(G,X)

(for the first equality, see 7?7 (Diestel-Uhl, Vector Measures, p. 162, Th. 3)).
By Theorem 5.6, the restricted operator T : M(G)®X — C(G,Y) can
be factored through a S, ;-operator. Then the dual operator

T I(Y, M(G)) = (C(G)®Y)" — L(X,C(G)™)

can be factored through a S, ;-operator (we use the equality C'(G,Y) =
C(G)®Y). But
Y*M(G) C I(Y,M(Q))

since the space C(G) and all of its duals have the metric approximation
property. Therefore, T;’: maps Y*®@M(G) into X*®@C(G) (apply definition of
Ty) and its restriction to the first tensor product can be factored through a
Sy s-operator.

Let 7 be a restriction of T}‘ to the subspace Y*®M (G). Consider the dual
operator 7 :

™ I[(C(G), X™) = L(M(G),Y™).
Since I(C(G), Z) = II1(C(G), Z) for any Banach space Z and the ideal II;
of 1-absolutely summing operators is injective, the space M (G, X) can be
naturally identify with a subspace of I(C(G), X**) and the restriction of 7*
to this subspace is nothing that T'. It follows that T can be factored through
a S, s-operator. O
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5.10 Corollary. Let f € C(G), 0 < s < r < oo. Consider a convolution
operator xf : M(G) — C(G) and an operators Ty, : Xy — Yi, k=1,2,...n
If the operators xf and T}, can be factored through the S, s-operators then the
corresponding operator

G® Xk—>CG®

possesses the same property.

Proof. Apply Theorem to X = ®Z=1X r and to the tensor product of the
operators Tj,. Then apply Theorem (.9 O]

5.11 Corollary. Let fr, € C(G), k=1,2,...n,0 < s <r < co. Consider the
convolution operators xf : M(G) — C(G) and an operators Ty, : Xy, — Yy,
k =1,2,...n, If the operators xfi, and T}, can be factored through the S, -
operators then the corresponding operator

possesses the same property.

Proof. By Theorem[5.9] for every k the operator Ty, : M (G, Xy) — C(G, Xy)
can be factored through an S, ;-operator. By Theorem [5.6] the operator T
possesses the same property. U
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