Synthesis, crystal structure and thermal expansion of gaudefroyite-type borates: Sr₃Bi(YO)₃(BO₃)₄, Sr₂CaBi(YO)₃(BO₃)₄ and Sr₂BaBi(YO)₃(BO₃)₄

Andrey P. Shablinskii^{1,*}, Lidiya G. Galafutnic¹, Rimma S. Bubnova^{1,2}, Stanislav K. Filatov²

¹Institute of Silicate Chemistry, Makarova Emb. 2, Saint-Petersburg, 199034 Russia ²Saint-Petersburg State University, University Emb. 7/9, Saint-Petersburg, 199034 Russia

* shablinskii.andrey@mail.ru

Borates are perspective materials for luminescent matrix due to the wide bandgap, relatively easy synthesis and high thermal stability.

The Sr₃Bi(YO)₃(BO₃)₄, Sr₂CaBi(YO)₃(BO₃)₄ and Sr₂BaBi(YO)₃(BO₃)₄ compounds were synthesized via solid state reactions. Reagents, SrCO₃ (99.99%), CaCO₃ (99.99%), Y₂O₃ (99.99%), BaCO₃ (99.99%), Bi₂O₃ (99.99%) and H₃BO₃ (99.99%), in stoichiometric ratios, were mixed in an agate mortar and pestle. This mixture was ground for 45 min and placed in platinum crucibles. The powder was heated at 600 °C for 3 h in air to decompose the metal carbonate and boric acid. Then, the mixture was pressed into a pellet and heated at 300 °C for 5 h, 500 °C for another 5 h, then ground carefully, and finally fired at 950 °C for 24 h.

Crystal structure $Sr_3Bi(YO)_3(BO_3)_4$ was first investigated in [1]. Unit cell parameters of $Sr_3Bi(YO)_3(BO_3)_4$ are: a = 10.697(2), c = 6.7222(1) Å, V = 666.2(2) Å³, space group $P6_3$. There are 10 crystallographically independent atoms in the asymmetric unit. Among them, the Bi and B1 atoms locate on the special sites, and Y and O atoms occupy the general sites. The Y atom is coordinated b seven O atoms to form a pentagonal bipyramid. These YO₇ polyhedra share edges to form a one-dimensional (1D) chain along the *c* direction. The chains are bridged by B_2O_3 groups through sharing vertex oxygen atoms to construct a three-dimensional (3D) framework, which affords two kinds of channels along the [001] direction. Sr atoms and isolated B(1)O₃ triangles are located in the larger channel. The B(1)O₃ triangles are surrounded by Sr atoms.

The thermal behavior of $Sr_3Bi(YO)_3(BO_3)_4$, $Sr_2CaBi(YO)_3(BO_3)_4$ and $Sr_2BaBi(YO)_3(BO_3)_4$ compounds was studied using in situ high-temperature XRD in the range 25-800 °C by means of Rigaku Ultima IV powder X-Ray diffractometer (CuK α) with a high-temperature camera. According to the principles of high temperature crystal chemistry [2] for borates with isolated triangle groups, thermal expansion of these borates is practically isotropic.

The studies have been supported Russian Foundation of Basic Researches project №18-29-12106. X-Ray diffraction experiments were performed at the X-Ray Diffraction Center Of Saint-Petersburg State University.

Gao J., Li S. BiSr₃(YO)₃(BO₃)₄: a new gaudefroyite-type rare earth borate with moderate SHG response. Inorg. Chem., 2012, 51, 420-424.

Bubnova R., Filatov S. High-temperature borate crystal chemistry. Z. Kristallogr, 2013, 228, 395–428.