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Abstract— The present surveyed paper provides a historical
overview of the Speed-gradient method and its applications to
nonlinear control problems since mid-1970-th, when the method
was originated, till the present days. It is demonstrated that it
is widely used an efficient and a useful tool for solving various
problems in the field of the nonlinear control.

Index Terms— speed-gradient, nonlinear control, mechanical
systems, oscillators, distributed parameter systems

The first publications related to SG-algorithms appeared
in 1978. General formulations were proposed simultaneously
and independently by Alexander Fradkov and Yuri Neimark
in January, 1978 at the 9th All-Soviet school on adaptive sys-
tems [1], [2]. Some related formulations for the identification
problem were suggested in [3].

First (yet distinct) stability results were published in
[4] and in [5]. For the special case affine time-invariant
controlled system ẋ = f (x) + g(x)u and positive definite
goal function V (x) the control algorithm u = −LgV (x) was
proposed in [6]. It is sometimes called “LgV” or “Jurdjevic–
Quinn” control. Stability result in [6] is related to the case
V̇ ≤ 0 and requires some detectability conditions (so called
“Jurdjevic-Quinn” conditions).

Non-affine and time-varying case was first studied in [5]
for differential form of the SG-algorithms and in [7], [8] for
the finite form.

Various types of the speed gradient algorithms were pro-
posed as a set of designing schemes and their applicabil-
ity conditions by Alexander Fradkov in the framework of
the unified Speed-gradient method (the SG method). This
method was originated in [5] as a universal approach for
solving various control problems, originally with a focus
on designing the adaptation and identification algorithms, cf.
[5], [7], [9]. The basic idea of the method is expressed by [5]
as follows: “The paper is concerned with a scheme for design
of adaptive control algorithms whereby motion is organized
in the space of parameters to be adjusted along the gradient
of the speed of change of a evaluative functional”. During
the subsequent years, the method was further developed by
A. Fradkov and his colleagues for elaborating the various
schemes of adaptation, non-linear control, identification and
synchronization. This method has found application in the
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works by many researchers worldwide. In [10], the SG
method is recognized as as the method, which “enables a
transparent trade-off between control performance and de-
sign parameters. Furthermore the steps for controller design
results are in general simple . . . it has become widespread
in other multiple successful applications in adaptive control
mainly in Physics and Mechanics”.

In the present paper the following applications of the SG
method to nonlinear control problems are briefly exposed
in the historical perspective: design methods for control of
generic nonlinear systems; control of mechanical systems
and nonlinear oscillators; control and synchronization of
chaotic systems; control of spatially-distributed nonlinear
systems.

The interested readers may find the detailed description of
the method in the dedicated literature, see [5], [9], [11]–[13],
for mentioning a few.

Below the most most significant publications of the SG
method to nonlinear control problems are listed in the in
chronological order.

Works of 1996 – 1999: In [14], a unified framework
of the SG method is used for description and comparison of
adaptive control algorithms for robot manipulators. The con-
cept of swinging control, meaning achievement of arbitrary
large level of the objective function by arbitrary small control
level is introduced, and extension of the SG method to
oscillating systems with energy-based objective functions is
presented in [15]. This approach is applied in [16] to control
of oscillations of mechanical systems: physical pendulum
and a pendulum on a cart. By these examples, the properties
of the SG-based control in the differential and finite forms
are compared. The problems of synchronization and control
of chaotic systems with uncertain parameters are considered
as those of nonlinear adaptive control in [17], where the GS
solutions to these problems are found. An example of master-
slave synchronization of the pair of forced Duffing-type sys-
tems is presented. Book [9] is, possibly, the first monograph,
devoted to control of chaotic systems. It gives an exposition
of the field of control of oscillatory and chaotic systems,
taking in a view numerous applications in mechanics, laser
and chemical technologies, communications, biology and
medicine, economics, ecology. The proposed control design
methods are based on the concepts of Lyapunov functions,
the SG method and the Poincare maps. The numerous appli-
cations to control of nonlinear (including chaotic) oscillations
age presented: coupled pendula; brusselator; Lorenz, Van der
Pol, Duffing, Henon and Chua systems; communications;



growth of thin films; synchronization of chaotic generators
based on tunnel diods; stabilization of swings in power
systems; increasing predictability of business-cycles, are also
presented.

The possibilities of studying nonlinear physical systems
by feedback action are discussed in [18]. The feedback
resonance phenomenon in nonlinear oscillators and the SG-
based method of creating feedback resonance are described
and illustrated by the examples of feedback resonance in 1-
DOF system (controlled pendulum) and in 2-DOF system
(two coupled pendulums).

Works of 2000 – 2004: The investigations on adap-
tive control of nonlinear chaotic systems in the presence
of model uncertainty are continued in [19], where control
compensation is incorporated into the SG-based design of
the adaptive controller. The authors of [20] consider the
problem of the global and local stabilization of invariant
sets for general nonlinear controlled systems. New state
feedback stabilizing controllers and sufficient conditions of
asymptotic stability of a goal set with the specified region
of attraction are proposed. The proofs of the obtained results
are based on the analysis of closed-loop system with the SG
controllers. The results on stabilization of invariant sets for
nonlinear systems based on the SG method and the notion
of V -detectability are overviewed and extended in [21]. The
stabilization problem of the upright position of the spherical
pendulum is treated in detail in [22]. It is shown that for
any smooth feedback control derived by the SG algorithm
with the objective to stabilize Ωst, the closed loop system
has a limit cycle Γ, which does not belong to the desired
attractor Ωst. The synchronization problem for two 1-DOF
pendulums coupled with a weak spring is considered in
[23]. The controller is designed with use of the energy-based
SG method. Although experimental results showed that the
method succeeded in achieving the objective, the mechanism
of synchronization was not clear. In this study, the contracted
dynamics of the whole system is analyzed and properties of
the system are investigated. The energy-based SG method is
also employed in [24], [25] to the problem of swinging the
Furuta pendulum up. In [26] a framework for system analysis
and design is described based on nonlinear system models
and nonperiodic signals generated by nonlinear systems.
To this end, the notion of the excitability index is intro-
duced. The SG algorithms of creating feedback resonance
in nonlinear multi-DOF oscillators are described. For strictly
dissipative systems bounds of energy and excitability change
by feedback are established.

Works of 2005 – 2011: The idea of [26] was imple-
mented in [27] for a special case of numerically estimating
the excitability index for a second-order linear oscillator. It
is shown that the SG excitation provides an exact solution
to the maximum energy problem. In [28] the SG algorithm
to control non-linear oscillations of a dynamic system for
both regulation and tracking problems by the example of
chaotic Colpitts oscillator is presented. A method for render-
ing passive nonlinear affine-incontrol discrete-time systems

based on the discrete-time version of the SG algorithm
is proposed in [29], [30]. In [31], a method for control
of underactuated nonlinear systems is proposed, based on
introducing artificial invariants and using SG algorithms. Its
application is illustrated by an example of cart-pendulum
oscillations stabilization around the upper equilibrium. In
[32] the SG approach is used for dosing system design based
on the mathematical model for polycystic ovary syndrome
(PCOS). The the SG method is used in [33] for improve-
ment of the time-delayed feedback control by adaptively
tuning the controller feedback gain. The Energy-based SG
control scheme is used in [34] for designing the swinging-up
controller, stabilizing the Reaction Wheel Pendulum about
unstable (inverted) position for arbitrary initial conditions.
The SG-based inverse optimal control approach for the
asymptotic stabilization of discrete-time nonlinear systems
is presented in [35].

Works of 2012 – 2015: In [36] the mechanism of en-
trainment to natural oscillations in a class of (bio)mechanical
systems described by linear models is investigated. The SG
nonlinear control strategy is analyzed providing the system
oscillation in resonance mode with a natural frequency. The
possibilities of energy-based SG control implementation for
nonlinear oscillations are studied in [37] by the example of
controlling the cart-pendulum system. Paper [38] is devoted
to networks of delay-coupled Stuart-Landau oscillators. The
SG method is used for deriving the adaptive algorithm for
an automatic adjustment of the coupling phase with which
different states of synchronization, e.g., in-phase oscillation,
splay, or various cluster states, can be selected. The adaptive
complex scaling factors schemes based on the SG method for
the real drive chaotic system and complex response chaotic
system are proposed and studied in [39]. Paper [40] presents
a SG control strategy for swinging the Furuta pendulum
up towards the desired upright position, which uses only
directly measured coordinates. The possibility to apply the
SG control to elastic structures is analyzed in [41] uses two
serial springs for hopping show in simulation the viability
of our approach. Proposed here combination of SG control
with learning is a novel approach which opens interesting
perspectives for further research on passive control. In [42],
a control problem for a nonstationary dynamic system with
nonfixed termination time and terminal functional in the
presence of uncertain parameters is considered. The SG
principle is employed, providing a guaranteed value of
the quality functional. Paper [43] is concerned with Direct
Gradient Descent Control (DGDC) of general nonlinear
systems. To improve the convergence, we extend the DGDC
by decreasing both the performance function and its time
derivative. In [44] the ‘nonsmooth’ versions of SG-algorithm
in differential and finite form are formulated. Conditions for
the control goal achievement are derived. In [45] a detailed
analysis of the application of the passification approach to
the problem of rendering the hyperbolic upright equilibrium
of the simplified model of the Furuta pendulum globally
attractive. The VSS-like modification of the SG method,



stabilizing regulator is suggested and examined.

Works of 2016 – present: In [46] a new distributed SG
control algorithm for the sine-Gordon equation is proposed,
creating the antikink traveling wave, allowing suppressing
defects and obtaining stable propagation of an antikink in
the form of the exact traveling wave solution. The boundary
energy control problem for the sine-Gordon equation is
posed in [47], [48]. The SG control laws with smooth
and nonsmooth goal functions in the differential and finite
forms are proposed. The conditions ensuring control goal are
established. An important feature of the proposed control
is the fact that it is continuous along trajectories of the
closed-loop system. Theoretical results are illustrated by
example of nonsmooth control for a non-affine in control
pendulum-like system. In [49] adaptive Complex function
projective synchronization (CFPS) schemes and parameters
update laws based on the SG method are designed. The
convergence factors and pseudogradient condition are added
to regulate the convergence speed and increase robustness
and the SG method extension from real field to complex field
is proposed. The problem of event-triggered sampled-data
nonlinear control of Hamiltonian system is considered in [50]
by the example of controlling the pendulum’s energybased
on the SG speed gradient method. In [51] a distributed feed-
back control algorithm based on the SG method, achieving
nonlinear wave localization is developed. This algorithm is
extended to coupled nonlinear partial differential equations to
obtain consistent localized wave solutions at rather arbitrary
initial conditions. An energy control problem is analyzed in
[52] setting, where the SG method is developed and justified
in PDE setting for nonlinear sine-Gordon equation. The ap-
plicability of the Krasovskii-LaSalle principle is established
for the resulting sliding-mode closed-loop system. The state
feedback control law of this work is numerically studied
in [53] for the case of the level quantization and/or time
sampling. In [54] the boundary energy control problem for
the sine-Gordon and the nonlinear Klein–Gordon equations
considered and the SG control laws with smooth and non-
smooth goal functions are proposed. The second control
law is proved to steer the system to any required nonzero
energy level in finite time. The energy control problem
for the nonlinear sine-Gordon model driven by several in-
domain actuators is considered in [55]. The SG method
is now generalized to the in-domain actuation, aiming to
pump/dissipate the energy of the model to a desired level. In
[56] the problem of pendulum’s energy SG-based control in
presence of an irregular input disturbance is considered. The
main result is precise estimates for an initial set and a limit
set s.t. all the solutions starting in the initial set will enter
the limit set in a finite time.

REFERENCES

[1] Y. Neimark, “Avtomatnye modeli upravleniya i adaptacii (Automata
models of control and adaptation),” in Trudy IX Vsesoyuznoj shkoly-
seminara po adaptivnym sistemam (Proc. IX-th All-Union school on
adaptive systems). Alma-Ata: KazPTI, 1979, pp. 107–110, (in
Russuan).

[2] A. L. Fradkov, “Skhema skorostnogo gradienta v zadachah adap-
tivnogo upravleniya (speed-gradient scheme for control and adaptation
problems),” in Trudy IX Vsesoyuznoj shkoly-seminara po adaptivnym
sistemam (Proc. IX-th All-Union school on adaptive systems). Alma-
Ata: KazPTI, 1979, pp. 139–143, (in Russuan).

[3] A. A. Krasovsky, “Optimal algorithms in the problem of identification
with an adaptive model,” Automat. Remote Control, vol. 37, no. 12,
pp. 1851–1857, 1976.

[4] Y. Neimark, Dinamicheskiye sistemy i upravlyayemyye protsessy (Dy-
namical systems and controlled processes). M.: Nauka, 1978, (in
Russuan).

[5] A. L. Fradkov, “Speed-gradient scheme and its application in adaptive
control problems,” Autom. Remote Control, vol. 40, no. 9, pp. 1333–
1342, 1980, (Translated from Avtomat. i Telemekh., 1979, issue 9,
90–101).

[6] V. Jurdjevic and J. P. Quinn, “Controllability and stability,” J. Differ-
ential Equations, vol. 28, no. 3, pp. 381–389, June 1978.

[7] A. L. Fradkov, “Metody adaptivnogo upravleniya v sistemnykh issle-
dovaniyakh (Adaptive control methods in systems research),” in
Vsesoyuznaya shkola “Prikladnyye problemy upravleniya makrosis-
temami”. Tezisy dokladov (All-Union School “Applied Problems of
Macro Systems Control”. Abstracts). M.: VNIISI, 1985, (in Russian).

[8] ——, “Integrodifferentiating velocity gradient algorithms,” Sov. Phys.
Dokl., vol. 31, no. 2, pp. 97–98, 1986.

[9] A. L. Fradkov and A. Y. Pogromsky, Introduction to control of
oscillations and chaos. Singapore: World Scientific Publishers, 1998.

[10] M. Jordán and J. Bustamante, “A speed-gradient adaptive control with
state/disturbance observer for autonomous subaquatic vehicles,” in
Proc. 45th IEEE Conference on Decision and Control, CDC 2006,
2006, pp. 2008–2013.

[11] B. Andrievskii, A. A. Stotsky, and A. L. Fradkov, “Velocity gradient
algorithms in control and adaptation,” Autom. Remote Control, vol. 49,
no. 12, pp. 1533–1564, 1988.

[12] A. Fradkov, I. Miroshnik, and V. Nikiforov, Nonlinear and Adaptive
Control of Complex Systems. Dordrecht: Kluwer, 1999.

[13] B. Andrievsky, E. Kudryashova, N. Kuznetsov, O. Kuznetsova,
T. Mokaev, and S. Tomashevich, “Simple adaptive control of aircraft
roll angle, suppressing the wing rock oscillations,” Mathematics in
Engineering, Science and Aerospace (MESA), vol. 10, no. 3, pp. 373–
386, 2019.

[14] A. Fradkov and A. Stotsky, “Speed gradient adaptive control algo-
rithms for mechanical systems,” Intern. J. Adaptive Control and Signal
Processing, vol. 6, no. 3, pp. 211–220, 1992.

[15] A. Fradkov, “Swinging control of nonlinear oscillations,” Intern. J.
Control, vol. 64, no. 6, pp. 1189–1202, 1996.

[16] B. Andrievskij, P. Guzenko, and A. Fradkov, “Control of nonlinear
oscillations in mechanical systems by the steepest gradient method,”
Autom. Remote Control, vol. 57, no. 4, pp. 456–467, 1996.

[17] A. L. Fradkov and A. Y. Pogromsky, “Speed-gradient control of
chaotic continuous-time systems,” IEEE Trans. Circuits Syst. I, vol. 43,
no. 11, pp. 907–913, 1996.

[18] B. Andrievsky and A. Fradkov, “Feedback resonance in single and
coupled 1-dof oscillators,” Intern. J. Bifurcation and Chaos in Applied
Sciences and Engineering, vol. 9, no. 10, pp. 2047–2057, 1999.

[19] H. Xu, B. Lu, and G. Chen, “Adaptive control of a nonlinear
continuous-time chaotic system with uncertainty,” in Proc. World
Congress on Intelligent Control and Automation (WCICA), vol. 5,
2000, pp. 3218–3220.

[20] A. Shiriaev and A. Fradkov, “Stabilization of invariant sets for
nonlinear non-affine systems,” Automatica, vol. 36, no. 11, pp. 1709–
1715, 2000.

[21] ——, “Stabilization of invariant sets for nonlinear systems with
applications to control of oscillations,” Intern. J. Robust and Nonlinear
Control, vol. 11, no. 3, pp. 215–240, 2001.

[22] H. Ludvigsen, A. Shiriaev, and O. Egeland, “Stabilization of stable
manifold of upright position of the spherical pendulum,” Modeling,
Identification and Control, vol. 22, no. 1, pp. 3–14, 2001.

[23] M. Kumon, R. Washizaki, J. Sato, R. Kohzawa, I. Mizumoto, and
Z. Iwai, “Controlled synchronization of two 1-dof coupled oscillators,”
IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 15, no. 1, pp.
109–114, 2002.

[24] J. Acosta, J. Aracil, and F. Gordillo, “Nonlinear control strategies for
the Furuta pendulum,” Control and Intelligent Systems, vol. 29, no. 3,
pp. 101–107, 2001.



[25] F. Gordillo, J. A. Acosta, and J. Aracil, “A new swing-up law for
the Furuta pendulum,” Intern. J. Control, vol. 76, no. 8, pp. 836–844,
2003.

[26] A. Fradkov, “A nonlinear philosophy for nonlinear systems,” in Proc.
IEEE Conference on Decision and Control, CDC 2000, vol. 5, 2000,
pp. 4397–4402.

[27] B. Andrievsky, “Computation of the excitability index for linear
oscillators,” in Proc. 44th IEEE Conference on Decision and Control,
and the European Control Conference, CDC-ECC ’05, vol. 2005,
2005, pp. 3537–3540.

[28] M. Jordän and J. Bonitatibus, “Speed-gradient control with non-
linearity in the parameters for a chaotic colpitts oscillator,” in Proc.
Intern. Conf. on Physics and Control, PhysCon 2005, vol. 2005, 2005,
pp. 266–271.

[29] E. Navarro-Lipez, “A speed-gradient-based method to passify non-
linear discrete-time systems,” IFAC Proceedings Volumes (IFAC-
PapersOnline), vol. 38, no. 1, pp. 300–305, 2005.

[30] ——, “Local feedback passivation of nonlinear discrete-time systems
through the speed-gradient algorithm,” Automatica, vol. 43, no. 7, pp.
1302–1306, 2007.

[31] J. Aracil, A. Fradkov, and F. Gordillo, “Speed-gradient algorithms for
underactuated nonlinear systems,” IFAC Proceedings Volumes (IFAC-
PapersOnline), vol. 16, pp. 842–847, 2005.

[32] H. Saito and H. Ohmori, “Control of an abnormal human menstrual
cycle in pcos by speed gradient algorithm,” in Proc. SICE Annual
Conference, 2011, pp. 1436–1441.
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