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Abstract. The dynamics of hexapods (Stewart platforms) has been extensively studied for
several decades. In this problem, the equations of motion are usually constructed using the
basic theorems of mechanics. Lagrange equations of the second kind are often constructed for
the same purpose. In the present paper, a new form of dynamic equations is considered. These
equations are a special form of equations of motion of a system of rigid bodies (equations of
dynamics in redundant coordinates). This approach is used to obtain the differential equations
of motion of a hexapod in redundant coordinates. In this case, the loaded Stewart platform
is considered as a rigid body, whose position is determined by setting the radius vector of the
center of mass and the unit vectors of the body-axes system. From the vector form of the
Lagrange equations of the first kind scalar differential equations of motion of the mechanical
system under consideration are obtained. The obtained equations for some standard motions
of the hexapod are numerically integrated. It is noted that the stable motion of the mechanical
system under consideration can be obtained only with the introduction of feedbacks.

1. Differential equations of motion of a rigid body in redundant coordinates
Consider the fixed coordinate system Oξηζ and the movable coordinate system Cxyz, whose
axes are directed along the main central axes of inertia of the body; the point C is the center of

mass of the rigid body. Let ρρρ =
−−→
OC (see Figure. 1). Following [1], the position of a rigid body

in the space will be determined from the radius vector of its center of mass and the unit basis
vectors of the system Cxyz:

ρρρ , i , j , k . (1.1)

In the process of motion of the body, its vector coordinates (1.1) are subject to the holonomic
constraints

f1 = i2 − 1 = 0 , f2 = j2 − 1 = 0 , f3 = k2 − 1 = 0 ,

f4 = i · j = 0 , f5 = j · k = 0 , f6 = k · i = 0 .
(1.2)

The elementary work of the forces Fν applied to the body at the points (xν , yν , zν) can be
written as

δA =
∑
ν

Fν · (δρρρ+ xνδi + yνδj + zνδk) =

= Qρρρ · δρρρ+ Qi · δi + Qj · δj + Qk · δk ,
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where
Qρρρ =

∑
ν

Fν , Qi =
∑
ν

xνFν ,

Qj =
∑
ν

yνFν , Qk =
∑
ν

zνFν .

Figure 1. Coordinate systems.

The kinetic energy is as follows:

T =
Mρ̇ρρ2

2
+
Ixi̇

2

2
+
Iy j̇

2

2
+
Izk̇

2

2
,

here M is the mass of the body, Ix =
∫
τ
x2µdτ , Iy =

∫
τ
y2µdτ , Iz =

∫
τ
z2µdτ .

Now using [1, 2] the vector Lagrange equations of the first kind can be written in the form

d

dt

∂T

∂ρ̇ρρ
− ∂T

∂ρρρ
= Qρρρ , κ = 1, 6 ,

d

dt

∂T

∂ i̇
− ∂T

∂i
= Qi + Λκ

∂fκ

∂i
≡ Qi + 2Λ1i + Λ4j + Λ6k ,

d

dt

∂T

∂ j̇
− ∂T

∂j
= Qj + Λκ

∂fκ

∂j
≡ Qj + 2Λ2j + Λ5k + Λ4i ,

d

dt

∂T

∂k̇
− ∂T

∂k
= Qk + Λκ

∂fκ

∂k
≡ Qk + 2Λ3k + Λ6i + Λ5j .

(1.3)

Next, we use the constraint equations (1.2) to exclude the Lagrange multipliers from (1.3).
The resulting vector equations

Mρ̈ρρ =
∑
ν

Fν , (1.4)

ï = −i̇2i− 2Iy
Ix + Iy

(i̇ · j̇)j− 2Iz
Iz + Ix

(k̇ · i̇)k +
Lz

Ix + Iy
j− Ly

Iz + Ix
k ,

j̈ = −j̇2j− 2Iz
Iy + Iz

(j̇ · k̇)k− 2Ix
Ix + Iy

(i̇ · j̇)i +
Lx

Iy + Iz
k− Lz

Ix + Iy
i ,

k̈ = −k̇2k− 2Ix
Iz + Ix

(k̇ · i̇)i− 2Iy
Iy + Iz

(j̇ · k̇)j +
Ly

Iz + Ix
i− Lx

Iy + Iz
j ,

(1.5)
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where Lx, Ly, Lz are the projections of the main moment of external forces relative to the center
of mass

L =
∑
ν

(xνi + yνj + zνk)× Fν , (1.6)

are known as the differential equations of motion of a rigid body in redundant coordinates,
because they define 12 projections of the vectors from (1.1), which is twice the number of
degrees of freedom of the rigid body.

Using the system of differential equations (1.4), (1.5), we solve the direct and inverse problems
of dynamics for the study of the motion of the hexapod.

2. The direct and inverse problems of dynamics
Let us find the loads in the rods (Fν , ν = 1, 6) from the given motion law of the platform, that
is, we solve the direct dynamics problem.

We will assume that the forces Fν , ν = 1, 6, act along the directions of the vectors
`ν , ν = 1, 6, which define the upper endpoints of the rods Aν , ν = 1, 6 (Figure. 2).

C

k

i

j

Figure 2. Mathematical model of
a loaded Stewart platform.

The forces Fν , ν = 1, 6, can be written as

Fν =
uν`ν
`ν
≡ Uν`ν , `ν = |`ν | , ν = 1, 6 , (2.1)

where uν , ν = 1, 6,, are the control parameters securing the required motion of the hexapod.
Equation (1.4) for the hexapod can be written in the form

F ≡
6∑

ν=1

Fν = Mρ̈ρρ−Mg . (2.2)

From the vector function ρρρ(t) one can determine the time variation of the principal vector F of
the system of forces Fν , ν = 1, 6. Rewriting equation (2.2) in the scalar form, we have

Fx(t) = M(ρ̈ρρ− g) · i(t) =

= M [ξ̈(t)β11(t) + η̈(t)β12(t) + ζ̈(t)β13(t)− gβ13(t)] ,

Fy(t) = M [ξ̈(t)β21(t) + η̈(t)β22(t) + ζ̈(t)β23(t)− gβ23(t)] ,

Fz(t) = M [ξ̈(t)β31(t) + η̈(t)β32(t) + ζ̈(t)β33(t)− gβ33(t)] ,

(2.3)
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where βστ (t), σ, τ = 1, 3, are the cosines of the direction angles of the unit vectors of the body-
axes coordinate system. For a given motion of the hexapod, the cosines βστ (t), σ, τ = 1, 3, are
unknown functions (see [1]).

Projecting equations (1.5) to the axes of Cxyz, we get

j̈ · k = − 2Iz
Iy + Iz

(j̇ · k̇) +
Lx

Iy + Iz
,

k̈ · i = − 2Ix
Iz + Ix

(k̇ · i̇) +
Ly

Iz + Ix
,

ï · j = − 2Iy
Ix + Iy

(i̇ · j̇) +
Lz

Ix + Iy
.

(2.4)

Let us now determine the moment of forces relative to the center of mass L. By (2.1), the
projections Fν have the form

Fx(t) =

6∑
ν=1

Uν`νx , Fy(t) =

6∑
ν=1

Uν`νy , Fz(t) =

6∑
ν=1

Uν`νz . (2.5)

By definition of the principal moment of the forces of the rods (1.6) and using (2.5), we get

L =

6∑
ν=1

(xνi + yνj + zνk)× Fν =

6∑
ν=1

∣∣∣∣∣∣
i j k
xν yν zν

Uν`νx Uν`νy Uν`νz

∣∣∣∣∣∣ =

=

6∑
ν=1

(∣∣∣∣ yν zν
Uν`νy Uν`νz

∣∣∣∣ · i− ∣∣∣∣ xν zν
Uν`νx Uν`νz

∣∣∣∣ · j +

∣∣∣∣ xν yν
Uν`νx Uν`νy

∣∣∣∣ · k) =

=

6∑
ν=1

Uν(yν`νz − zν`νy)i +

6∑
ν=1

Uν(zν`νx − xν`νz)j +

6∑
ν=1

Uν(xν`νy − yν`νx)k.

This gives us the projections of L:

Lx =
6∑

ν=1

Uν(yν`νz − zν`νy) ,

Ly =
6∑

ν=1

Uν(zν`νx − xν`νz) ,

Lz =
6∑

ν=1

Uν(xν`νy − yν`νx) ,


(2.6)

where 
`νx = ξ(t)β11(t) + η(t)β12(t) + ζ(t)β13(t) + xν − ξνβ11(t)− ζνβ13(t) ,
`νy = ξ(t)β21(t) + η(t)β22(t) + ζ(t)β23(t) + yν − ξνβ21(t)− ζνβ23(t) ,
`νz = ξ(t)β31(t) + η(t)β32(t) + ζ(t)β33(t) + zν − ξνβ31(t)− ζνβ33(t) ,
ν = 1, 6 .

(2.7)

Considering the formulas (2.5) and (2.6) as a system of linear algebraic equations with respect
to Uν , ν = 1, 6, we find the control parameters uν(t) = `ν(t)Uν(t), ν = 1, 6 , which control the
given motion of the hexapod.
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Let us now solve the inverse problem of dynamics, that is, we determine the law of motion of
the hexapod from the given forces created in the rods. To this end, we need to find 3 projections
of the radius vector ρρρ and 9 cosines of the direction angles βστ (t), σ, τ = 1, 3, of the basis vectors
i, j, k.

To solve this problem, we will use 6 scalar differential equations of motion in redundant
coordinates (2.3), (2.4) and 6 constraint equations (1.2). When working with the equations, the
formulas (2.5)–(2.7) should be taken into account.

For numerical solution, we need to set the initial conditions

ξ(0) = ξ0 , η(0) = η0 , ζ(0) = ζ0 ,

ξ̇(0) = 0 , η̇(0) = 0 , ζ̇(0) = 0 ,

βστ (0) = βστ , β̇στ (0) = 0 ,

σ, τ = 1, 3,

 (2.8)

and so the inverse problem of dynamics can be solved.

3. Numerical examples. Necessity of feedbacks
For numerical integration of the resulting system of differential equations, this system was
written in the dimensionless form, where as the unit of length measurement we take the radius
Rb of the circle drawn through the lower hinges of the rods controlling the platform motion,
and all the masses were related to the total mass of the mechanical system. The dimensionless
time was obtained by multiplying the real time by the value

√
g/Rb, where g is the gravity

acceleration. We denote the dimensionless time by t.
Consider the vertical oscillations of the hexapod by the law

η(t) = 0.2 (sin t)(1− e−t/2)2 . (3.1)

Using the Wolfram Mathematica software system, we found the forces F (t) in hydraulic cylinders
that provide the simplest given vertical oscillatory movement of a symmetrically loaded platform
by law (3.1). The graph of this force is given Figure. 3.

Figure 3. The graph of the force
in the rod.

Note that when solving the inverse problem by applying the found forces F (t) to the loaded
platform, we obtain the required vertical oscillations of the platform by the law (3.1).

However, in real situations, it is not possible to specify the exact program force F (t) providing
the necessary motion of the hexapod. Consider the case of a small perturbation of the control
F (t). We denote by η∗(t) the motion of the platform corresponding to the small perturbation of
the control F (t) given in the form 0.0001 (sin 2t)(1− e−t/2) obtained as a result of the solution
of the direct problem.
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So, let
F∗(t) = F (t) + 0.0001 (sin 2t)(1− e−t/2) .

The graph of the function η∗(t) is shown in Figure. 4.

Figure 4. Platform motion under
a small perturbation of the vertical
force.

The graph shows that during the initial period of time the introduced disturbance has little
effect, while in the future there is an intense upward motion of the platform, despite the fact
that F∗(t) differs insignificantly from F (t).

To obtain stable vertical vibrations of the platform according to the law (3.1), we follow [3, 4]
and introduce the feedbacks by specifying the forces Fk(t), k = 1, 6 in the form

Fk(t) = F pk (t) +G(lpk(t)− lk(t)) , k = 1, 6 ,

where F pk (t) are the programmed control forces, lpk(t) are the programmed lengths of the
hydraulic cylinders lk(t) are the measured actual lengths of hydraulic cylinders, and G is the
feedback coefficient.

In [3], it was shown by numerical experiments that by a certain choice of G it is always
possible to achieve a deviation of the true motion from the programmed one with a given
accuracy. Moreover, for a sufficiently large feedback coefficient G, it is possible to implement
the programmed motion even for F pk (t) ≡ 0.
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