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Abstract. In the paper, the high-order adaptive algorithm to controlling the multi-agent system is
proposed. Control of the pitch/yaw angles of quadrotors is taken as an example. It is shown that re-
alistic noisy measurement errors of sensors do not affect drastically the overall system performance
with the proposed algorithm. The real-word 2DOF laboratory quadrotor testbed was used for demon-
strating the trajectories convergence. Consensus achievement in the multi-agent system consisting of
four quadrotor testbeds in the noisy sensor case is evaluated by the simulations. It is shown that the
proposed technique allows using decentralized cooperative control for the examined multi-agent sys-
tem. Realistic gyroscope properties were taken into account while studying the noisy measurement
case. The series of numerical simulations were performed to validate of proposed multi-agent system
performance for the various algorithm parameters.

1 Introduction

Multi-agent systems, consisting of interacting subsystems (agents), are now finding extended appli-
cation in the various fields [2, 3, 4]. These systems allow to effectively perform tasks that otherwise
could not be performed by individual subsystems. The use of decentralized control in multi-agent
systems makes it possible to make the system autonomous. Control signals are generated not by a
common control center, but by local controllers based on mutual inter-agent information exchange.
Given the expansion of the scope of application of miniature autonomous mobile robots, such as
light unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs), walking robots,
see [5, 6, 7, 8] for mentioning a few, one should consider applicability of more sophisticated control
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laws for multi-agent systems. The idea of combining agents into groups according to the purposes
of the performing tasks, becomes more accessible and effective. An approach and basic principles,
used in this rapidly developing field in recent years, allow obtaining systems that work autonomously,
taking into account both external and internal factors.

An important property of a multi-agent system is the way to organize interactions between agents.
The choice of the network structure through which agents exchange information largely determines
the characteristics of the system as a whole. The difficulty in designing multi-agent systems is asso-
ciated with a large number of agents. One of the main tasks for multi-agent systems is to ensure the
convergence of the agents states or outputs to a common value (for example, to the average of the
initial states) or a common given trajectory [9, 10].

Development and implementation for practice of multi-agent systems necessitates, first of all, to
ensuring the required quality of the system as a whole. Noisy sensors measurements could upset
the stability of multi-agent system. Real systems (including UAVs and robots mentioned above) has
sensors that are not ideal so there is a plenty of various measurement noises. This should be taken
into account while developing multi-agent systems. One of the aim of this work is to demonstrate
how stochastic measurement errors affect to multi-agent system with the suggested adaptive control.

The theory of adaptive control began to develop at the end of the last century [11], and today it has
a sufficient development, see e.g. [12]. Adaptive control is increasingly being used in areas where not
all system parameters can be known. Before one can use it in real systems any control it is necessary
to ensure the adequacy of the proposed algorithms by modeling.

The paper uses a modified high order adaptation algorithm that, unlike [13, 14], is configured for
stabilization with unknown feedback coefficient. The first adaptation algorithm of high order (high
order tuner) was published in [15]. Later it was suggested many modifications of this algorithm, the
closest to the one used in the paper are algorithms [16, 17, 18].

With the increasing popularity and availability of the UAV such as quadrotor it becomes possible
to implement complex control laws in such miniature, but not simple systems. The most common
method is use of stabilizing PID controllers and their modifications, so there is a plenty of works
devoted to the design of this type of controllers [19, 20, 21, 22, 23]. The algorithms based on the
backstepping method can be found in [24, 25, 26, 27]. Algorithms of other types are discussed in
[28, 29, 30, 31, 21, 32, 33].

2 Multi-agent Control

For multi-agent systems, the concept of consensus, which can be considered as one of the types of
synchronization, is widely used. One of the earliest examples of consensus behavior is the task of
driving cars at the same speed [34, 35, 36]. The coordinate synchronization condition of linear agents
can be written as

lim
t→∞
|xi(t)− x j(t)|= 0, i, j = 1, . . . ,N, (2.1)

where xi is the state vector of the i-th agent, and N is the number of agents. The condition of general-
ized coordinate synchronization is set similarly:

lim
t→∞
|yi(t)− y j(t)|= 0, i, j = 1, . . . ,N, (2.2)

where yi(t) =Cxi(t), and C is the output matrix. Note that goals (2.1) and (2.2) imply only synchro-
nizing the state and output vectors of the agents, respectively, and the convergence xi(t), y j(t) is not
specified for some given process.
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Due to the fact that agents must interact with each other, communication between them must be
established through the channel of information transfer. For example, this may be information about
the position in space of a moving agent. A network structure should also be specified that describes
the interaction of agents between themselves. For this purpose, the network topology is usually used
in the form of graphs and the corresponding mathematical apparatus is used.

Most often in this area, Laplacian (Laplace matrix) is used, which allows us to move from the
visual (in the form of a graph) to a formula description of the interaction. In a more general case, for
example, in tracking problems, a connectivity matrix is used to describe the interaction. In the paper, a
digraph without loops is considered, in this case all the arcs are directed. The number of arcs entering
the vertex α is denoted by di(α), and the number of outgoing arcs is denoted by do(α). Then the
Laplacian is introduced as L = I−G, where I is the diagonal identity matrix, and G is the adjacency
matrix, formed by the rule {

Gi j = 1/do(αi), if do(αi) 6= 0,
Gi j = 0, otherwise,

(2.3)

where Gi j is the element of the matrix G in the row i and the column j; i, j are the numbers of the
corresponding agents. The Laplace matrix obtained in this way characterizes not only the directions
and order of interaction, but also the degree of influence of agents on each other. In the simplest
form, the dynamics of agents can be described by linear equations. In a paper, a multi-agent system
consisting of N linear agents is considered:

ẋi(t) = Aaxi(t)+Baui(t), yi(t) =Caxi(t), i = 1, . . . ,N, (2.4)

where xi(t)∈ Rn,ui(t)∈ Rm,yi(t)∈ Rl are the state, input, and output vectors respectively, for the
i-th agent, and Aa,Ba,Ca are matrices of the corresponding sizes. Due to the interaction of agents, a
synchronization signal is generated, which is set as follows:

zi(t) =−
(

yi(t)−
1
|Ji| ∑j∈Ji

y j(t)
)
, i = 1, . . . ,N, (2.5)

where |Ji| is the cardinality of the set Ji is the set of incoming arcs. Equation (2.5) sets the consensus
protocol, which, together with a certain graph of connections, gives the corresponding Laplacian
[2, 37, 38, 39, 40]. The rank of the Laplace matrix of the graph Γ is N − v, where v is the forest
dimension of the graph over incoming trees. In particular, rankL = N−1, that is, the zero eigenvalue
of the matrix L has unit multiplicity if and only if the digraph Γ has an oriented spanning tree. The
latter means that the system does not divide agents into clusters. Information in this case can go to
any vertex and there are no separate agents in the system.

For the above problem statement, the following result is known. A multi-agent system consisting
of N agents of the form (2.4), controllers in the form of ui(t) = zi(t) and consensus protocol (2.5)
asymptotically reaches consensus if and only if systems of the following form are simultaneously
asymptotically stable

ẋi(t) = Aaxi(t)+Baui(t), yi(t) =Caxi(t), zi(t) = λiyi(t), i = 1, . . . ,N, (2.6)

where λi, i = 1,2, . . . ,N are the eigenvalues of the Laplacian L for a given graph of connections [41].
Adaptive control could be used for solving consensus problem [42]. For each agent the dynamic

is described as
Qi(p)yi(t) = kiRi(p)ui(t), i ∈ 1,N, (2.7)



684 S. Tomashevich, B. Andrievsky

where yi(t) and ui(t) are the scalar output and input signals of the i-th agent, respectively, p = d/dt
is the differentiation operator, Ri(p) and Qi(p) are linear differential operators with unknown co-
efficients belonging to the well-known bounded set Ξ, degRi(p) = m and degQi(p) = n, Ri(·) are
Hurwitz polynomials, n−m > 1, ki > 0 are coefficients whose values are in the set Ξ.

For each agent, a leading subsystem is defined that determines its reference movement trajectory:

Qm(p)ymi(t) = kmRm(p)zi(t), i ∈ 1,N, (2.8)

where ymi(t) is the output of the leading subsystem, zi(t) is the reference signal generated for each
agent and depending on the state of other agents. Using this approach allows to assign each of the
agents (the dynamics of which may be different) the same reference leading subsystem. Setting the
consensus protocol (2.5) to form the input zi(t) of the reference model (2.8) allows us to obtain a
model of a closed multi-agent system in a classical form.

The control aim is expressed by the following objective condition

lim
t→∞
|yi(t)− ymi(t)|< δ, i ∈ 1,N (2.9)

and consensus for outputs
lim
t→∞
|yi(t)− y j(t)|< 2δ, i, j ∈ 1,N, (2.10)

as well as the limitations of all signals in a closed-loop system. Here δ > 0 is the control accuracy
in the steady state. In the synthesis of the control law, the eigenvalues of the Laplacian are not used.
It is important to note the features of the task: it is believed that the communication channel through
which information is transmitted is ideal. This means that one can neglect the limitations of its band-
width, time quantization, disappearance and delay of data packets and other distortions inherent in
real communication channels.

3 Setup Description

As it was mentioned above, multi-agent control can be used for UAVs for the different purposes. In the
following sections for the sake of clarity we focus our attention to real-world quadrotor test-bed. The
future researches are planned to do with a real multi-agent system based on the set of these test-beds.

For in-flight tests the spacious area, which is free from different obstacles is needed. Also, the
flight testing procedure is rather time consuming for the researchers. To overcome the mentioned
problems at the initial stage of real-world adaptive controllers design the laboratory testbed has been
used. The testbed allows to safely test new control algorithms in the small space laboratory area and
promptly make changes in the cases of failure.

The main part of the test-bed is the miniature quadrotor, which is installed on the 2DOF gimbal
suspension, allowing the helicopter to freely rotate on pitch and roll. The outer frame is mounted on
the pillars and can rotate about the horizontal axis. The inner gimbal frame can rotate with respect
to the outer one. Helicopter is fixed in the middle of the inner frame. The helicopters center of mass
is fixed, eliminating an opportunity of unforeseen changes and the dangerous trajectory. Pillars are
mounted on the square support. The whole construction is made from wood and metal angle braces.
In details test-bed is presented in [43].

The tested 2DOF quadrotor is based on radiating frame DJI 450 and supplied with Ardupilot Mega
2.6 autopilot with the IMU, the GPS the satellite navigation system, see [44] for more details. The
brush-less motors with external rotor DJI 2213 (250 W each) are used as actuators. The device is
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supplied with the Electronic Speed Controllers (ESC) DJI 30A Opto with current output up to 30 A
and with operating voltages up to 14.8 V, rotors left and right rotation with the size 10×4.5 or 8×4.5
inches. The real-time data exchange with the operator’s PC is fulfilled by means of the WiFi XBee
modem.

Quadrotor dynamics can be described as follows:

mV̇x = τy(CψSϑCγ +SψSγ)−VxAx,

mV̇y =−mg+ τy(CϑCγ)−VyAy,

mV̇z = τy(SψSϑCγ−CψSγ)−VzAz,

γ̇ = ωx +SγTϑωz +CγTϑωy,

ϑ̇ =Cγωz−Sγωy,

ψ̇ =
Sγ

Cϑ

ωz +
Cγ

Cϑ

ωy,

Ixω̇x = (Iy− Iz)ωyωz− Irωzωr + τγ,

Iyω̇y = (Iz− Ix)ωxωz + τψ,

Izω̇z = (Ix− Iy)ωxωy + Irωxωr + τϑ,

(3.1)

where Vx,Vy,Vz are linear velocities along the respective axes, τy, τγ, τϑ, τψ are the control inputs,
Ix, Iy, Iz denote rotational moments of inertia along X , Y and Z axes respectively, ωx,ωy,ωz stand for
the angular velocities around axes X , Y and Z respectively, Ax,Ay,Az are the aerodynamic coefficients
for corresponding axes, ωr is the average rotational speed of the screws, Ir is the rotor moment of
inertia, g denotes the gravity acceleration, γ is the roll angle, ψ is the pitch angle and ϑ stands for yaw
angle, Sα = sin(α), Cα = cos(α), Tα = tan(α). Schematics of the quadrotor is shown in Fig. 1.

Fig. 1 Schematics of the quadrotor
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4 High-order Control Law

Based on the procedure described in [42], the following steps were made to derive the multi-agent
version of the original adaptive control law. Without loss of generality, let us assume that adaptive
control is applied solely to roll angle (the similar considerations may be done for pitch angle control
loop) and use the following single-agent model:

γ̇ = ωx +SγTϑωz +CγTϑωy; Ixω̇x = (Iy− Iz)ωyωz− Irωzωr + τγ. (4.1)

It is obvious that γ̇ = ωx due to the fact that the motion is considered only with changing angle γ

and zero values of the other angles. Then the equation of motion can be written as follows:

γ̈ =−βγ̇+ τγ/Ix, (4.2)

where β is the viscous friction gain with respect to the rotation of the testbed about the outer frame.
Represent equation (4.2) in the following form:

Q(p)y(t) = kR(p)u(t), (4.3)

where y(t) = γ and u(t) = τγ are the scalar input and output signals respectively, R(p) = 1 and Q(p) =
p2+βp are linear differential operators with unknown coefficients, k = 1/Ix > 0 is an unknown factor,
p = d/dt denotes the differential operator on time. The coefficients of operator polynomials R(p),
Q(p) and gain k > 0 belong to a known manifold Ξ. Define the leading subsystem model as follows

Qm(p)ym(t) = kmRm(p)z(t), (4.4)

where ym(t) is the leading subsystem output, z(t) denotes the reference signal, Qm(p) = p2+k1 p+k2,
Rm(p) = 1, km = k2. The goal is to derive continuous control law, ensuring fulfillment of (2.9) and
(2.10). In the other words, stabilization of y(t) as well as limitations in the steady state mode of all
signals in a closed-loop system, where δ > 0 is the prescribed control accuracy, are required.

Let us define z(t) =−λy(t), where λ is an unknown feedback gain. This situation is possible when
the feedback controller is already synthesized and it is unknown.

According to [13], define a following control law

u(t) = T (p)v̂(t), (4.5)

where T (p) is selected so that the transfer function Rm(s)T (s)/Qm(s) satisfies the strict positive real-
ness condition, v̂(t) denotes the estimate of the auxiliary control v(t):

v(t) = cT
ω(t), (4.6)

where c(t) is the vector of adjustable parameters:

ċ(t) =−αe(t)ω(t), (4.7)

with a certain α > 0. Control law (4.5) ensures the target conditions (2.9), e(t) = y(t)−ym(t), ω(t) =[
V T

1 (t) y(t) V T
2 (t) (km/T (p))yi(t)

]T is the regressor. The following filters that are used:

V̇1(t) = F1V1(t)+bv̂(t); V̇2(t) = F2V2(t)+by(t), (4.8)



High-order adaptive control in multi-agent quadrotor fomation 687

Fig. 2 Complete connectivity graph associated with Laplacian L

where matrices F1,F2 are of Frobenius form with the characteristic polynomials Rm(p) and Rm(p)T (p)
respectively, b =

[
0 . . . 0 1

]T.
To implement control law (4.5) the observer of [45] is employed, which is specified in the form of

ζ̇(t) = G0ζ(t)+B(v̂(t)− v(t)); v̂(t) = Lζ(t), (4.9)

where ζ(t) ∈ Rγ,

G0 =

[
0 Iγ−1
0 0

]
, B =

[
−d1

µ
. . . −

dγ

µγ

]T

, L =
[
1 0 . . . 0

]
and d1, . . . ,dγ are selected so that the matrix G = G0+

[
d1 . . . dγ

]T L is Hurwitz, µ > 0 is a sufficiently
small number. The attainability proof is given in [13]. The special case is considered in [42].

5 Simulation Results

Let us form the control system for polynomials, corresponding to model (4.2) and the parameters,
obtained by the identification procedure of [46]: β = 0.397, 1/Ix = 0.016. Initial states for quadrotors
were set to:

x1(0) =
[

10
−0.3

]
; x2(0) =

[
−5
−0.4

]
; x3(0) =

[
−10
0.6

]
; x4(0) =

[
0

0.8

]
. (5.1)

The reference model is defined by transfer function

We(s) =
4.712

s2 +9.42s+(4.71)2 , (5.2)

that provides settling time about 1 second after the adaptation process is finished. Based on the prop-
erties of reference model (5.2), T (p) can be chosen in the form T (p) = p+1.

The built-in IMU for Ardupilot Mega 2.6 controller MPU-6000 is taken in a view for implemen-
tation. As it noticed in the specification [47] gyroscope, its noise performance is characterized by
root-mean-squared value of the fluctuations σGY = 0.05deg/s. The highest frequency that developer
could use with this autopilot is 100 Hz, so let us use this parameter as the noise generator sampling
frequency. Let us consider that result angle could be obtained with numerical integration by trape-
zoidal rule:

ŷi[k+1] = ŷi[k]+ (ωi[k+1]+ωi[k])T/2, i ∈ 1,N, (5.3)



688 S. Tomashevich, B. Andrievsky

Fig. 3 Probability distribution of agents position in steady state for the case α1

where ωi[k] denotes the gyro measurements of the angular velocity at step k with the time period
T = 0.01 s for each i-th agent. Due to the presence of the measurement errors, the measured angular
velocity has additional noise:

ωi[k] = ωi[k]+ηi, i ∈ 1,N, (5.4)

where ηi have normal distribution with zero mean value and variance DGY = (0.05)2 (deg/s)2. Here
we could define estimation errors as ei[k] = ŷi[k]− yi[k]. The following adaptation gains were chosen
for different simulations runs: α1 =−0.0001 and α2 =−0.00025.

The complete graph was chosen as the formation connectivity graph, see Fig. 2, which corresponds
to the following connectivity matrix

L =


1 −1/3 −1/3 −1/3
−1/3 1 −1/3 −1/3
−1/3 −1/3 1 −1/3
−1/3 −1/3 −1/3 1

 . (5.5)

Figs. 3 and 4 show the simulation results for α1 and α2 respectively. At time duration t = 30 s
absolute position of the each agent was stored. Simulation was repeated 10000 times for both αi and
resulting histograms show that measurement noise does not sufficiently affect to reaching conditions
(2.9) and (2.10). As it shown at Fig. 5, at the time moment t = 30 s all transients are closed to be
stabilized even with small control coefficient α1.

Fig. 7 presents estimation errors. Here one could see noisy angle measurements caused by noisy
gyroscope. This measurements was obtained just by using numerical integration of noisy angular
velocity measurements. In common case this integral should infinitely increase, but due to the fact
that every agent has feedback through other agents, the angles estimations are close to the real signals.

As one can see from Fig. 6 adaptation process has finished about t = 20 s and after this time
moment agents start moving with dynamic given with model (5.2). The same result (but more faster)
could be obtained with more robust case with α2.
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Fig. 4 Probability distribution of agents position in steady state for the case α2

Fig. 5 Agents trajectories for the case α1

Proposed adaptive control for quadrotor shows good results within acceptable angles. It can be
seen that result does not depend on λi and its sign. Moreover only one parameter α can change the
quality of transients. In Tab. 1 output signals statistical properties are presented. Non-zero mean value
for the first agent with α1 means that control algorithm is not robust enough. In case of α2 trajectories
tends to each other more closer. Moreover, one could see that standard deviations match with settled
sensors noise deviations. This leads us to conclusion that the proposed algorithms satisfy conditions
(2.9) and (2.10) even with noisy sensors measurements.
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Table 1 Statistical properties of system outputs

Mean value Standard deviation
Agent number α1 α2 α1 α2

# 1 −0.1975 −0.0021 0.0484 0.0483
# 2 −0.0020 −0.0020 0.0486 0.0487
# 3 −0.0018 0.0286 0.0493 0.0486
# 4 −0.0036 −0.0018 0.0487 0.0493

Fig. 6 Transients of the vector c1 components for the case α1

Fig. 7 Estimation error for the case α1

6 Conclusion

In this paper the possibility to use a high order adaptation algorithm to control multi-agent system with
noisy sensors is presented. As an example it was show for the case of synchronizations quadrotors
angles on laboratory testbeds. System parameters used in this paper was previously received with
identification algorithms. Noise parameters are based on real IMU system used in quadrotors. A
numerical simulation is given and it is showing adequacy of the results with using this algorithm with
real system.
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