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High-fidelity quantum gates for OAM qudits on quantum memory

Vashukevich E.A., Golubeva T.Yu., Golubev Yu.M.
Saint Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034 Russia

The application of high-dimensional quantum systems (qudits) in quantum computing and com-
munications seems to be a promising avenue due to the possibility of increasing the amount of
information encoded in one physical carrier. In this work, we propose a method for implementing
single-qudit gates for qudits based on light modes with orbital angular momentum. Method for
logical qudits encoding, which ensures the quasi-cyclicity of operations, is introduced. Based on
the protocol for converting the orbital angular momentum of light in the Raman quantum memory
scheme [Vashukevich E.A. et. al. PRA, 101, 033830 (2020)], we show that the considered gates pro-
vide an extremely high level of fidelity of single-qudit transformations. We also compare quantum
gates’ properties for systems of different dimensions and find the optimal conditions for carrying
out transformations in the protocol under consideration.

PACS numbers: 42.50.Dv, 42.50.Gy, 42.50.Ct, 32.80.Qk, 03.67.-a

I. INTRODUCTION

Several reasons explain the currently tremendous inter-
est in high-dimensional quantum systems (qudits). Re-
searchers are attracted by the possibility of increasing
the information capacity of the channel – the amount
of information that can be encoded in one physical car-
rier, which turns out to be very useful in the problems
of quantum communication [1]. Significant advantages
of qudits over qubits in quantum cryptography protocols
have been demonstrated, where the security of the proto-
col appears to be the higher, the larger the dimension of
the system [2]. Many variants of various physical systems
that could encode qudits have been proposed, for exam-
ple, time-bin [3], the orbital angular momentum of light
(OAM) [4], polarization multi-photon states [5] and opti-
cal frequency comb [6]. Nevertheless, there are still blind
spots in the problem of highly efficient manipulation of
multidimensional quantum states.
The orbital angular momentum is an exciting resource

for constructing a qudit since the OAM can take any
integer values, which allows us to work in the Hilbert
space of high dimension [7]. Laguerre-Gaussian (LG)
modes with OAM show high stability and a relatively
high decoherence time when propagating in a turbulent
atmosphere [8]. Since LG modes are well localized in the
spatial domain, several well-proven experimental tech-
niques for generating [9, 10], separating and detecting
such multimode radiation [11–13] exist. Many methods
of OAM manipulation based on phase holograms [14], q-
plates [15], and a system of cylindrical lenses [16] have
also been proposed. However, performing efficient mode
conversions with different OAMs applying such optical
elements requires a mode-specific change of the system
parameters, which cannot satisfy quantum computing
needs. Although successful attempts to construct quan-
tum logic gates over qudits based on OAM have been
made [17], the construction of universal gates that trans-
form an arbitrary quantum state of light with OAM in
a controlled manner with high fidelity and efficiency re-
mains an open problem.

In the work [18], we demonstrated conversion of the
OAM of light in the scheme of Raman quantum memory
on cold atoms. We have shown that by varying the spa-
tial profile of the driving field at the writing and read-out
stages, the OAM of the quantum field can be changed by
a certain amount in a wide range of values. Such a con-
version scheme has relatively high efficiency (of the same
order as the Raman memory protocols for light with-
out OAM) and allows storing information simultaneously
with the conversion.

In this work, we construct quantum single-qudit gates
X̂m

d based on the OAM transformation on a quantum
memory cell for different dimensions of the qudits en-
coded in the OAM values. We show that with a specific
encoding of the logical values of a qudit, it is possible to
perform a cyclically closed operation X̂m

d . The proposed
method is remarkable since it shows an extremely high fi-
delity, provides relatively high probabilities of success. In
the last section, we compare systems of different dimen-
sions in terms of both the properties of the gate X̂m

d and
the information capacity of the channel in an attempt
to answer the question: ”systems of what dimension are
optimal for quantum computing?” in the presented pro-
tocol.

II. SINGLE-QUDIT MULTIDIMENSIONAL

QUANTUM GATES

Let us begin with recalling the general rules for con-
structing logical operations on high-dimensional systems.
Following [19] we introduce d-dimensional logical opera-

tions on qudits X̂d and Ẑd using projection operators:

X̂d =

d∑

l=1

|l ⊕d 1〉〈l|, l ⊕d 1 = l + 1 mod(d), (1)

Ẑd =

d∑

l=1

|l〉ωl〈l|, ω = exp2πi/d, (2)
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that is, the X̂d gate performs modulo d addition of the
value of the qudit with one, and the Ẑd gate adds a rel-
ative phase to the members of the superposition. For
d = 2, the matrices of such operators coincide with the
Pauli matrices σ̂x = ( 0 1

1 0 ) , σ̂z =
(
1 0
0 −1

)
, and their action

on an arbitrary qudit state |ψ〉 can be described by the
operation ”NOT” and the operation of adding the phase
exp iπ = −1 to the second term of the superposition, re-
spectively. It is important to note that integer powers of
mentioned above Xd, Zd operators should also be taken
into account when considering d -dimensional operations
on qudits:

X̂m
d =

d∑

l=1

|l ⊕d m〉〈l|, (3)

Ẑm
d =

d∑

l=1

|l〉ωml〈l|. (4)

The power m can range from 1 to d − 1, since X̂d
d =

Ẑd
d = I. It is not difficult to write down the commuta-

tion relations for this operators, defining the Lie algebra
su(d):

[

X̂k
d , X̂

m
d

]

=
[

Ẑk
d , Ẑ

m
d

]

= 0, (5)

[

X̂k
d , Ẑ

m
d

]

=

d∑

j=1

(

ωmj − ωm(j⊕dk)
)

|j ⊕d k〉〈j|. (6)

Commutation relations for the Hermitian conjugate
operators (X̂k

d )
†, (Ẑm

d )† can be obtained from (5), (6) and
following expressions:

(X̂k
d )

† =
d∑

j=1

|j〉〈j ⊕d k| =
d∑

j=1

|j ⊖d k〉〈j| = X̂−k
d , (7)

(Ẑm
d )† =

d∑

j=1

|j〉(ωmj)∗〈j| =
d∑

j=1

|j〉ω−mj〈j| = Ẑ−m
d . (8)

It is necessary to clarify the reason for considering only
the operators X̂d, Ẑd and their integer powers. As shown
in the work [17], any unitary transformation over a single

qudit Û can be represented as a decomposition:

Û =

d−1∑

k=0

d−1∑

j=0

gj,kX̂
j
dẐ

k
d . (9)

For the sake of completeness, here we briefly recall the
reasoning from [17], so consider the so-called Heisenberg-
Weil operators:

D̂(j, k) = exp {iπkj
2

}Ẑj
dX̂

k
d . (10)

From these operators, one can compose a complete or-
thonormal set of operators in the Hilbert-Schmidt space
L(Hd), which is the linear shell of the Hilbert space of
dimension d:

Q̂j,k =
1 + i

2
D̂(j, k) +

1− i

2
D̂†(j, k). (11)

Any Hermitian operator Â ∈ L(Hd) can be represented
as a decomposition in a complete orthonormal set:

Â =

d−1∑

k=0

d−1∑

j=0

Cj,kQ̂j,k. (12)

Here Cj,k are real decomposition coefficients. Any uni-

tary transformation Û can be written as a matrix expo-
nent of the Hermitian operator:

Û = exp {iA} =

∞∑

n=0

in

n!
Ân. (13)

Using the commutation relations (5), (6) and expressions
(10)-(13), one can always write the unitary transforma-

tion matrix Û in the form (9).

III. ORBITAL ANGULAR MOMENTUM

CONVERSION

From the previous section, one can see that the neces-
sary universal set of single-qudit transformations consists
of the operators X̂d, Ẑd and their integer powers, while
the number of operations in the universal set increases
with the dimension of the space. If we consider qudits
based on orbital angular momentum, it turns out that
the gate Ẑd and its powers can be easily obtained using
the Dove prism [20], so we will focus here on describing

the protocol for implementing the gate X̂m
d based on the

method developed by us for transforming the OAM of
the quantum field on the quantum memory cell [18].
Let us briefly recall the essence of the transformation

of modes with OAM on a Raman quantum memory cell
containing cold three-level atoms with Λ-configuration
of energy levels. We have shown that it is possible to
select the physical conditions of interaction that are con-
sistent with the experimental possibilities, such that the
modes of the quantum field with different OAM interact
with the atomic ensemble independently of each other. If
the driving field at the writing stage is a LG mode with
OAM m, and at the read-out stage it is a plane wave,
the following expression describes the transformation of
the quantum field in a complete memory cycle:

âoutl−m(t̃) = χl,m

T̃∫

0

dt̃′âinl (t̃′)K(t̃, t̃′) + F̂l. (14)

Under the action of the driving field, the orbital angu-
lar momentum of the output radiation changes. Here
âoutl−m, â

in
l are the annihilation operators in LG modes

with a certain OAM (l −m and l) at the output and at

the input of the memory cell, respectively, F̂l are the op-
erators of noise, which should be inevitably added during
lossy transformations, K(t̃, t̃′) is the kernel of a complete
memory cycle. We assume that the memory protocol for
spatial modes is optimized by choosing the effective cell
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Figure 1. Schematic draw of the transformation geometry:
the waist of the driving beam and the waist of the signal
beam are shifted by zS, while the atomic ensemble is located
in the waist of the signal field

length and temporal field profiles (a detailed analysis of
the kernel is presented in [21]), and the integral trans-
formation with the kernel K(t̃, t̃′) can be replaced with
its unit eigenvalue. We want to highlight the coefficients
in front of the integral χl,m – the mode overlap integrals
normalized to the cross-sectional area of the LG mode.
The coefficients χl,m are determine the efficiency of the
entire conversion. That is, we need to ensure a good over-
lap of spatial modes. To do this, we shift the waist of the
driving and quantum fields by a certain amount zS, as-
suming other parameters (waist width w0 and Rayleigh
range zR) of the beams to be the same. (see Fig. 1).
Such a parameter is introduced to follow the overlap of
fields, and its variation allows us to control the efficiency
of the transformation.

As one can see, in the process under consideration, the
conversion of the orbital angular momentum of the quan-
tum field occurs. Furthermore, if a field with a certain
angular momentum l was written on the memory cell,
then the OAM of the field at the output of the cell is
equal to l − m. Similarly, if the writing process is car-
ried out by a plane wave, and the read-out is carried out
by a field with OAM, then the orbital angular momen-
tum of the field at the output will be equal to l + m.
The calculation shows that the conversion of any OAM
up or down by 1 can be performed with high efficiency:
about 0.9 for conversion with m = −1, and 0.6− 0.8 for
m = +1 [18]. Since the kernel of a complete memory cy-
cle K(t̃, t̃′) does not depend on the index l of the signal
field, we can transform the superposition of OAM states,
where the OAM of all terms of the superposition increase
or decrease by the same value m.

Fig. 2 shows the dependence of the coefficients χl,m for
cases of writing by the driving field with OAM (from left
to right)m = −1,−2, 1, 2 for different values of l depend-
ing on control parameter zs/zR. Such a configuration of
the fields makes it possible to change the OAM of the
quantum field by the value m with the efficiency χl,m.
We will denote by the lowercase letter x̂d the lossy trans-
formations, and by the capital letter X̂d –the ideal one.
Then the proposed configuration of the fields allows one

to perform nonideal x̂−1
d , x̂−2

d , x̂d, x̂
2
d, respectively. It can

be noted that for the l = 0 the value of the coefficient
χ0,m is rather small compared to the coefficients with
nonzero l. Since we are interested in performing transfor-
mations with high efficiency, we can conclude that using
a state with l = 0 to build a state of a qudit is impracti-
cal. In addition, as it will be shown in the next section,
transformations with m = 1, 2 are noticeably loses to
those with m = −1,−2 due to small values of the coeffi-
cients χl,m in the region of small values of l.

IV. ORBITAL ANGULAR MOMENTUM

QUDITS AND QUANTUM GATES

A. Cyclicity of the gates and the concept of logical

qudit

As a starting point for describing the action of the
OAM transformation on the states of the qudit, we
consider an arbitrary multi-dimensional quantum state
based on modes with OAM, which can be written in the
following form:

|Ψ〉 =
N∑

l=1

Bl|l〉. (15)

Here Bl are the decomposition coefficients, which obey

the normalization condition
N∑

l=1

B2
l = 1, l is the index

associated with the orbital angular momentum.
We consider a state with a certain OAM |l〉 as a one-

photon state generated as a result of the action of the

creation operator â†l on the vacuum state:

|l〉 = â†l |0〉. (16)

It should be noted here that we restrict the summation
in the expression (15) within the range from 1 to N
since consideration of the entire mode continuum with
l ∈ (−∞,∞) is inconvenient for build a qudit for the
reasons that we will discuss below.
Considering the N ”physical” modes, let us single out

several ”logical” sets of dimensions d on this set:

l = 1, 2, ..., d
︸ ︷︷ ︸

first logical set

, d+ 1, ..2d
︸ ︷︷ ︸

second logical set

, ..., ..., N.
︸ ︷︷ ︸

N/d logical set

(17)

The state in which the index l varies within one logical
set, we will assign to one qudit:

|ψ〉n =

nd∑

l=(n−1)d+1

Cn
l |l〉. (18)

The index n numbers the ”logical sets”. The division
into logical sets was made by us in order to cyclically
close single-qudit operation X̂d:

Xd|d〉physical = |d+ 1〉physical ≡ |1〉logical (19)
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Figure 2. Coefficients χl,m depending on the normalized relative shift of the beam waist zS/zR for different moments of the
driving field m = −1,−2, 1, 2 (from left to right).

If we consider as a qudit the whole state (15) (the entire
continuum of modes with l ∈ (−∞,∞)), then, obviously,
no cyclically closed operation can be obtained. In our
case, we can choose the ”region” within the complete
set of modes with OAM arbitrarily, depending on the
experimental capabilities and computational needs.
Without loss of generality, let us suppose that N/d is

an integer, then the state (15) can be rewritten as

|Ψ〉 =
N/d
∑

n=1

|ψ〉n. (20)

We will further assume that different logical sets are in-
distinguishable. This assumption means that the state
|l〉 with OAM equal, for example, 1, d + 1 and 2d + 1
encode a logical unit. The states 2, d + 2 and 2d + 2
encode logical ”2”, and d, 2d and 3d encode logical ”d”.
Further we will consider only the state |Ψ〉n as the state
of the qudit and will omit the index n where possible.
Since proposed protocol for converting modes with

OAM on a quantum memory cell [18] use the notation
of the creation and annihilation operators in modes with
a specific OAM it seems reasonable to use the operator
representation. The initial qudit state (18) can be gen-
erated from a vacuum as follows:

|ψ〉 =
d∑

l=1

Clâ
†
l |0〉 = Â†|0〉. (21)

Let the initial state of the qudit to be pure and described
by the density matrix ρ̂in:

ρ̂in = |ψ〉〈ψ| = Â†|0〉〈0|Â. (22)

The state of the qudit after applying the ideal gate Xm
d

can be written as

ρ̂ideal = X̂m
d |ψ〉〈ψ|X̂−m

d = X̂m
d Â

†|0〉〈0|ÂX̂−m
d =

=
d∑

l=1

Clâ
†
l⊕dm

|0〉〈0|
d∑

l=1

C∗
l âl⊕dm. (23)

The ideal transformation X̂m
d ”shifts” the mode index

and does not change the coefficient Cl – the contribution
to the superposition of each state with a certain OAM.

Such a transformation has two essential properties: it oc-
curs in a deterministic way (if we are talking about states
with a few photons like (15)) and ”coherently” affects the
state of the qudit, consistently transforming each mem-
ber of the superposition. At the same time, we should
ensure a ”uniform” change in all physical states encoding
the same logical qudit. We will subsequently evaluate the
imperfect transformation, which we will denote by x̂md ,
according to these criteria.

Moving on to the consideration of the nonideal trans-
formation x̂md , from the expression (14) we can conclude
that the gate x̂md has a probabilistic nature, since the
coefficients χl,m, which determine the efficiency of the
transformation of the OAM l by the value m is always
less than one (see Fig. 2). In this case, having at the
input a pure state of qudit (22), at the output we will
obtain a statistical mixture described by the density ma-
trix ρ̂out:

ρ̂out = p1ρ̂1 + (1− p1)ρ̂2, (24)

ρ̂1 =
x̂md ρ̂inx̂

−m
d

Tr
[
x̂md ρ̂inx̂

−m
d

] . (25)

Here we especially highlighted the first term correspond-
ing to the realization of the case when the entire state
is successfully transformed, p1 is the probability of the
transformation, ρ̂2 is the density matrix corresponding
to all other outcomes (when not all modes were trans-
formed). Renormalization to Tr

[
x̂md ρ̂inx̂

−m
d

]
is necessary

to preserve the unit trace of the density matrix.

We will evaluate the conversion quality by the fidelity
F , calculated as follows:

F =

(

Tr

√
√

ρ̂idealρ̂1
√

ρ̂ideal

)2

. (26)

It should be noted that the expression above contains
only the density matrix ρ̂1, which corresponds to the
outcome when a complete transformation of all modes
occurred, and the fidelity written in this way shows only
the degree of coherence of our transformation. The prob-
ability p1 of the outcome we are interested in should be
calculated individually. Based on the physical meaning
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of the density matrix ρ̂1, we can write:

p1 =

d∏

l=1

χ2
l,m. (27)

Although the probabilities do not exceed 0.6, as shown
in the next section, this problem can be eliminated in the
experiment using the methods of postselection [22, 23].
Summarizing all of the above, we can emphasize several

key aspects of the problem under consideration. The ap-
plication of high-dimensional systems increases the chan-
nel’s information capacity and the cryptographic security
of the channel. However, as the dimension grows, the
number of gates, which is necessary to construct an ar-
bitrary unitary transformation (see (9)), also increases,
and the probability of successful operation of the gate is
reduced. Next, we will evaluate the influence of various
factors and compare the results with a well-studied case
of qubits.

B. Computation of qutrit gates’ properties

This section will illustrate calculations of fidelity and
probability for the case of qutrit, which, moreover, can
be easily generalized to systems of higher dimensions.
For space dimension d = 3, the set of operations nec-
essary for constructing arbitrary unitary transformation
includes gates X̂3, X̂

2
3 , Ẑ3, Ẑ

2
3 . As mentioned earlier, the

gates Ẑm
d can be implemented using the Dove prism.

Based on the definition of (3), we can conclude that the

transformation X̂2
3 is equivalent to the transformation

X̂−1
3 , and X̂3 is equivalent to X̂−2

3 in the way of acting
on an arbitrary state of qutrit, so in the further analysis,
we will compare pairs of transformations with positive
and negative powers.
Let us recall that not only the high probability of the

gate success or the absolute values of the coefficients χl,m,
is crucial to building the most optimal gate, but also the
general ”coherence” of the transformation, which can be
formulated as the nearness of the values of the conversion
coefficients for different members of the superposition.
For example, if we work with the qutrit, which is encoded
by the physical values of the OAM l− 1, l, l+ 1, then we
must require the fulfilment of the following approximate
equality:

χl−1,m ≈ χl,m ≈ χl+1,m. (28)

Hence, a natural question arises: in what physical values
of l should the qutrit be encoded so that the transfor-
mations of x̂m3 ,m = ±1,±2 occur in the most optimal
way? The calculation shows that as l grows, the conver-
sion coefficients of different members of the superposition
become closer to each other. That is, the condition (28)
is fulfilled the better, the bigger is l. This result seems
logical since χl,m is accounted with geometric overlap-
ping of the transverse spatial profiles of the modes (see
[18] for more details). However, the generation of qutrit

states with large values of l is problematic from the ex-
perimental point of view. Therefore, we are especially
interested in cases when relatively high values of proba-
bility and fidelity are attainable in the region of small l.
Fig. 3 shows the probabilities of success of gates x3, x

2
3
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Figure 3. The probabilities of success of the qutrite gates
x3, x

2

3 (top), x−1

3
, x−2

3
(bottom) depending on the values of l

and of the parameter zs/zR that controls the geometry of the
modes. As one can see, transformations with negative degrees
have more attractive behaviour in the region of small OAM.

and x−1
3 , x−2

3 . Areas of high probabilities, as can be seen
from the figure, show interesting behaviour. The regions
expand with an increase of the control parameter zs and
an increase of the OAM l. Moreover, with an increase in
l, they become more and more bent towards the vertical.
This fact implies two remarkable properties of our trans-
formation: firstly, for large l the probabilities will be high
in a certain wide range of zs, and secondly, having an un-
known state at the input of the system, we can fix some
specific value of zs, which will provide an equally high
probability of the gate success, practically (in the limit)
independent of the OAM values of the input state when
working in the region of large OAM values. However,
since today the generation of light with a high OAM re-
mains an experimentally laborious task, we will focus on
the properties of transformations in the region of small
l. It can be noted that for x−1

3 , x−2
3 the probabilities are

higher than for the corresponding transformations with
positive powers and, more importantly, high probabili-
ties can be achieved in the region of small l, that is a
significant advantage over conversions x3, x

2
3.

One can also calculate fidelity values for these gates.
The calculation shows that the proposed conversion
method shows extremely high fidelity (F ≥ 0.97) in a
wide range of values of the control parameter zs/zR for
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various values of l. Below we give specific values of the
maximum fidelity (by varying the control parameter) for
qutrit with values of l = 4, 5, 6:

Fx3
= 1− 8, 9× 10−6, Fx2

3

= 1− 26, 2× 10−6,

Fx−1

3

= 1− 5, 5× 10−6, Fx−2

3

= 1− 33, 2× 10−6.

Since the fidelity values turn out to be equally high
for all transformations, we can conclude that it is most
reasonable to perform transformations of the qutrit state
with gates x−1

3 , x−2
3 .

Similar patterns can be seen for the transformation
of quantum systems with a dimension greater than 3.
Therefore, in the next section, we will compare the pa-
rameters of different gates for high-dimensional systems
with the case of a qubit.

C. Comparison of the gates for qudits with

different dimension

We have performed calculations of transformation
properties for qudits of different dimensions (from d = 2
to 5) for the following states (the state numbers |l〉 denote
the physical value of the OAM projection):

|ψ〉d=2 =
1√
2
(|4〉+ |5〉) , (29)

|ψ〉d=3 =
1√
3
(|4〉+ |5〉+ |6〉) , (30)

|ψ〉d=4 =
1√
4
(|4〉+ |5〉+ |6〉+ |7〉) , (31)

|ψ〉d=5 =
1√
5
(|4〉+ |5〉+ |6〉+ |7〉+ |8〉) . (32)

Such projections of the OAM l were chosen to encode the
qudit state because for small values of l = 0,±1,±2, we
will need to change the OAM of a state with l = 0 when
performing transformations. These transformations oc-
cur with low efficiency due to weak overlap of the trans-
verse profiles of the fundamental Gaussian mode with any
LG modes with a nonzero OAM projection. The transi-
tion to the region of higher OAM values, as Fig. 3 shows,
gives even higher values of probabilities, so the presented
calculation can be considered as a lower bound.

Table I. Comparison of gate x−1

d parameters for qudits of
different dimensions

Qudit dim d Probability P Fidelity F log
2
d× F × P

2 0, 59 1 0, 59

3 0, 44 1− 5, 5× 10−6 0, 70

4 0, 32 1− 37, 4× 10−6 0, 65

5 0, 23 1− 80, 6× 10−6 0, 54

Table 1 shows a comparison of the properties of the
x−1
d transformation for systems of various dimensions de-

scribed by states (29)-(32). It can be noted that with an

Table II. Comparison of gate x−2

d parameters for qudits of
different dimensions

Qudit dim d Probability P Fidelity F log
2
d× F × P

2 0, 64 1 0, 64

3 0, 49 1− 33, 2× 10−6 0, 78

4 0, 37 1− 218, 0× 10−6 0, 74

5 0, 27 1− 457, 9× 10−6 0, 62

increase in the dimension (for d ≥ 3), both the probabil-
ity of the gate success and the fidelity decrease, but the
latter decreases very insignificantly. At the same time, in
the last column of the table, the values of the product of
fidelity, the probability, and the information capacity of
the channel – the number of bits of information encoded
by one qudit of dimension d, is shown. Thus, we wanted
to emphasize that the loss in probabilities turns out to
be not as significant as the gain in information capacity:
indeed, it can be noted that for the case of qutrit and
ququart, the value constructed in this way turns out to
be larger than for other dimensions. Of particular inter-
est are the results shown in Table 2, where the properties
of the x−2

d gate are calculated. Its probability turns out

to be greater than that of x−1
d , which can be quite eas-

ily explained by purely geometric reasons of overlap of
modes with close numbers.

Summarizing all of the above, we have shown that us-
ing a quantum memory scheme as a base for implement-
ing single-qudit gates of various dimensions has signifi-
cant advantages in extremely high fidelity and the abil-
ity to perform the storing of quantum state simultane-
ously with its transformation. The calculated probabil-
ity of successful operation of the gates also remains high
enough, and the scheme can be easily supplemented using
postselection methods.

V. CONCLUSION

We have developed multidimensional quantum gates
for qudits with OAM of different dimensions, based on
the transformation of light modes with OAM in a quan-
tum memory scheme. To ensure the cyclicity of the op-
erations, we have identified several indistinguishable log-
ical sets of dimension d, encoding one qudit on the set of
”physical” modes with OAM. Since the Ẑd transforma-
tion over light with OAM can be performed using Dove
prisms, we focused on constructing the lossy gate x̂md and

comparing it with the ideal one X̂m
d . We carried out the

comparison by calculating the probability of success and
the fidelity of the transformation.

Calculations carried out for the particular case of the
qudit dimension d = 3 showed that the considered gates
reveal a relatively high probability of success (from 0.3 to
0.5). Moreover, for x̂−1

3 , x̂−2
3 high probability values are

achieved in the region of small OAM l, which seems to be
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a powerful argument in favor of working with transforma-
tions with negative powers of m, since the experimental
generation of light with high values of l has been currently
facing with some difficulties. However, if efficient work
with large l someday will be possible, then the proposed
gates can provide equal probabilities when transforming
an unknown state for a specific value of the control pa-
rameter zs in a wide range of values of l. This effect is
achieved since the change in the regions of high probabil-
ity with increasing zs approaches the vertical line more
and more. That is, the value of the coordinate zs, pro-
viding the highest probability, begins to depend weakly
on the OAM values. A significant result is that all trans-
formations provide an exceptionally high level of fidelity
(F ≥ 97), which is also weakly dependent on the OAM.
We have compared the characteristics of the gates

x̂−1
3 , x̂−2

3 for different dimensions of qudits with the triv-
ial case of a qubit. The values of probability and fidelity
were taken into account, along with the potential gain
from information capacity increased with the dimension
of a qudit. An estimation based on all these factors shows
that working with qudits of dimensions d = 3 and d = 4,
despite the lower probabilities, turns out to be preferable
for performing quantum computations in the proposed
protocol. A feature of the proposed transformations is
that one can carry out computational procedures simul-
taneously with storing quantum-statistical properties of
light in a memory cell.
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32-90059, 19-02-00204) and by the Foundation for the
Advancement of Theoretical Physics and Mathematics
”BASIS” (grant 20-1-5-120-1).

[1] M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger,
Light Sci. Appl. 7, 17111 (2018), 1708.06101.

[2] L. Sheridan and V. Scarani, Physical Review A 82,
030301(R) (2010).

[3] H. Bechmann-Pasquinucci and W. Tittel, Physical Re-
view A 61, 062308 (2000).

[4] N. Bent, H. Qassim, A. A. Tahir, D. Sych, G. Leuchs,
L. L. Sánchez-Soto, E. Karimi, and R. W. Boyd,
Phys. Rev. X 5, 041006 (2015).

[5] Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A.
Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey,
Physical review letters 93, 230503 (2004).

[6] J. M. Lukens and P. Lougovski, Optica 4, 8 (2017).
[7] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and

J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[8] S. Li, S. Chen, C. Gao, A. E. Willner, and J. Wang,

Optics Communications 408, 68 (2018), optical Com-
munications Exploiting the Space Domain.

[9] S. Slussarenko, E. Karimi, B. Piccirillo, L. Marrucci, and
E. Santamato, JOSA A 28, 61 (2011).

[10] Q. Xiao, C. Klitis, S. Li, Y. Chen, X. Cai, M. Sorel, and
S. Yu, Optics express 24, 3168 (2016).

[11] M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, Na-
ture communications 4, 1 (2013).

[12] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-
Arnold, and J. Courtial, Physical review letters 88,

257901 (2002).
[13] K. Dai, C. Gao, L. Zhong, Q. Na, and Q. Wang, Optics

letters 40, 562 (2015).
[14] N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G.

White, Opt. Lett. 17, 221 (1992).
[15] E. Karimi, B. Piccirillo, E. Na-

gali, L. Marrucci, and E. Santamato,
Applied Physics Letters 94, 231124 (2009),
https://doi.org/10.1063/1.3154549.

[16] M. Beijersbergen, L. Allen, H. van der Veen, and J. Wo-
erdman, Opt. Commun. 96, 123 (1993).

[17] A. Babazadeh, M. Erhard, F. Wang, M. Ma-
lik, R. Nouroozi, M. Krenn, and A. Zeilinger,
Phys. Rev. Lett. 119, 180510 (2017).

[18] E. A. Vashukevich, T. Y. Golubeva, and Y. M. Golubev,
Phys. Rev. A 101, 033830 (2020).

[19] J. Lawrence, Phys. Rev. A 70, 012302 (2004).
[20] Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach,

and A. Forbes, Science advances 2, e1501165 (2016).
[21] T. Y. Golubeva, Y. M. Golubev, O. Mishina,

A. Bramati, J. Laurat, and E. Giacobino,
The European Physical Journal D 66, 275 (2012).

[22] H. F. Hofmann and S. Takeuchi, Physical Review A 66,
024308 (2002).

[23] D. Fattal, E. Diamanti, K. Inoue, and Y. Yamamoto,
Physical review letters 92, 037904 (2004).

https://doi.org/10.1038/lsa.2017.146
https://arxiv.org/abs/1708.06101
https://doi.org/10.1103/PhysRevX.5.041006
https://doi.org/10.1364/OPTICA.4.000008
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/https://doi.org/10.1016/j.optcom.2017.09.034
https://doi.org/10.1364/OL.17.000221
https://doi.org/10.1063/1.3154549
https://arxiv.org/abs/https://doi.org/10.1063/1.3154549
https://doi.org/10.1016/0030-4018(93)90535-D
https://doi.org/10.1103/PhysRevLett.119.180510
https://doi.org/10.1103/PhysRevA.101.033830
https://doi.org/10.1103/PhysRevA.70.012302
https://doi.org/10.1140/epjd/e2012-20723-3

