
Dynamic Voltage-Frequency Optimization using
Simultaneous Perturbation Stochastic

Approximation
Evgenii Bogdanov

St. Petersburg State University
St. Petersburg, Russia

evgenij.bogdanov.1999@gmail.com

Alexander Bozhnyuk
St. Petersburg State University

St. Petersburg, Russia
bozhnyuks@mail.ru

David Bykov
St. Petersburg State University

St. Petersburg, Russia
bykov.david@gmail.com

Stanislav Sartasov
Software Engineering Department

St. Petersburg State University
St. Petersburg, Russia

Stanislav.Sartasov@spbu.ru

Anna Sergeenko
Software Engineering Department

St. Petersburg State University, IMPE RAS
St. Petersburg, Russia
a.sergeenko@spbu.ru

Oleg Granichin
Faculty of Mathematics and Mechanics,

Research Laboratory for Analysis
and Modeling of Social Processes

St. Petersburg State University, IMPE RAS
St. Petersburg, Russia
o.granichin@spbu.ru

Abstract—It was previously shown that simultaneous
perturbation stochastic approximation can be used for
developing general purpose dynamic voltage-frequency scaling
(DVFS) governor for Android OS. We lay down a theoretical
foundation for this approach and show in several experiments
that our algorithm performance is on par with the commonly
used Android DVFS governors. Links to complete results and
source code are also provided.

Index Terms—Android, energy consumption, simultaneous
perturbation stochastic approximation, SPSA, dynamic voltage
frequency scaling, DVFS

I. INTRODUCTION

Smartphones and tablets became an essential part of
modern life. While they provide high quality digital
services, the most limiting factor of their usage is their
energy consumption. With more programs are running and
peripherals turned on a device battery is drained faster. The
importance of this problem is evident to anybody left with
a discharged phone when an important call or piece of
information was needed.

Battery charge is limited by definition, therefore one
needs to prolong it as much as possible. Various approaches
could be taken together to address this issue. Advances
in electrochemistry result in a more capacious batteries.
Hardware is designed to support energy awareness and to
decrease its energy consumption when not actively in use.
Applied software implements “green” development practices
like energy profiles or energy refactorings [1]. An end
user might consider turning off unused features or uninstall
draining applications. Summary effect of those means could
be considerable.

This work was supported by the Russian Science Foundation (Project No.
21-19-00516).

In this paper, we would like to address an operating
system (OS) level of energy awareness. Modern embedded
processors support dynamic voltage frequency scaling
(DVFS) which is a way to decrease or increase its operating
voltage and/or frequency to optimize energy consumption.
Usually operating systems have a direct control over CPU
frequencies in a form of DVFS governors — OS modules
which analyze the current CPU load and scale its frequencies
accordingly on a per-chip or per-core basis. A significant
amount of DVFS governors was developed over the years
[2].

In a sense, DVFS governors save battery power by
making applications run as slow as perceivable comfortable.
By introducing a target metric DVFS workload could
be interpreted as an optimization task. To solve it,
simultaneous perturbation stochastic approximation (SPSA)
may be considered. SPSA may be viewed as a random
search technique, and on average the algorithm will nearly
follow the steepest descent direction [3]. While it was
previously used to track changing conditions in various
computer science tasks and react accordingly [4], [5], its
application for DVFS purposes in modern smartphones was
not previously investigated. Thus, main contribution of this
paper is a new algorithm for dynamic CPU frequency
changing based on the SPSA approach and its comparison
with other widespread DVFS-algorithms used in Android OS
by default, like OnDemand and Interactive.

This paper is organized as follows. In Section II, an
overview of DVFS algorithms used in modern smartphones
is given along with a description of SPSA approach
and a review of previous work on related topics.
Section III contains a description of the proposed DVFS

governor architecture. Experimental methodology is outlined
in Section IV, experiments themselves are analyzed in
Section V and Section VI concludes the paper.

II. BACKGROUND

A. Dynamic Voltage Frequency Scaling in Android OS

A number of DVFS algorithms already exists for Android
OS and is generally available in a smartphones by default.
Some of them were inherited from Linux OS, while others
were developed specifically for Android OS [2]:

a) OnDemand: This governor increases the CPU
operating frequency as soon as the processor is loaded
with computation tasks to keep system responsive. When a
certain CPU load threshold (∼80%) is reached, the governor
increases the frequency to the maximum until the processor
load decreases.

b) PowerSave: In order to reduce CPU energy
consumption this governor reduces CPU frequency to the
minimal available frequency and keeps it at a constant level.

c) Performance: This governor works exactly the
opposite it constantly uses the maximum available processor
frequency for the best performance.

d) Conservative: When there is no load this governor
uses the lowest available frequency, and when there’s an
activity on a CPU it gradually increases the frequency
decreasing it back when CPU is idle.

e) Interactive: The governor is designed for delay-
sensitive workloads such as interactive user interfaces.
Operating frequency is dependant on the load, and the load
check is event-driven instead of timer-driven and occurs when
the user begins to interact with the system.

While there is a large number of DVFS algorithms created
by standalone developers to enhance the characteristics of
the default algorithms, additional approaches are covered in
literature.

To handle DVFS one may create a regression model based
on the data received from the processor (temperature and
power) and train it to set the required DVFS parameters
for each situation. Authors report energy savings of 10% on
average compared to default DVFS policies.

The algorithm using counter propagation neural networks
analyzes the current system behavior (performance,
instructions, cache status) and selects the necessary
frequency [6]. For a multi-core processor, the mechanism
for selecting the optimal frequency is launched for each
core separately. When measuring power consumption for a
single-core mode, a saving of 5% to 20% of energy was
obtained with a performance loss of 10% and from 9% to
42% of energy saving with a performance loss of 30%. In
multi-core experiments, the approach allowed saving from
2.3% to 8.8% of energy with a limit a performance loss
of 10% and from 3.9% to 22% of energy with a limit a
performance loss of 30%. “Long Short-term Memory” of
the recursive network may be used to create DVFS governor
[7]. It is important to make a correlation only for short-term

data due to the gradient attenuation problem. This network
architecture reduces the power consumption of processors
by a maximum of 19% compared with the existing DVFS.
Using reinforcement learning to predict CPU load allowed
to achieve energy savings of 22% on average [8].

Another class of algorithms is based on priming the
governor for a specific user activity before actual smartphone
usage. For example, one could select the optimal frequency
value based on user transactions(for example, touching the
screen or scrolling), ending with the last update of the display
[9]. While using the device, if there is already a known
transaction, the previously calculated processor frequency is
set. Energy savings when implementing this approach ranged
from 10% to 36%, while not affecting the quality of user
experience.

Another class of governors calculates optimal frequency by
some formula or by a specific process based on the current
state of the system. For example, the main criterion for
changing the frequency could be the processor temperature.
If a certain temperature threshold is exceeded, a frequency-
history window is filled and CPU momentary frequency
is set [10]. At the same time, there are two optimization
options: performance and power consumption. The resulting
algorithm reduces power consumption by an average of
12.7% when using the power optimization option, and by
6.7% when using the performance optimization option. In
the latter case, execution time increases on average by 6.3%.
As another example, power consumption might be optimized
by using DVFS along with sensitive processor bandwidth
control [11]. This approach determines optimal number of
active CPU cores as well as their frequency, and controls
allocated bandwidth to achieve best working state of the CPU
in terms of performance and energy saving. Such a scheme
allows to get battery savings of 14% and 23% for more and
less dynamic workloads, respectively.

B. Simultaneous Perturbation Stochastic Approximation

A number of control problems can be solved by finding
the extrema of empirical functional which models behavior
of a system in question. In our case, CPU workload might
be evaluated for some time to determine what is the best
frequency to use given a set of available frequencies and
quality criteria.

More formally, let Ft(x,w) be a function of discrete time t,
some parameter x and randomised vector w. Define medium
risk functional as

ft(x) = EwFt(x,w)

and the minimum point of ft(x) as

θt = arg min
x
ft(x).

Thus our purpose is to build the sequence of estimations
{θ̂n} such that ||θ̂n − θt|| → min based on observations of
the random variables Ft(xn, wn), n = 1, 2,..

We define a momentary trial perturbation as a sequence
of observed uniformly symmetrically distributed independent
random vectors ∆n with covariance matrices

cov{∆n∆T
j } = δnjσ

2
∆I,

where δnj ∈ {0, 1} is the Kronecker symbol, 0 < σ∆ <
∞. Bernoulli random vectors are frequently used as such
simultaneous trial perturbation as vector coordinates ∆n are
independent from one another and have equiprobable values
of ±1.

It was shown that under noisy observations it is possible
to use the following algorithm

θ̂n = θ̂n−1 −
αn
βn

∆nyn,

to build a minimum point estimation sequence for a
functional F (x) without significant loss of convergence rate
[12]. At each iteration this algorithm uses only a single noisy
evaluation of empirical function:

yn = F (θ̂n−1 + βn∆n, w
+
n) + vn.

{αn} and {βn} here are sequences of non-negative
numbers conforming to some conditions, w+

n is a stochastic
perturbation vector for y+

n observation, v+
n is an arbitrary

external noise during the observation. This recurrent
procedure is called simultaneous perturbation stochastic
approximation (SPSA) because it inseparably contains a
randomized trial perturbation which is simultaneous in all
coordinates. It is also used to set a direction of the next
estimation change and to select a new evaluation point.
Among the conditions for consistency of estimates we
specifically set out a condition for weak correlation between
trial perturbation {∆n} and sequences of indeterminacies
{wn} and {vn} as the most important. While mean squared
convergence rate of this algorithm is not the best one
compared to other algorithms of its class, from a practical
perspective it is of use because in real time systems
optimizations and adaptive control problems two or more
observations with noises independent from ∆n are not
available.

A general flow of SPSA algorithm for system control can
be summarized as follows:

1) Define an empirical functional F (x).
2) Make an initial optimal estimate of θ̂0.
3) Perturb a current optimal estimate.
4) Obtain a new noisy observation of F and update a

current optimal estimate θ̂n.
5) Go to Step 3.

III. ALGORITHM

A. Description

Our proposed model is based on a number of assumptions.
Let’s define a CPU workload as a percentage of time CPU or
its core spent on executing processes. Our first assumption

is that CPU resources are frequently underutilized, so the
workload rarely achieves 100%. Broadly, CPU frequency
defines an amount of work it can do in a selected time
interval, so by decreasing frequency we increase the amount
of time the same workload items take to execute.

The general idea of our algorithm is to predict the
frequency of the next time interval by the current state of
the CPU in terms of a workload, so that workload level is as
close to a preliminarily selected value as possible. This value
should not be close to a 100% so it would still possible to
allocate additional computational time if we underestimated
the load, and not too close to 0% as it increases operating
frequency and energy consumption.

Secondly, most of the modern smartphone processors,
specifically those supporting big.LITTLE architecture,
operate only on a fixed set of frequencies Freq, so our
continuous frequency estimate should be rounded to the
nearest available value.

We define our model as

F (f) = 2((workload(f)−λ)/2) + γ1.5table(f),

where workload(f) is CPU workload as obtained from
system metrics, λ is the target frequency, table(f) is the
number of a frequency in a available CPU frequencies table
sorted from lowest to highest. The first term is a penalty
for too little workload compared to the reference value λ. It
is important to mention that since the same computational
load will take less time with increasing frequency, the
function workload(f) is non-increasing. The second term
being monotonically rising is introduced as a penalty for
using too high frequency from the set.

To update the operating frequency we calculate

fn = P(f̂n−1 + β∆n),

where P is the projection to Freq, f̂n−1 is the current
frequency estimate, β is the SPSA step size parameter. Then,
to make a new frequency estimate we calculate

f̂n = L (f̂n−1 −
α

β
∆nyn),

where L is the projection into [min(Freq),max(Freq)]
segment, α, β are the SPSA step-size parameters.

The algorithm of our DVFS governor can be described as
following:

1) Select initial value of an estimate f̂0.
2) Calculate ∆n.
3) Perturb current optimal estimate fn = P(f̂n−1 +

β∆n).
4) Set current CPU frequency as fn.
5) Obtain new noisy model observation yn = F (f̂n−1 +

β∆n) + vn
6) Update frequency estimation f̂n = L (f̂n−1−α

β∆nyn).
7) Go to Step 2.
Note that our model is parametrized with λ, α, β and γ,

so the governor will express different behavior for different
set of parameters.

B. Theoretical Foundation

To prove the consistency of the algorithm following
by [13] we need to assume that changes of optimal frequency
are bounded:

‖fn − fn−1‖ ≤ δ <∞.

Moreover, the investigated function F (f) satisfies the
following assumptions which are also required to prove the
convergence of the algorithm from III-A.

Assumption 1: Function F (f) is strongly convex and have
a minimum point f∗:

〈f − f∗,∇F (f)〉 ≥ γln1.5− 1,∀f ∈ R.

Assumption 2:
The gradient ∇F (f) satisfies the Lipschitz condition:

‖∇F (f1)−∇F (f2)‖ ≤ γ1.5max(f1;f2)ln21.5‖f1 − f2‖,
∀f1, f2 ∈ R.

IV. EXPERIMENTAL METHODOLOGY

A. Device Selection

For our experiments we selected Xiaomi Redmi Note 8
Pro smartphone. It runs on Android 10, and its processor,
Helio G90T has 2 clusters of cores, which are 2 A76 cores
and 6 A55 cores [14]. It is important to note that from DVFS
perspective cluster frequency can be controlled independently
from one another.

A key consideration towards selecting this smartphone
was an existing toolchain for running custom Android
OS builds. We used begonia kernel (https://github.com/
AgentFabulous/begonia) as a basis for our build and added
SPSA implementation to the list of DVFS governors. Note
that it was required to obtain root access for the smartphone
to install custom build. Switching to SPSA governor was
done by default cpufreq system calls [15].

We select OnDemand and Interactive DVFS governors
among the available governors for the baseline of our
experiments.

The source code for our DVFS governor is freely available
(https://github.com/jackbogdanov/DVFS-for-begonia).

B. Test Cases

General-purpose DVFS governor should be able to handle
various workloads. Each DVFS governor imposes a trade-off
between energy consumption and performance, but also has
a model of a workload it is designed to handle. As this model
may or may not be suitable for real-world workloads, it is
important to test DVFS governor using a diverse range of
workloads. A following set of test cases was implemented:

1) Playing Hill Climb Racing game (https://play.google.
com/store/apps/details?id=com.fingersoft.hillclimb).

2) Playing a song from Spotify.
3) Displaying and periodically scrolling PDF file in

Foxit PDF Editor (https://play.google.com/store/apps/
details?id=com.foxit.mobile.pdf.lite).

4) Watching YouTube video in 480p quality using default
browser.

5) Watching YouTube video in 1080p quality using default
browser.

All tests are launched 5 times for 15 minutes to average
the influence of system background processes. They are
implemented as Python scripts using Monkeyrunner
test running tool (https://developer.android.com/studio/test/
monkeyrunner). To launch a test, a smartphone needs to be
connected to a controlling PC, and Monkeyrunner controls
its execution through adb commands.

C. Device Preparation

We took the following measures in accordance to [16] to
ensure the validity of our experiments and stability of its
output:

• Uninstalling all unnecessary applications, turning off
all application activities for those that couldn’t be
uninstalled.

• Turning off peripherals that were unused in a particular
test case (i.e. Wi-Fi, 3G, GPS).

• We waited 2 minutes before beginning a new test in
order to let background processes calm down and the
device itself to cool down.

• A warm-up test execution was done before each set of
test runs.

Note that as we’re interested in CPU behavior there’s
no need to homogenize battery charge levels before each
test run. Moreover, the device was connected via USB to a
controlling PC, so the battery was charging during test runs.

D. Power Consumption Estimation

Android OS has special time-in-state files in the
/sys directory that contain information about the time each
processor core spent at a specific frequency. The data in these
files is stored in pairs like “<frequency><time>”. The
number of pairs is equal to the number of frequencies a
particular processor core supports. As different core clusters
operate on different sets of frequencies, frequencies in
time-in-state also differ from core to core depending
on a cluster they belong to. Time is measured in 10
milliseconds units, and it is counted from the moment
the corresponding driver was installed or reset to measure
processor data. To accumulate timing information we reset
statistics before each test run and gather it after a test run is
finished.

In our experiments, we consider the CPU voltage to
be constant, therefore to estimate power consumption we
multiply timing data to corresponding weight coefficients
in a device power_profile.xml - a file provided by
smartphone manufacturer which contains power metrics for
each smartphone device or peripheral. Its contents are shown
in Table I. As the data there is stored in mA per cluster
for 10 millisecond time intervals, our total power estimate is
calculated in mAh.

https://github.com/AgentFabulous/begonia
https://github.com/AgentFabulous/begonia
https://github.com/jackbogdanov/DVFS-for-begonia
https://play.google.com/store/apps/details?id=com.fingersoft.hillclimb
https://play.google.com/store/apps/details?id=com.fingersoft.hillclimb
https://play.google.com/store/apps/details?id=com.foxit.mobile.pdf.lite
https://play.google.com/store/apps/details?id=com.foxit.mobile.pdf.lite
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner

TABLE I: Xiaomi Redmi Note 8 Pro CPU clusters
frequencies

A55 A76
Frequency (Hz) Current (ma) Frequency (Hz) Current (ma)

2000000 90.04 2050000 324.33
1933000 85.8 1986000 307.98
1866000 80.27 1923000 291.52
1800000 72.77 1860000 269.61
1733000 66.61 1796000 247.53
1666000 62.05 1733000 233.56
1618000 58.95 1670000 209.73
1500000 52.33 1530000 177.39
1375000 44.83 1419000 152.46
1275000 39.69 1308000 130.33
1175000 35.5 1169000 105.19
1075000 31.24 1085000 91.11
975000 27.86 1002000 79.53
875000 25 919000 70.65
774000 23.5 835000 61.38
500000 19.55 774000 56.85

V. EXPERIMENTS

Our experimental results are openly available1, and Table II
contains total energy consumption values translated to mAh.

We found that Hill Climb Racing test proved to be the
worst case for OnDemand governor - it consistently turns
both A55 and A76 cores to maximum frequency. SPSA
runs slightly better than Interactive, because it keeps A55 at
lower frequencies, although its A76 frequencies distribution
is wider.

As seen in Fig. 1 and 2, Spotify test is where governors
behave noticeably differently. Interactive overestimates the
need for maximum performance of A76 cores, and SPSA
uses all available frequencies for A55, while OnDemand
keeps them closer to lower boundary.

Although Foxit PDF Editor test is not a power consuming
one at first glance, rendering new page of a PDF file is
resource intensive. SPSA wins there as it doesn’t overuse
A76 cores.

Interestingly, power distribution difference between
Youtube 480p and YouTube 1080p tests is marginal despite
considerably larger amount of data being transferred in
second test. Interactive tends to overuse maximum frequency
of A76 cores, thus being most power-hungry governor.
OnDemand is more conservative both in A55 and A76 cores
than SPSA therefore consuming less energy.

While the energy savings are important, it’s also important
that they do not result in a laggy performance for the
end-user. With this in mind we compared performance
of SPSA governor using AnTuTu performance benchmark
(https://www.antutu.com/en/index.htm). This is a commonly
used benchmark among Android developers to assess the
performance of various smartphones, and the values it
provides show an integral performance metric for the
smartphone.

1https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/
view

TABLE II: Energy consumption of SPSA, OnDemand and
Interactive governors

Test SPSA OnDemand Interactive
(in mAh) (in mAh) (in mAh)

Hill Climb Racing 34.196 91.862 37.565
Spotify test 33.913 24.678 41.343

Foxit PDF Editor 54.729 65.322 77.950
YouTube 480p 32.957 24.579 47.980
YouTube 1080p 32.378 25.319 47.254

TABLE III: AnTuTu benchmark scores

Governor CPU GPU Memory UX Total

Powersave 28883 50193 30792 18458 128326
SPSA 80555 74357 40897 48442 244251

OnDemand 83704 76335 42020 49893 251972
Interactive 79459 76880 39403 49412 245154

Performance 86756 79952 42364 51789 260861

The benchmark runs several tests grouped by four
categories: CPU, GPU, Memory and User Experience (UX).
Table III presents the scores of SPSA, OnDemand and
Interactive in all four categories and the Total column shows
their sum as an integral quality metric. Powersave and
Performance governors’ results are shown as a reference
minimum and maximum values.

The performance difference between SPSA, OnDemand
and Interactive is close to be visually insensible by
the end user (3.06% and 0.36% SPSA difference with
OnDemand and Interactive governors respectively), and
it is comparable with the best performance available
(6.38% difference with Performance governor). However
looking at the GPU, memory and user experience, there’s
a trend that DVFS governor affects the performance of
other smartphone peripherals and therefore has a system-
wide performance impact with worse performing governors
obtaining consistently lower scores in each area.

VI. CONCLUSION AND FUTURE WORK

The results of our SPSA application to modern smartphone
DVFS in current article along with our previous work
[17] show that it’s a good all-round algorithm performing
at the level of standard DVFS algorithms and sometimes
noticeably outperforming them. The data shows that SPSA
governor under current parameters is slower to build up CPU
frequency, but also slower to cool down than OnDemand
and Interactive. Therefore in a scenarios where workload
is evenly distributed over time or has prolonged periods
of calculations SPSA performs better than OnDemand or
Interactive. In a spiky workloads OnDemand and especially
Interactive are quick to react, but also quick to turn off
excessive CPU frequency, while SPSA interprets these spikes
as a constant need for CPU resources. Overall, we consider
current SPSA governor to be viable for everyday usage.

Investigating how different parameters affect viability
of SPSA governor for different usage scenarios is a
straightforward next step in its development. Another
interesting research direction appeared from the observations

https://www.antutu.com/en/index.htm
https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view
https://drive.google.com/file/d/17ki2HxrFVwYjccV4-pPwIZuD8g8iqoLG/view

of behavioral differences between OnDemand, Interactive
and SPSA. As there are standard DVFS governors
like OnDemand and Interactive on virtually all modern
smartphones, and some tasks in applications are cyclical in
nature (like data refreshes and updates, periodical update
downloads etc.), to our knowledge there wasn’t yet found a
relation between task frequency, supported CPU frequencies,
DVFS algorithm and energy consumption. As common users
are highly unlikely to change DVFS governor if even know
they exist, finding such a relation might help software
developers to create energy profiles for their applications
adapting their task timers to save energy based on specific
workload expectations from a current DVFS governor.

500 1500 2000

0

2

4

6

·104

SPSA
OnDemand
Interactive

Fig. 1: Spotify test A55 cluster

774 1530 2050

0

2

4

6
·104

SPSA
OnDemand
Interactive

Fig. 2: Spotify test A76 cluster

REFERENCES

[1] C. Sahin, F. Cayci, I. Manotas, J. Clause, F. Kiamilev, L. Pollock, and
K. Winbladh, “Initial explorations on design pattern energy usage,”
2012 1st International Workshop on Green and Sustainable Software,
GREENS 2012 - Proceedings, 06 2012.

[2] D. Brodowski and N. Golde, “Cpu frequency and voltage
scaling code in the linux (tm) kernel. linux cpufreq. cpufreq
governors,” https://android.googlesource.com/kernel/msm/+/android-7.
1.0 r0.2/Documentation/cpu-freq/governors.txt, 2015.

[3] J. C. Spall, “Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation,” IEEE Transactions
on Automatic Control, vol. 37, no. 3, pp. 332–341, 1992.

[4] O. Granichin and N. Amelina, “Simultaneous perturbation stochastic
approximation for tracking under unknown but bounded disturbances,”
IEEE Transactions on Automatic Control, vol. 60, no. 6, pp. 1653–
1658, 2015.

[5] O. Granichin, L. Gurevich, and A. Vakhitov, “Discrete-time minimum
tracking based on stochastic approximation algorithm with randomized
differences,” in Decision and Control, 2009 held jointly with the 2009
28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the
48th IEEE Conference on. IEEE, 2009, pp. 5763–5767.

[6] Y. L. Chen, M. F. Chang, C. W. Yu, X. Z. Chen, and W. Y. Liang,
“Learning-directed dynamic voltage and frequency scaling scheme
with adjustable performance for single-core and multi-core embedded
and mobile systems,” Sensors, vol. 12, no. 9, Sep 2018.

[7] J. Lee, S. Nam, and S. Park, “Energy-efficient control of mobile
processors based on long short-term memory,” IEEE Access, vol. 7,
pp. 80 552–80 560, 2019.

[8] A. Das, M. J. Walker, A. Hansson, B. M. Al-Hashimi, and
G. V. Merrett, “Hardware-software interaction for run-time power
optimization: A case study of embedded Linux on multicore
smartphones,” in Proceedings of the International Symposium on Low
Power Electronics and Design, Jul 2015.

[9] X. Li, W. Wen, and X. Wang, “Usage history-directed power
management for smartphones,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Dec 2015.

[10] K. Poornambigai, M. L. Raj, and P. Meena, “Reducing the energy
consumption using dvfs performance optimizing scheme,” EPRA
International Journal of Research and Development (IJRD), vol. 2,
no. 1, Jan 2017.

[11] L. Broyde, K. Nixon, X. Chen, H. Li, and Y. Chen, “MobiCore: An
adaptive hybrid approach for power-efficient CPU management on
Android devices,” in 2017 30th IEEE International System-on-Chip
Conference (SOCC), Sep 2017, pp. 221–226.

[12] G. O. N., “Linear regression and filtering under nonstandard
assumptions (arbitrary noise),” IEEE Transactions on Automatic
Control, vol. 49, no. 10, pp. 1830–1837, 2004.

[13] O. Granichin and A. Vakhitov, “Accuracy for the spsa algorithm with
two measurements,” WSEAS Transactions on Systems, vol. 5, 05 2006.

[14] “Xiamoi Redmi Note 8 pro specifications,” https://www.mi.com/global/
redmi-note-8-pro/specs/, 2020, [Online; accessed 19-March-2021].

[15] “Android OS cpufreq specification,” https://android.googlesource.com/
kernel/common/+/a7827a2a60218b25f222b54f77ed38f57aebe08b/
Documentation/cpu-freq/index.txt, [Online; accessed 19-March-2021].

[16] V. Myasnikov, S. Sartasov, I. Slesarev, and P. Gessen, “Energy
consumption measurement frameworks for android os: A systematic
literature review,” in Proceedings of the Fifth Conference on
Software Engineering and Information Management 2020 (SEIM
2020), ser. CEUR Workshop Proceedings, 2020. [Online]. Available:
http://ceur-ws.org/Vol-2691/paper10.pdf

[17] E. Bogdanov, A. Bozhnyuk, S. Sartasov, and O. Granichin, “On
application of simultaneous perturbation stochastic approximation for
dynamic voltage-frequency scaling in android os,” in 7th International
Conference on Event-Based Control, Communication and Signal
Processing (EBCCSP’21), 2021.

https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/Documentation/cpu-freq/governors.txt
https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/Documentation/cpu-freq/governors.txt
https://www.mi.com/global/redmi-note-8-pro/specs/
https://www.mi.com/global/redmi-note-8-pro/specs/
https://android.googlesource.com/kernel/common/+/ a7827a2a60218b25f222b54f77ed38f57aebe08b/Documentation/cpu-freq/index.txt
https://android.googlesource.com/kernel/common/+/ a7827a2a60218b25f222b54f77ed38f57aebe08b/Documentation/cpu-freq/index.txt
https://android.googlesource.com/kernel/common/+/ a7827a2a60218b25f222b54f77ed38f57aebe08b/Documentation/cpu-freq/index.txt
http://ceur-ws.org/Vol-2691/paper10.pdf

	Introduction
	Background
	Dynamic Voltage Frequency Scaling in Android OS
	Simultaneous Perturbation Stochastic Approximation

	Algorithm
	Description
	Theoretical Foundation

	Experimental Methodology
	Device Selection
	Test Cases
	Device Preparation
	Power Consumption Estimation

	Experiments
	Conclusion and Future Work
	References

