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Abstract—Many code changes that developers make in their
projects are repeated and constitute recurrent change patterns. It
is of interest to collect such patterns from the version history of
open-source repositories and suggest the most useful of them
as quick fixes. In this paper, we present REVIZOR—a tool
aimed to build custom plugins for PyCharm, a popular Python
IDE. A REVIZOR-based plugin can take change patterns and
highlight potential places for their application in the developer’s
code editor. If the developer accepts the quick fix, the plugin
automatically performs the edit. Our approach uses a graph-
based representation of code changes, which allows it to support
complex distributed code patterns. Experienced developers have
also rated the usability and the performance of such REVIZOR-
based plugin positively.

The source code of the tool and test plugin prototype are avail-
able on GitHub: https://github.com/JetBrains-Research/revizor,
A demonstration video with a short tool description can be found
on YouTube: https://youtu.be/SeLs14nco7E,

I. INTRODUCTION

In recent decades, Integrated Development Environments
(IDEs) have been evolving to provide tools that help devel-
opers write and edit code ever more efficiently [1l]. Writing
code involves making a lot of incremental changes and small
fixes. Some of such scrupulous high-concentration tasks can
be automated to boost developers’ performance. To this end,
IDEs incorporate static analysis tools that find and highlight
known problems in code, as well as suggest certain quick fixes
as possible solutions to these problems in real time. A lot of
works focus on automated program repair (APR) [2], which
includes localizing bugs and vulnerabilities in code and fixing
them. We aim to show that approaches which are similar to
APR can be applied not only to bug fixes, but to almost any
code change that is of interest to developers—from stylistic
code enhancement to the migration of APIs to a different
language version.

A good place to search for possible improvements of code
is the history of it being changed. Prior research suggests
that code changes are repetitive: from time to time different
developers not only face the same kind of problems, but try
to solve them in a similar way [3], [4]. Such code changes
constitute recurrent change patterns that can be mined from
the histories of existing software projects.

Semantic change patterns often differ in structure signif-
icantly. While some of them are one-liners or even touch
only a single statement [5]], others can be quite complex and
distributed, i.e., involving isolated tokens from different lines
of code or even different scopes connected by data or control

dependencies (as in Figure [3). From that point of view, code
analysis approaches can benefit greatly from utilizing the fact
that code is more than just plain text and work with graph-
based code representations that make it possible to keep track
and make use of the code’s structure and make decisions about
its semantics [4], [6].

In this paper, we investigate whether it might be possible to
use graph-based representations of recurrent change patterns
for code improvement suggestions within an IDE. For that
purpose, we have developed REVIZOR—a tool that allows to
build code enhancement plugins for PyCharm [7]], a popular
IDE for Python developed by JetBrains. We also propose our
prototype plugin built with nine pre-approved code change
patterns. For any given change pattern, the plugin uses a
fine-grained program dependence graph (fgPDG introduced
by Nguyen et al. [4] for mining patterns in Java) of the code
fragment before the change to localize its occurrences in the
user’s code via building subgraph isomorphisms. If such an
occurrence is found, the plugin highlights the code fragment
for the user, indicating that a quick fix can be applied. If
the user chooses to apply the fix, the plugin can do it by
performing a sequence of edit actions, which are generated
for each pattern from the versions of code before and after
the change.

To evaluate the proposed plugin, we conducted a survey of
nine experienced developers. The participants positively rated
the plugin’s usability and performance and mostly approved
the idea of using recurrent code changes to suggest relevant
quick fixes in the IDE.

II. BACKGROUND

In this section, we describe the approaches that we adopted
to build our pipeline. In Sections and we character-
ize the solutions that we considered for the plugin to localize
patterns in source code and to apply the respective changes
(see the two final stages in Figure[I), and we also contrast the
adopted solutions with similar ones. In Section we relate
a prospective graph-based approach to code change patterns
mining. Integrating it into a code enhancement pipeline is
unprecedented and seems promising.

A. Code Pattern Localization

There exists a number of relevant approaches that aim to
mine fix patterns and use them to localize potential code flaws.
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Meng et al. presented an approach called LASE [8]], where
the authors initially built a context-aware edit script from two
or more code change examples and then identified appropriate
locations for code transformation with a generalized tree-
based edit context. To localize such a context in the AST
of target code, the authors used the Maximum Common
Embedded Subtree Extraction algorithm. A similar approach
to localization with a tree-matching algorithm was also used
by Bader et al. in their tool called GETAFIX [9], in which
bug fix patterns mined in Java are automated. However,
these approaches cannot be used to localize distributed code
patterns, which may include many subtrees of an AST.

The authors of DEVREPLAY [10] collected code change
patterns via AST comparison, converted the source code of
the patterns into regular expressions, and then tried to match
any of them with the user’s code to localize possible problems
in it. Such method is able to handle multi-line patterns,
but still cannot automatically manage control or data flow
dependencies between elements of the pattern as graph-based
approaches do.

B. Edit Template Application

After a pattern is localized in code and the developer
confirms applying the fix, the exposed code fragment is
changed in accordance with the appropriate edit script. This
is usually done via AST transformations similarly to how it
was described by Meng et al. [8]], [[11l]. For that purpose, the
authors used edit actions of four types—insert, delete, update
and move—generated by a modified version of CHANGEDIS-
TILLER [12]], a source code differencing tool for extracting
fine-grained edit scripts from two versions of an AST: before
and after the change.

Bader et al. [9] used a similar tool called GUMTREE, and,
according to Falleri et al. [13]], GUMTREE represents edit
actions in a more accurate and concise way compared to other
source code differencing tools.

Nowadays, researchers also widely exploit the ideas of
Neural Machine Translation (NMT) that view the task of
applying changes as a translation problem from a defective
code fragment into a correct one [14], [15]. These approaches
are hardly interpretable and require collecting a large number
of similar patches to train the model, which is a difficult
task. On the contrary, heuristic approaches like the ones that
employ AST edit actions need far less input and computational
resources to perform.

C. Collection of Recurrent Code Changes Using Graphs

To keep track of semantic features, as well as data and
control dependencies between the elements of source code,
more complex data structures such as graphs can be used.
Nguyen et al. proposed an approach called CPATMINER [4]]
for mining graph-based change patterns in Java code. The
representation of code that they used is called Fine-Grained
Program Dependence Graph (fgPDG) and is based on the AST
of the source code. Such a graph includes three types of nodes:
data nodes (for variables, literals, etc.), operation nodes (for

arithmetic expressions, assignments, function calls, etc.), and
control nodes (for control statements like i f, for, while,
etc.). These nodes are linked with additional data and control
dependency edges.

To represent code changes, Nguyen et al. introduced the
concept of a change graph. A change graph is built using
two fgPDGs of the code before and after a given change;
corresponding unchanged graph nodes are connected with
mapping edges. The authors also suggested a way to use this
data structure to build a pattern-mining algorithm. The main
idea behind it is to recursively extend each already mined
change graph to the most frequently encountered adjacent
vertex and then match isomorphic graphs using a hash-based
heuristic [[L6] to put them into one particular pattern.

In our prior work [17], we re-implemented this approach
for Python, collected and analyzed fgPDG-based code change
patterns from 120 popular GitHub repositories. This allowed
us to collect recurrent in-the-wild code changes: code enhance-
ments, bug fixes, refactorings, etc. In this work, our goal was
to implement quick-fixing actions so that these graph-based
changes could be applied automatically in the developer’s code
in the IDE.

III. IMPLEMENTATION
A. Pipeline Overview

We have implemented an approach to enhancing IDEs with
valuable up-to-date code improvement suggestions in a data-
driven way. Our contribution is REVIZOR, a tool that allows
to create custom plugins with pre-approved quick fixes for
Python code. We also built a prototype plugin for PyCharm,
a popular Python IDE based on the Intelli] Platformm The
plugin is created using code change patterns and respective
code samples mined with PythonChangeMiner [17], which
analyzes the graph-based representation of code changes in
Git repositories and detects change patterns without any prior
specification of what is worth changing in Python code, thus
sparing the necessity to devise and manually write code
enhancement rules. The proposed approach allows plugins to
locate distributed code patterns, i.e., the patterns involving
isolated tokens that are located on multiple lines of code
and connected by some data or control dependencies. Using
fgPDGs enables greater matching flexibility and structural
awareness compared to general regex patterns.

The full pipeline behind REVIZOR is shown in Figure
The steps to build the plugin are as follows:

1) Collecting: Collect graph-based patterns of code changes
in Python and choose the ones that should be automated.

2) Preprocessing: Build the REVIZOR plugin using any type
of sources from step 1. If in future any new change
patterns are added, re-build the plugin.

The steps are described in more detail in the next subsections.
For more information on how to build a plugin with REVIZOR,
see its README on GitHub [18]].

Uhttps://plugins jetbrains.com/docs/intellij/intellij- platform.html
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Fig. 1. An overview of the proposed approach.

After the plugin is installed in the IDE, it tracks developer’s
actions when a .py file is opened or changed in the code
editor. Namely, the plugin:

i Builds an fgPDG for each function in the developer’s code
using its PSI tree (an enriched form of a concrete syntax
tree used in the IntelliJ Platform)E] It is performed on-the-
fly using IntelliJ’s mechanism called code inspectionsﬂ
Checks such graphs for possible subgraph isomorphisms
with the before version of each available change pattern
stored in the plugin’s resources.

Highlights the corresponding code tokens in the editor

if such an isomorphism is detected and suggests the

respective improvement.

iv Performs the improvements confirmed by the developer
using a sequence of edit actions extracted with GUMTREE
during the preprocessing step.

=
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B. Change Pattern Collecting

In our prior work [[17], we had gathered a dataset of 120
popular GitHub repositories based on their domain, length
of the commit history, age of the project, and number of
contributors. Finally, we had discovered a total of 7,481 code
change patterns. To understand their semantics better, we
manually evaluated and categorized 803 patterns that appeared
in at least two projects. From this pool, we selected nine
patterns presented in Table 2] for the evaluation of our test
plugin’s prototype according to the following criteria: the
patterns had different structure and semantics and constituted
good examples of what software engineers we consulted
thought worth automating. The selected changes are related
to developers’ best practices, which evolve rapidly with any
language and are rarely documented promptly. Also, fixes for
such changes as Enumerate are not easy to implement because
the pattern could be distributed. REVIZOR-based plugins not
only detect such unique change patterns but fix them as shown
in Figure [3] Finding change patterns can be automated to a
large extent and it is a promising direction of future work.

C. Pattern preprocessing

Before the mined change patterns can be used in the plugin,
they should be preprocessed with our tool. The process is fully

Zhttps://plugins.jetbrains.com/docs/intellij/psi.html
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Name Before After
IsFile os.path.exists(path) os.path.isfile(path)
IsDirectory os.path.exists(path) os.path.isdirectory(path)
Enumerate fori in_rangg(len(lst)): for i, var in enumerate(Ist):
var = Ist[i]
Zeros np.array([0, ...]) np.zeros(...)
Keys sorted(vocab.keys()) sorted(vocab)
Range np.array(range(n)) np.arange(n)
Assert self.assertls(x, True) self.assertTrue(x)
f = getattr(self, 'func’) f = getattr(self, 'func’)
Callable isinstance(f, collections.Callable)  callable(f)
Log1p np.log(1 + abs(x)) np.log1p(abs(x))

Fig. 2. The examples of the chosen nine change patterns for REVIZOR-based
plugin prototype evaluation.

automated except for the specification of tooltip annotations
for each pattern that will appear in the IDE.

1) Assignment of matching modes: During preprocessing
of the supplied graphs, REVIZOR automatically specifies how
data vertices from the pattern should be matched with the ones
from developer’s code when a REVIZOR-based plugin looks
for “familiar” patterns in code. Such rules are called matching
modes and take into account the vertices’ labels, positions, and
neighbours in the fgPDG.

Examples. Some user-defined variable names that refer to
the same data element (e.g., a list may be named lst,
data or items) do not need to be exactly matched dur-
ing subgraph isomorphism search, and therefore we assigned
such vertices with the match_any_label matching mode.
Other variable names should be considered as having a
partial match with a common suffix, e.g., dict.keys and
vocab.keys (the match_longest_common_suffix
mode). Some should always be matched exactly as they
are built-in or external library Python functions and at-
tributes, e.g., collections.Callable or np.log (the
match_original_labels mode).

2) Generating edit actions: We use GUMTREE [13] to
extract sequences of edit actions from PSI trees of the before
and after code fragments related to the change (they are stored
by the miner together with the respective graphs). Edit actions
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def iterate_and_print_even_items():
data = [1, 2, 3]
print('start working...')
for i in range(len(data)):
print(f'Counter: {i}' Patterns

. N secnumerate) |
current_item = data[if7

if current_item % 2 == 0:
print(f'Item: {current_item}")

def iterate_and_print_even_items():
data = [1, 2, 3]
print('Start working...')
for i, current_item in enumerate(data):|
print(f'Counter: {i}')
if current_item % 2 == 0:
print(f'Item: {current_item}")

Fig. 3. An example of applying a graph-based change pattern in our
plugin: replacing the range function call in the for loop condition with
enumerate. The highlighted code tokens are placed in different lines of
code and include all the vertices of the detected fgPDG with respect to the
data flow dependencies, e.g., data declaration in line 37.

keep references to the corresponding vertices of the PSI tree
before the change, making it possible to apply these actions
to code merely one by one.

While GUMTREE extracts all edits from such code changes
(most of them potentially unrelated to our pattern), we need
to get only necessary actions. We do so by calculating a
Longest Common Edit Operation Subsequence with gener-
alized identifiers by iteratively comparing the extracted edit
actions sequences pairwise. A similar process was described
in detail in the work about LASE [8]], but instead of keeping an
edit context, we use the isomorphic mappings between fgPDGs
for all encountered fragments of the pattern.

3) Extending fgPDGs: When an appropriate subsequence
of edit actions is extracted and saved, we extend the originally
mined fgPDG of the pattern with additional vertices that
appeared in these edits. This is done because some of them
may contain PSI nodes that did not even exist in the original
fgPDG of the pattern, such as parents of the moved or inserted
vertices in the PSI tree.

Finally, the preprocessing script automatically saves the
assigned matching modes and edit actions, as well as the
extended graph and the manually provided description of each
pattern. After loading all of them as resources, the plugin is
ready to go.

D. Possible Application

A REVIZOR-based plugin may meet the following purposes
of a code standardization linter:

o Self-education (individual level): Use our prototype with
a selection of promising code changes from popular
GitHub repositories.

o Enforcement of style guidelines (team/company level):
Build a plugin around mined or manually created patterns
of interest.

« Introduction of fresh high-quality inspirations from other
developers (individual/team/company/education level):
Build a plugin around mined and sifted patterns from
relevant code repositories.

IV. EVALUATION

As a preliminary study, we asked nine developers to install
our plugin in their PyCharm IDE and test it on an example
project [19]], which contained manually selected code snippets
from several Python projects where the chosen patterns were
encountered during mining. The participants were requested to
find and perform all the suggested code changes, considering
the usability of the tool. All the developers had from two to five
years of professional experience and confirmed that they often
used intention actions in the IntelliJ-based IDEs to improve
their code quality. The survey participants also agreed that the
idea of using the most common code changes mined from
GitHub as quick fixes in the IDE looked potentially useful.

We asked them to rate different aspects of the plugin’s
performance with one of the four responses: very dissatis-
fied (1 point), not really satisfied (2 points), rather satisfied
(3 points) and very satisfied (4 points). The average score
we received regarding the correctness of the plugin’s edit
operations was 3.66 out of 4, and the overall usability was
rated at 3.77 out of 4. Developers also highly evaluated the
performance of REVIZOR in terms of not affecting the overall
IDE performance (3.88 out of 4). The lowest rated feature
of the plugin was the pattern’s visualization part (3.33 out of
4), as it turned out that the current approach to highlighting
complex distributed patterns sometimes could be confusing for
the developers.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an extendable approach to
automated code enhancement. We proposed a data-driven tool
called REVIZOR for building static code analysis plugins that
use subgraph isomorphism mappings for pattern localization
and GUMTREE edit actions to automate changes. The tool
uses frequent Python change patterns mined from GitHub
repositories. We also created a test prototype of the plugin
for a popular Python IDE called PyCharm and evaluated it on
several experienced developers who approved its usability.

We received a lot of feedback about improving the UI/UX
of the plugin, i.e., how it treats the patterns, including an
idea to highlight distributed patterns in a more intelligent
way: first highlight the key token and when the user clicks
it, highlight the other parts of the pattern. Also, we received
feature requests such as to apply the selected change across
the whole project or to suppress the suggestions for particular
scopes of code. We aim to implement these features in future.

Overall, the described data-driven approach is potentially
extendable to any other programming languages, but in order
to capture any data or control dependencies in the code,
the extended approach should be tightly dependent on the
language grammar. We also plan to support the unified fgPDG
representations in our tool for other languages using the PSI.
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