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Computer Simulation of the Droplet Electrodeformation Considering
Processes of Current Passage in a Low-conductive Dispersion Medium:
Semi-hydrostatic Approach

V_.A. Chirkov, I.A. Dobrovolsky
St. Petersburg State University, St. Petersburg, Russia

Abstract—Under the effect of the electric field, the shape of a conducting droplet suspended in low-conducting liquid
changes until the forces acting on its surface—the surface tension forces and the Coulomb force—balance each other.
Since the external fluid (dispersed medium) is a low-conducting one, the application of the electric field can lead to the
emergence of non-equilibrium dissociation-recombination layers, which can affect the steady-state value of the droplet
deformation significantly. The paper numerically investigates the effect of the electric field strength distortion due to
charged layer formation on the electrodeformation process. It is shown that results are dependent on the value of the
dimensionless parameter that determines the structure of the space charge distribution. The emergence of charged layers

can increase the deformation up to several times.

Keywords—two-phase liquid, dissociation-recombination charged layers, arbitrary Lagrangian-Eulerian method,

water-oil emulsion

1. INTRODUCTION

Under the effect of a strong electric field, low-
conducting liquids can be set into motion, which is called
electrohydrodynamic or electrically-induced one. The
latter is a specific class of flows caused by the volume
force and is actively explored in several last decades. The
basis of the phenomenon is the process of the medium
electrization, 1.e., the emergence of an electric charge in
it. In the case of single-phase liquids, the space charge
may emerge, e.g., due to a disturbance under the action
of the electric field of equilibrium between the

of the
[1]. In turn, in two-phase
immiscible liquids, a charge may emerge at the interface

dissociation  reactions molecules and

recombination of ions

between two media if their electrophysical properties
differ. One example of this phenomenon is the so-called
electro-deformation of a droplet of a relatively
conducting liquid suspended in a liquid dielectric [2].
Under the effect of the electric field, the shape of such a
droplet changes until the forces acting on its surface—the
surface tension forces and the Coulomb force—balance
each other [3], if, of course, this balance can be achieved
under specific conditions.

Since in the latter process, the external fluid
the

application of the electric field can lead to the emergence

(dispersed medium) is a low-conducting one,

of two types of electrically-induced flows at once, which
will manifest simultaneously and mutually influence each
other. Even though there are many papers devoted
individually either to electroconvection in single-phase
liquids or to EHD processes in two-phase liquids, the

Corresponding author: Ioann Dobrovolsky
e-mail address: 1.dobrovolsky@2014.spbu.ru

195

study of this complex phenomenon can hardly be found
in the literature.

At the current stage of the study, electrodeformation
of a conductive liquid droplet suspended in a low-
conducting oil is considered in a ‘“semi-hydrostatic”
approach, in which the problem of electrical deformation
is supplemented by taking into account the distortion of
the electric field distribution due to the volume
electrification, but disregarding the convective current
transfer and EHD flows in the bulk. The goal of the study
is to determine the degree of influence of the electric
field distortion near the surface of a conducting droplet
due to the formation of hetero-charged layers on the
degree of the droplet electrodeformation. In addition to
academic interest, this work is of undoubted practical
importance due to the wide occurrence of two-phase
liquid EHD devices, in particular, electrohydrators.

II. MATHEMATICAL AND NUMERICAL MODEL

10 mm

ww Qg

Fig. 1. Schematic of the model and boundary conditions.

The schematic of the model is shown in Fig. 1. A
small droplet of water 1s placed in the center of the cell
between two flat electrodes. The conductivity of water is
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so large that the interface between the two phases can be
considered as an equipotential surface.

The computation used software package COMSOL
Multiphysics® based on the finite element method to

solve the set of EHD equations for isothermal
incompressible liquid dielectrics [4]:
=N
div(E) = e €8
Lt div(y) =W — aynymy ©)
po+p@ V)= —Vp+ nAi+qE (3
div(u) =0 @)
supplemented with the following definitions and
expressions:
E=-vv )
7, = n;sign(Z;)bE — d;Vn; + nju (6)
q=XiZen (N
kpT
di = 72 by ®)
_ 9%
W= 2ebeggy (9)
2eb
=2 (10)

Here E is the electric field strength, g is the space
charge density, ¢ is the relative electric permittivity, &, 1s
the vacuum permittivity, V is the electric potential, n 1s
the ion concentration, J is the ion flux density, b is the
ion mobility, d is the diffusion coefficient, u is the fluid
velocity, p is the pressure, e is the elementary electric
charge, p is the mass density, 7 is the dynamic viscosity,
Z is the 1on charge number, T is the temperature, kj 1s
the the
conductivity, 7 is the time; subscript i indicates the ion

Boltzmann constant, o, is low-voltage
species. lons are assumed to be univalent (Z; =1,
Z, = —1) and are believed to have equal values of ion
mobility (b; = b, = b) as well as diffusion coefficients
(dy =d, =d).

The following simplifications were made at the
present stage of research according to the introduced
above semi-hydrostatic approach: the third term in the
right-hand of (3) was the

consideration as well as that in the right-hand side of (6).

side excluded from
Besides, the movement of fluid inside the droplet is not
calculated, and gravity is not considered. Thanks to the
latter, the droplet does not experience translational
motion, thus remaining centrally located between the
electrodes, which allows one to consider the problem in a
two-dimensional axisymmetric formulation.

The two-phase medium is described using the so-
called arbitrary Lagrangian-Eulerian (ALE) method, also
called the moving boundary method (or moving mesh).
In this approach, the boundary between the two phases 1s
represented by a line of geometry that throughout the
entire solution of the problem moves by the calculated

196

value of the fluid velocity. At the same time, due to the
actual change in the geometry, the drawing or rebuilding
of the mesh occurs at each time step.

The boundary conditions are partially presented in
Fig. 1. At the interface of the two phases, the surface
tension force (Fst) and the Coulomb force (F¢) acting per
unit area are specified:

Fge = 2YH (11)
Fe =3 (12)

=>¢goeE2,
where y 1s the interfacial tension, H is the mean

@
curvature of interface, and E,, is the normal component of
the electric field strength at the interface.

Special attention should be paid to the boundary
conditions for the ion transfer equation: the charge loss
condition is set at the oppositely charged (concerning the
ion) part of the droplet and the electrode, whereas zero
ion concentration is set at the homo-charged half of the
droplet and the electrode.

The electric current passage through low-conducting
liquids depends both on the properties of these liquids
and on the configuration of the electrodes and the applied
voltage. In the case of homogeneous (and weakly
inhomogeneous) electric field distributions, it turns out
that there is one key dimensionless parameter that
determines the structure of the space charge distribution
[5]:

_ ol
bVyeegy’
where Vj, is the applied voltage and L is the interelectrode
distance.

In this paper, various cases are considered based on a
change in this parameter, and the base value of the
properties is selected by the properties of olive oil (Table
1). Droplet radius (Ry) is 0.8 mm and voltage (V) is 9
kV. The change in the value of the parameter P is
achieved by varying the electrical conductivity of the

medium.
TABLEI

Properties of the working liquid (olive oil)
£ 2.85
p 910 kg/m®
y 16 mN/m
n 0.065 Paxs
b 1-107° m*/(Vxs)
% 1.9-107™" [S/m]
d 2.5:10" m%s

III. RESULTS AND DISCUSSION
The degree of deformation, according to the

conventional approach (e.g., [6, 7]), is described by
parameter:
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D = (a—p)/(a+p), (13)
where a and f are the width and height of the droplet.

0.11f
0.1
0.09
0.08
0.07
0.06 -
0.05
0.04
0.03
0.02
0.01

0

Deformation (1)
I

0 0.2 0.4 0.6 0.8 1
Time (s)

Fig. 2. The time dependence of the degree of deformation D(t) in the
case when charged layers are disregarded (P = 75).

Fig. 2 shows the time dependence of the degree of
deformation D(t) in the case when charged layers are
disregarded. The droplet deforms quickly and reaches the
steady-state shape within less than 0.05 s. However, the
situation changes greatly when the distortion of the
electric field strength is accounted for.

Time=0s Surface: Space charg
Streamiine: Electric field (sp:

a o es 1 a5 e | TR S T a——
Fig. 3. Space charge density distributions and electric field lines at the
initial state (a) and at the end of the primary process of
electrodeformation (b) (P = 75).

Time=15s Surface: Space charge density (C/m’)
Streamline: Electric field (spatial frame)

T T T

L s L L
0 0.5 1 15 2men

Fig. 4. The steady-state distribution of space charge density and electric
field lines (P = 75).

Fig. 3 presents the surface plot of space charge
density distribution near the droplet surface. Initially,
there is no non-equilibrium dissociation-recombination
layer near the interface; thus, droplet deforms like in the
case when there 1s no charged layer. After 0.03 s, the
deformation reaches nearly the same value as in the
previous case (approximately 8.2 %). Further on, space
charge emerges near the droplet surface (Fig. 3a and Fig.

4) and forces the droplet to continue to change its shape.
Fig. 5 demonstrates that the second stage of the
deformation lasts approximately several seconds and
leads to the nearly doubled value of D.

0177
0.16
015
014
013
012
011
01
0.09
0.08
0.07
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0.05
0.04
0.03H
0.02H
0.01H

Deformation (1)
i s s g B S e s

L L s
o 2 4 6 8 10
Time (s)

Fig. 5. The time dependence of the degree of deformation D(t) in the
case when charged layers are accounted for in the model (P = 75).
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Fig. 6. The time dependence of the electric field strength at the top
point of the droplet (P = 75).

The key reason for the deformation increase is the
rise in the electric field strength (Fig. 6): the hetero-
charged layer enlarges the strength and raises the
Coulomb force that acts at the interface. Besides, the
droplet curvature grows during the process, thus
providing an additional gain in the electric field.

According to the features of the electric current
passage in a low-conducting liquid [5], the results are to
be dependent on the dimensionless parameter P. Fig. 7
presents the change in the steady-state value of the
deformation with the variation of the parameter. When
P = 0, the distortion of the electric field is of negligible
value; thus, the computed value is the same as for the
base model discussed in the beginning of this section. In
turn, when P > 1, the deformation is enhanced up to
several times (like in the above case). However, when
P =~ 1, the deformation lessens, which is quite an
unexpected outcome.

The latter result can be explained on the base of the
axial distribution of the electric field strength (Fig. 8).
There are two areas where hetero-charged layers emerge:
near the conducting droplet and near electrodes. Thus,
the electric field strength is affected by two non-
equilibrium layers with the latter one being larger. It
appears that for moderate values of P (P =~ 1) the strong

197
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growth of the strength near the electrode leads to some
decrease 1n it near the droplet since the integral value of
the electric field is to be constant and equal to the applied
voltage.

P =0.001

Deformation (1)

0.07 =

=} 1 1 I L
40 60 80

100

p
Fig. 7. The dependence of the steady-state value of the
deformation on dimensionless parameter P (P = 0.001,1,5,10,50,100).

x10° T T 3 w0t T T T T T 7

|
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3R 4

04

[ — - L
L — L n L

o B 10 o 02
Arc tength Ar

' n
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Fig. 8. The axial distribution of the electric field strength in the
interelectrode gap (on the left) and the same in the area near the droplet
surface (on the right).

IV. CoNcLUSION

The distortion of the electric field at the surface of a
conducting liquid droplet due to the formation of non-
equilibrium dissociation-recombination layers affects the
stationary value of the degree of electrical deformation
strongly. Depending on the value of the dimensionless
parameter P, three cases can be realized:
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- the role of charged layers is negligible (P «< 1);

- the degree of deformation is reduced by several
tens of percent (P =~ 1);

- deformation increases up to several times (P > 1).

The
accounting for EHD flows and convective charge transfer

further extensions of the research are the

in the bulk of the dispersion medium, simulating the fluid
inside the droplet, and studying similar processes for
different values of the radius of the droplet.
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