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Numerical modeling of electrocoalescence using
the arbitrary Lagrangian-Eulerian method

V.A. Chirkov, G.O. Utiugov
St. Petersburg State University, St. Petersburg, Russia

Abstract—Under the action of a strong electric field, conducting droplets suspended in a dielectric liquid attract each
other and can merge after their touching. The latter is called electrocoalescence and is of great interest due to a lot of
applications, including electrocleaning water-oil emulsions, joining liquid microscopic volumes for conducting biochemical
analyses, etc. The suggested here is an approach to simulate electrocoalescence using so-called arbitrary Lagrangian—
Eulerian method (also referred to as the moving mesh) that generally fails to describe processes of volume merging or
separation (i.e., changing topology). The numerical modeling uses COMSOL Multiphysics software based on the finite-
element method. The key idea of the study is to divide the simulation of the electrical coalescence into two steps: the
approach of droplets and the shape change of two droplets joined into one volume via a thin bridge. The numerical results
are compared with those of the experimental research into the transition between droplet coalescence and non-coalescence.

The suggested approach is shown to get quite acceptable results.

Keywords—Two-phase liquid, moving mesh, ALE, water-oil emulsion, decoalescence

1. INTRODUCTION

Electrocoalescence is a process of the merger of two
(or more) volumes of a conductive liquid under the
action of an electric field. These volumes may be
droplets of one liquid suspended in non-conductive
medium, or, for example, droplets placed on a dielectric
substrate. On the one hand, the investigation relevance of
droplets combining under the action of an electric field is
because it underlies technology of the electrocleaning of
liquids from tiniest droplets of the water, as well as in
other technologies. On the other hand, the numerical
simulation of this process is still quite a complicated task.
Existed models often lead to physically incorrect results,
which, particularly, may be expressed in non-
equipotentiality of the conducting media volume (for
instance, [2]).

Moreover, even despite recent success in applying the
phase function model [3] for the simulation of the
threshold between coalescence and non-coalescence [4],
corresponding models have a significant disadvantage
they are not suitable for the simulation for a long time
due to the blurring of the phase function distribution. The
model based on the arbitrary Lagrangian-Eulerian
method or so-called the moving mesh method [5] does
not have the drawback of the phase function model.
However, this method does not allow one to consider the
process of the object's topology changing, particularly,
droplets combining. Nevertheless, the analysis of
experimental data on electrocoalescence has shown that
the changing object's topology—the creation of the
‘bridge’ between droplets—happens so fast that the
geometry of the drops almost does not change during this
moment (fig.1, [6]). This work is devoted to the
investigation of this approach. According to this, one
may conduct the process simulation of electrical droplet

Corresponding author: Grigorii Utiugov
e-mail address: g.utyugov@2015.spbu.ru
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combining by stopping the calculation immediately
before their touching, manual adding the bridge between
drops and resuming the calculation.

lu ° -
l' |1.

Fig 1. Water drop photos before and after the formation of the bridge
(water bridge) between them; the time between frames equals 1 ms
(according to data [6]).

II. NUMERICAL SIMULATION

The object being considered constitutes two parallel
electrodes, space between which 1s filled with a liquid
dielectric (oil). Drops of the conductive liquid (distilled
water) were placed in the center of this cell. The
following equations were calculated for the numerical
simulation: Navier-Stokes, continuity, and Poisson
equations. An interface displacement (finite-element
mesh) occurs according to the calculated value of the
liquid velocity. The system of equations describing the
investigated process of electrocoalescence is denoted the
following way:

p%—%— p(, V)0 = —Vp +nAd (1)
div(?) = 0 2)
div(eg,E) = 0 2)
E=-vv. 4)

Here E 1s the electric field strength, V is the electric
potential, v 1s the fluid velocity, p is the pressure, € is the
relative electric permittivity, &, is the vacuum
permittivity, p is the mass density, 1 is the dynamic
viscosity, 7 is the time.
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Fig. 2. Schematic picture of the model geometry with the
indication of the calculated area (highlighted with the green color).

Hydrodynamic equations are calculated for both
phases, equations of the electrostatics — for dielectric
liquid only. The latter are not computed in the internal
liquid, since the electric field does not penetrate inside it
due to the high ratio of liquids conductivities, i.e., the
surface of the conductive droplet equals to the
equipotential  surface. = The  electrostatics  and
hydrodynamics subsets are interrelated via the electric
force (pressures) applied to the droplet surface [7]:

1
P =22, S)

where A is the surface charge density, E,, is the normal
component of the electric field.

The surface tension force P, [7] also acts on the
droplet surface:

Py = 2yH ©)
where y 1s the interfacial tension coefficient, H is the
mean curvature of the interface.

To account the forces mentioned above (pressures),
the following boundary condition was set on the
boundary of the droplet:

Py — Py =Py + P,
where P; and P, are pressures near the interface outside
and inside droplet.

The consistency of calculated hydrodynamic
equations for both phases was realized through the
equality of each phase velocity on the interface:

Up = Voit = Vwater
where vy, 1s the velocity of the boundary, v,i;, Uarer are
velocities of the phases.

The numerical modeling was conducted in
COMSOL Multiphysics software using the finite-element
method. The geometry of the computer model and
boundary conditions are represented in Fig. 3.

- 15 mm -

i -

7,jl,/ =)

E.=0 V= Vu2

U/ = 0
=9 - Oil
E D=0 V = const
| V=V, Pee + Peowr
Vp I0=0
Ee=0 Droplet
s E=
7

Fig. 3. Geometry and boundary conditions.

200

The moving mesh method does not allow one to
describe an electrocoalescence directly due to object
topology changing during the process. The key idea of
applying this method is to divide the original task into
two. At first, to consider the drops deformation under the
action of an electric field and their convergence, then to
add the ‘bridge’ between droplets and to resume the
calculation using the final result of the first solution step
as the initial conditions for the second step. One may
define the outcome of the process—coalescence or non-
coalescence—by further deformation of the received
combined droplet.

b) 227x107|
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Fig. 4. Process of adding the “bridge”: a—droplet before adding
the “bridge,” b and c—droplet pole before and after adding the
“bridge.”

Further process result after adding the “bridge” is
defined by the relation of the Coulomb force and the
surface tension force.

III. RESULTS
The modeling was conducted for liquids
corresponding to olive oil (as a dispersion medium) and
water (as dispersed phase): ¥ = 0.016 N/m, €,; = 2.85,
Ewater = 80 , poy =910 kg/m3 » Pwater = 1000 kg/
m3, Ny = 0.065 Pa - s, Nyater = 0.001 Pa - s.

A. Comparison with the Experiment

The simulation of electrocoalescence (droplets with
radius r 1.97+0.01 mm, voltage V 4950 V,
interelectrode distance 3 c¢m) and non-coalescence
(droplets with radius » = 2.09+0.01 mm, voltage V =
5950 V, terelectrode distance 3 cm) was conducted in
accordance with available experimental data [6]. The
results obtained in modeling (tables 1 and 2) are in a
good agreement with the experimental data.
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TABLEI
Experimental video frames and modeling results of the
electrocoalescence for droplets with radius » = 1.97+0.01 mm and
applied voltage V'=4950 V.

Time, ms | Experiment Simulation
oD
109 b

TABLE I
Experimental video frames and modeling results of the non-coalescence
for droplets with radius » =2.09+0.01 mm and applied voltage V"=

Moreover, in case of electrocoalescence, high level
of the accordance with droplet shapes obtained in the
experiment and the simulation is observed throughout the
whole transient process, however, in case of non-
coalescence, there is some delay.

B. Determination of the Boundary between Processes

Changing the voltage, which is applied to electrodes,
one may control the outcome of the process and thus
define the threshold voltage between electrocoalescence
and non-coalescence. This procedure was carried out for
several droplet radii. At the same time, the size of added
‘bridge’ approximately corresponds to the experimental
size obtained with the analysis of experimental video
frames referred to the process of electrocoalescence (the
ratio of the ‘bridge’ height to its width was about
h:w=1:2). The threshold between coalescence and non-
coalescence was being found with the error £100 V. The
results obtained were compared with experimental data.
The results are represented in Fig. 5. One may see that,
with the increasing of the droplet radius, the less applied
voltage 1s necessary to break the droplet.

One may also see that the results obtained from the
model with the application of the moving mesh method
have rather good agreement with experimental data and

5950 V. . . . . X
approximating line lies between two areas corresponding
Time, ms Experiment Simulation to electrocoalescence and non-coalescence.
0 l o. “ V. CONCLUSION
56 The created model of electrocoalescence enables
l“ “ one to obtain results on the threshold between
coalescence and non-coalescence, as well as qualitative
77 p q “ analysis of the process, including the dynamics of an
internal liquid. The results obtained for calculated droplet
95 p a “ radii coincide with experimental data within the available
sample of the latter and experimental error.
T T T T T T
. »¢
= \'“‘\\i:c X XX
s 2r 0O O 000 0O X XX
= O 0 0000 O x
= c© ©0 o ®o @ xx
E oo oo oo
)
05 O Coalzscancs
X MNon-coalescence
®  Simulatsd Thrashold
1 1 1 1 1 1

Droplet Radius, R (mm)

Fig. 5. The experimental statistical data on coalescence and non-coalescence (black circles and red crosses) ([4]) and the simulated dependence of the

threshold electric field value on the droplet radius.
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