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1. INTRODUCTION & OBS. DATA

Figure 1. The visual positions and modeled trajectories for several S-stars.

 

The main subject of this work is the Galactic Center star cluster, also known as the S-stars. The observations of these
stars, which began in the early '90s, revealed the existence of the supermassive compact object at the Center of our
Galaxy. The discoverers of this phenomenon, Prof. Dr. Reinhard Genzel and Prof. Andrea Ghez, were awarded half of
the 2020 Nobel Prize in Physics.

 

Accurate investigation of the stars' orbital motion can provide the opportunity to test different gravitational theories.

 

There are many objects in the S-stars cluster. We will point our interest to the stars S2 (S0-2), S38 (S0-38), and S55 (S0-
102), as they have relatively close orbits, and the S2 star motion is studied in greatest detail.

 

The dataset that we use is the same as in works [1] and [2] and consists of the S-stars data published in works [3-6].

 

 

 



2. MODELING

Figure 2. The best-fit trajectories of the S-stars



Figure 3. The best-fit RV curve of the S2 star.

 

Our approach is to define a model depending on several parameters that we could infer using the Bayesian sampling
techniques.

 

The model has these steps:

1. Integration of the PPN Equations of Motion on a plane. This step requires the initial conditions, which is a phase
vector of 4 components (x , y , v , v ), the mass M of the supermassive compact object Sgr A* and the 2 PPN

parameters β and γ

2. The next step is to rotate the orbital plane using the given inclination i and the longitude of the ascending node
Ω. To define a single star's orbit, we have to use a total of 6 parameters. Then the coordinates must be corrected
using the initial position (x , y ) and the velocity vector (v , v , v ) . And after that, we have to
correct the difference in reference frames using 4 new alignment parameters.

3. After we obtained the 3D trajectories, we should divide the x and y coordinates by the distance R  to the
Galactic Center to obtain the visual RAs and DECs. Also, the Rømer time dilation must be taken into account at
this step.

4. The obtained radial velocities must be transformed into observable values taking into account the gravitational

redshift and the relativistic Doppler effect using the formula

This model is described in more detail in [1].
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3. MCMC INFERENCE
First of all, it is necessary to introduce the Bayes rule

All of the Bayesian sampling techniques are based on this theorem. Here θ is a parameter (or a vector of parameters) that
we want to estimate and X represents the observational data. The p(θ) is called a prior distribution of the parameter θ. It
is the probability distribution that represents our beliefs of the parameter θ before we get any evidence. The p(θ|X) term,
which is calculated using the Bayes rule, is called a posterior distribution. It shows us how our beliefs update after
taking into account the observational data. The p(X|θ) is called a likelihood function. It is important that the
observational data X is considered to be fixed, while θ is a varying quantity, so this is actually a function of θ. The
denominator p(X) is called a marginalized likelihood and it should be considered as a normalizing constant. If the
parameter space Θ is multidimensional it is a complicated task to compute the marginalized likelihood. The Bayes rule
can be written in a simplified way

Since it is difficult to compute the Bayes rule formula itself, there are other computational methods to estimate the
posterior distribution. MCMC is a name of the class of algorithms that use the Markov chains to obtain a sample of the
desired (in our case, the posterior) distribution.

 

The prior distributions are usually set to be the uniform distributions in a given range for each parameter. And the
likelihood function is defined as

where

 

p(θ|X) = =
p(θ)p(X|θ)

p(X)

p(θ)p(X|θ)

∫
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4. POSTERIOR DISTRIBUTIONS

Figure 4. The posterior distributions of the PPN parameters β and γ. The parameters tend to be equal to 1.0, but the
accuracy is relatively low.

 



Figure 5. The posterior distribution projections on the planes of parameters M, R , and radial velocity of Sgr A*. We can
see that these parameters are highly correlated.
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Figure 6. The posterior distributions over the space of the orbital parameters of the S2 star. These parameters are almost
independent and they are very well-defined.

 

We have used the Goodman-Weare MCMC sampler [7] implemented in the AffineInvariantMCMC.jl package for Julia
language [8]. Our run contained 300 independent chains (so-called 'walkers') and the process was about 2000 iterations.



5. THE SPACEWALKER

Figure 7. The example of SW projection of the ranged posterior sample to the leading axes of parameters Ω and i of S2
star animation.

 

A human's mind is capable to imagine and think of 3D and fewer dimension objects. But when it is necessary to study
something more dimensional, it becomes much harder. Since the parameter space in the vast majority of physical
problems has a very high dimension, it is difficult to study its objects' properties. That is why the sets of parameter
vectors from the high dimensional parameter space are very complicated objects to think about. The usual approach to
study such sets is to make a corner plot. The examples of such plots are figures in the previous box. But with these
corner plots, we can only look at the projections on the 2D spaces of different pairs of parameters. One can also
construct a projection on a 3D subspace of a certain three parameters. But it is difficult to think about 4D, 5D
projections, or even about the full parameter space (which is 31D in our case). That is the reason why we need cognitive
graphics tools.

 

The Spacewalker software is a tool that allows one to study the multidimensional clouds in the parameter space
(unfortunately, only available in Russian).



6. CONCLUSION
The PPN parameters are estimated to be roughly equal to 1, which is (yet not so accurate) another confirmation of
General Relativity, this time in the vicinity of the relativistic compact object.

 

The Mass of Sgr A* and the Distance to the Galactic Center are also measured. Though, their estimate seems to be
different from other results because in our case the gravitational theory parameters were also the variable values.

 

The dynamical visualization of cognitive graphics (the SW software) allows us to study the properties of
multidimensional clouds of parameters by rotating the clouds in the multidimensional space and projecting it to certain
2D planes with the leading axes of chosen parameters.
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ABSTRACT
The S-stars, located in the center of our Galaxy, are a truly unique observational phenomenon. They are located close to the
relativistic compact object, in a strong enough gravitational field, so there exists an opportunity to test gravitational theories
using their observational data. Our approach is to solve the inverse problem and infer several parameters, that include the
orbital characteristics of stars, the mass of the central object, and the distance to the Galactic Center, and also the PPN
parameters β and γ. Constraining the latter two parameters is a classical test of General Relativity. We suggest the dynamical
visualization of cognitive images to help us to study and understand the multidimensional clouds of parameters (the posterior
samples).
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