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TUR2021

* International Conferance on Tourmaline

This volume contains 52 abstracts and keynote abstracts presented at the 3™ International Conference
on Tourmaline (TUR2021), held on Elba Island, Italy, from 9 to 11 September 2021 (https://www.tur2021.
com).

The Conference has been organized along with the sponsorship of SIMP (Italian Society of Mineralogy
and Petrology), and support of the Sapienza University of Rome and Natural History Museum of Milan.

The abstract volume is the joint effort of all conference participants and covers many aspects of tourmaline
regarding the latest discoveries across the range of crystallography, mineralogy, petrology, geochemistry,
isotopic analyses, ore-deposits research, gem science, and much more.

All the abstracts published in this volume were critically read and approved by the scientific committee
for presentation at TUR2021.

We wish to express our deepest gratitude to the members of the scientific committee of TUR2021: J.
Cempirek, (Masaryk University), A. Dini (National Research Council of Italy), B.L. Dutrow (Louisiana State
University), A. Ertl (University of Vienna), D.J. Henry (Louisiana State University), H.R. Marschall (Goethe
University Frankfurt), M. Novak (Masaryk University), R.B. Trumbull (Helmholtz Centre Potsdam-GFZ),
V.J. van Hinsberg (McGill University, Montreal).

Particular thanks are due to Alessandra Altieri and Beatrice Celata for all their effort and cooperation in
the organizational and editing aspects of the abstracts.

The publication of this abstract volume was made possible through the support of the NATURA journal
staff, namely Michela Mura and the managing director Anna Alessandrello, to whom we express our
gratitude.

Ferdinando Bosi

Federico Pezzotta
Giovanni B. Andreozzi
(Co-chairmen of TUR2021)
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Towards tourmaline REE pattern explanation

Oleg Vereshchagin'*, Sergey N. Britvin', Bernd Wunder?,
Olga Frank-Kamenetskaya', Franziska D. H. Wilke?

Natural tourmalines could contain sufficient amounts
of rare earth elements (up to ~1000 ppm; Bacik et al.,
2012), exhibit both positive and negative Eu anomalles
(Copjakova et al., 2013) and are characterized by differ-
ent light / medlum / heavy rare earth elements (REE) ra-
tios (Gadas et al., 2012). Even though REE patterns of
natural tourmalines were studied for decades, no direct
information on REE speciation in tourmaline and factors
affecting REE pattern are available. Exploring the way
lanthanides incorporate in tourmaline structure one could
get both new functional materials and explain REE pat-
terns of natural tourmalines.

In the course of current work we report on synthetic
REE*- tourmalines (REE*" = La, Nd, Eu, Yb) and discuss
the role of the X-site cations.

REE*- tourmalines were synthesized in 11 experi-
ments at temperatures of 700 °C and pressures of 0.2
(Fig. 1) or 4.0 GPa. Besides REE-tourmaline, other REE
borates were obtained (<10 vol. %;): REEAI, (B,0, )0, .
in La-, Nd- and Eu-synthesis, REEBSiO, (stlllwelhte like
compounds) in La- and Nd-synthesis, Eu B,SiO, and Yb-
BO,. In Yb-synthesis Yb,(S1,0.) (keivyte- (Yb)) was also
obtained.

Elongated or needle-like prismatic tourmaline crystals
from high-pressure experiments are much smaller (up to
0.5%6 um) than those from the low-pressure experiments
(up to 100x300 pm).

Based on elemental analysis data we have found that
REE-content in tourmalines varies significantly (0.05 -
1.05 atoms per formula unit (apfu)) with Yb<La<Nd<Eu
independent of the pressure conditions. REE-content in
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tourmalines, obtained at low pressure, is 2-3 times higher
than that obtained from high-pressure experiments. The
Nd- and Eu-tourmalines exhibit cathode- and photolumi-
nescence properties, which confirm their trivalent oxida-
tion state. Single-crystal X-ray diffraction data show that
Eu®" and Nd* occupy the 9-coordinated X-site in the tour-
maline structure (Table 1).

Fig. 1 - BSE images of REE-tourmalines (Tur), obtained at low pressure
(2 kbar): (a) La-tourmaline and LaBSiO, (R1), (b) Nd-tourmaline and
NdBSiO, (R2), (c) Eu-tourmaline, (d) Yb tourmaline and Yb,(Si,0.)
(KV).

Our investigations indicate pressure effect and crystal-
chemical constraints on REE incorporation in tourma-
lines, which is of great importance for geoscientific im-
plications.

It was suggested that the dominant factor govern-
ing the species of REE is temperature (e.g., Sverjensky,
1984). Our data on synthetic tourmalines, obtained at
same temperature (700 “C) but at different pressures (0.2 /
4.0 GPa), clearly show that additional pressure could be a
main factor, affecting tourmalines REE pattern.

It was also proposed that significant enrichment of
heavy REE in tourmaline (in contrast to the REE patterns
of the whole-rock samples) indicates a mobilization of
heavy REE during hydrothermal processes (Yavuz et al.,
2011). However, according to our data predominance of



light and medium REE (e.g., Eu, Nd, La) over heavy
REE (Yb) in tourmalines, could be due to tourmaline
crystal structure constrains, not crystallisation medium
effects.

Preliminary experimental data on trace-element
partitioning between tourmaline and silicate melt (van
Hinsberg, 2011) predicted that Eu** is the preferential
valence state in the tourmaline crystal structure and
Eu*" occur at octahedral sites. We have found that (1)
the tourmaline crystal structure can accommodate REE
as trivalent cations; and (2) REE** cations are located
at the 9-coordinated X-site. The latter is also in a good
agreement with published data, as Eu** is not even ob-
served as six-coordinated polyhedral (Gagné er al.,
2018). Besides that, we can conclude that tourmalines
could be a phase that concentrates REE during crystal-

lization process, as total amount of REE** can reach
amounts up to 1 apfu.

It is worth to note, that the REE" valence state (e.g.,
Eu®" or Eu*") depends on the redox conditions at which
tourmaline formed and that Eu**-rich tourmaline should
not be completely excluded for natural occurrence. Our
data do not exclude the prediction, that divalent rare-earth
cation could occur at the X-site as REE?" cations are even
larger than REE?*" cations.

Additionally, one might conclude that natural tour-
malines could contain other trivalent cations at the X-site
(e.g., Bi*"; Ertl & Bacdik, 2020) and that the general clas-
sification scheme for tourmaline group may be expanded,
as not only monovalent (e.g., Na, K, Li, Ag, NH,) and
divalent (e.g., Ca, Sr, Pb), but also trivalent cations could
occupy this site.

Table 1 - Variations of X-site occupancies of natural and synthetic tourmalines.

No a, A o, A X,, <X-0>, A Y, <Y-0>, A Z, <Z-0>, A Reference
1. 15.903(5) 7.168(3) O,-EU' 2.708 Al , Mg . 1.990 Al , Mg, 1.927 Eu-tourmaline
2. | 15.8934(15) | 7.1304(7) | o, N&,. | 2705 | Al Mg, | 1979 | Al Mg, | 1922 Nd-tourmaline
3. | 159101y | 7.131(1) | o, Na,, - Al Mg 1992 | AL Mg . | 1920 | Berryman esal.,2016
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