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Таким образом, экспериментально выявлена возможность сквозной регистрации
температур и тепловых потоков на моделях в начале и при окончании вакуумиро-
вании аэродинамического блока перед воздействием высокоскоростного потока на
модель, а затем непосредственно в потоке.
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В докладе рассматриваются ударные волны, возникающие в сверхзвуковых по-
токах ионизированных одноатомных газов. При этом предполагается, что зона
релаксации физико-химических процессов в ударной волне много меньше размеров
обтекаемого тела, и ее можно рассматривать как поверхность, разделяющую две
области локально равновесного газового потока.

В настоящей работе рассматриваются потоки химически однородного одноатом-
ного газа, который можно считать идеальным и описывать на уровне одночастич-
ных функций распределения даже после многократной ионизации.
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Как известно, значения параметров по разные стороны от поверхности разрыва
связаны соотношениями, вытекающими из динамических законов сохранения. Та-
кими законами являются законы сохранения импульса, полной энергии и массовой
плотности. В классической газовой динамике, в каждой точке поверхности разрыва
выписываются условия динамической совместности (см., например, [1, 2]):

[ρ~vΘ] = [p~n], (1)
[(
ρ
v2

2
+ e

)
Θ

]
= [pvn], (2)

[ρΘ] = 0, (3)

где используются обозначения: ρ — массовая плотность смеси, ~v — газодинамиче-
ская скорость, p — давление, e — энергия единицы объема, ~n — вектор нормали
к поверхности разрыва, Θ = N − vn (N — скорость перемещения поверхности раз-
рыва, Θ — скорость ее распространения в газе);

[b] = b(+) − b(−), (4)

b(−) и b(+) — значения параметра b до и после ударной волны.
Одноатомный ионизированный газ состоит из атомов A0, ионов Ac с зарядом +c и

свободных электронов e−. При всех столкновениях микрочастиц сохраняются ядра A∗ и
электроны e−. Поэтому, в ситуации, когда степень ионизации исследуемого газа зара-
нее не известна, вместо условия совместности (3) можно использовать соотношения:

[ñ∗Θ] = 0, (5)

[ñe−Θ] = 0, (6)

где ñ∗ — общее число ядер A∗, входящих в разные чатсицы Ac, где c = 0, 2 . . .N
(N — номер химического элемента A в периодической системе элементов); ñe− —
общее число электронов (свободных и входящих в частицы Ac, c = 0, 1, . . .N − 1).

Использование условий совместности (1), (2), (5), (6) и равновесных функций
распределения, нормированных на общие числа ядер и электронов в единице объе-
ма [3], позволяет упростить исследование равновесных состояний ионизированных
газов за ударными волнами.

В докладе уделяется особое внимание исследованию состава ионизованных га-
зов за прямыми скачками уплотнения.
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В экспериментах в аэродинамической трубе наблюдались вращательные и по-
ступательные колебания плохо обтекаемого тела (модели сегмента моста) под дей-
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