On the separation of variables for the two-dimensional integrable system with velocity-dependent potential

Yury Grigoryev

Department of Computational Physics Saint Petersburg State University

28 June 2016, Wrocław

Abel differential equations Bäcklund transformations Application example

Outline

Abel differential equations

Bäcklund transformations

Application example

Quadratures

In classical mechanics, one of the oldest notions of integrability is related to quadratures

$$I = \int R(x, y) dx$$

- x independent variable
- R rational function of x and y
- y algebraic function

Function y = y(x) is defined by an equation of the form

$$f(x,y) = y^n + A_1 y^{n-1} + \ldots + A_n = 0$$

where A_n are polynomials in x.

In modern notions, we may say that we have a plane curve

$$\mathcal{C}: \qquad f(x,y) = 0,$$

rational differential

$$\omega = R(x, y)dx|_c$$

and an integral

$$I = \int_{(x_0, y_0)}^{(x, y)} \omega$$

on a compact Riemann surface.

Such integrals are generally difficult to study directly.

Abel's idea was to consider a sum of integrals

$$I(t) = \sum_{k=1}^{n} \int^{p_k(t)} \omega$$

where $p_k(t) = (x_k(t), y_k(t))$ are points of intersection of C with a family of plane curves defined by equation

$$h(x, y, t) = 0$$

depending rationally on t.

Abel Theorem

If ω is a regular differential with no poles on \mathcal{C} , then

$$I(t) = \sum_{k=1}^{n} \int^{p_k(t)} \omega = const$$

leading to

$$\frac{d}{dt}\sum_{k=1}^{n}\int^{p_k(t)}\omega=\omega(p_1)+\omega(p_2)+\ldots+\omega(p_n)=0$$

where

$$\omega(p_k) = R(x_k(t), y_k(t)) x'_k(t) dt$$

Equation in this form is called an Abel differential equation.

Systems in Question

Defined by the Hamilton functions

$$H = \frac{p_1^2}{2} + \frac{p_2^2}{2} - V(q_1, q_2)$$

and the canonical Poisson bracket

$$\{q_i, p_j\} = \delta_{ij}$$

According to Bertrand and Darboux, Hamilton–Jacobi equation can be integrated in quadratures if the potential V has special form.

Plain coordinates

For example,

$$V = \frac{U(u_1) - U(u_2)}{u_1 - u_2},$$

$$\int^{u_1} \frac{du_1}{\sqrt{f(u_1)}} + \int^{u_2} \frac{du_2}{\sqrt{f(u_2)}} = t + \beta_1 , \qquad \int^{u_2} \frac{u_1 du_1}{\sqrt{f(u_1)}} + \int^{u_2} \frac{u_2 du_2}{\sqrt{f(u_2)}} = \beta_2 .$$

There are explicit solutions if

$$f(u) = a_6 u^6 + a_5 u^5 + a_4 u^4 + a_3 u^3 + a_2 u^2 + a_1 u + a_0, \qquad a_i \in \mathbb{R}.$$

Bäcklund transformations

Consider a family

$$\frac{dz_i}{dt_k} = \{z_i, H_k\}, \qquad \{H_i, H_k\} = 0$$

Suppose that Hamilton-Jacobi equations

$$H_k = E_k$$

are integrable by quadratures.

Auto Bäcklund transformation is a change of variables

$$z \to \tilde{z}$$

which preserves Hamilton and Hamilton-Jacobi equations.

Bäcklund transformations

Some of applications are:

- ▶ Discretize and numerically solve equations of motions
- ▶ Construct integrable multivalued alebraic maps
- ► Construct new integrable system (hetero Bäcklund)
- ► Classify Poisson brackets compatible with canonical one The question is: how to construct them for a given system?

Let us consider two Hamiltonian flows

$$\frac{dx_1}{dt_1} = \{x_1, H_1\} = \frac{y_1}{x_1 - x_2}, \qquad \qquad \frac{dx_2}{dt_1} = \{x_2, H_1\} = -\frac{y_2}{x_1 - x_2},$$

$$\frac{dx_1}{dt_2} = \{x_1, H_2\} = -\frac{x_2y_1}{x_1 - x_2}, \qquad \frac{dx_2}{dt_2} = \{x_2, H_2\} = \frac{x_1y_2}{x_1 - x_2},$$

with $H_{1,2}$ in involution

$$\{H_1, H_2\} = 0$$

Then $x_{1,2}$ satisfy

$$\frac{dx_1}{y_1} + \frac{dx_2}{y_2} = dt_1, \qquad \frac{x_1 dx_1}{y_1} + \frac{x_2 dx_2}{y_1} = dt_2,$$

where $y_{1,2}$ can be found from the Jacobi equations

$$H_{1,2}(x_1, x_2, y_1, y_2) = \alpha_{1,2}.$$

These equations can be integrated in quadratures if

$$W(x_1, x_2, \alpha_1, \alpha_2) = W_1(x_1, \alpha_1, \alpha_2) + W_2(x_2, \alpha_1, \alpha_2)$$

and the Jacobi equations have the form

$$y_i = \frac{\partial W_i(x_1, \alpha_1, \alpha_2)}{\partial x_i} \equiv \sqrt{f_i(x_i)}.$$

We only consider the case of f being a sixth order polynomial

$$f(x) = a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 x^4 + a_3 x^3 + a_2 x^2 + a_1 x^4 + a_0 x$$

The next step is to rewrite the equations for the systems admitting Bäcklund transformations in the form of Abel differential equation. Let the change of variables

$$B: \qquad (x_1, y_1, x_2, y_2) \to (x_3, y_3, x_4, y_4)$$

be an auto Bäcklund transform. Then,

$$\frac{dx_1}{y_1} + \frac{dx_2}{y_2} = dt_1 = \frac{dx_3}{y_3} + \frac{dx_4}{y_4} ,$$
$$\frac{x_1 dx_1}{y_1} + \frac{x_2 dx_2}{y_1} = dt_2 = \frac{x_3 dx_3}{y_3} + \frac{x_4 dx_4}{y_4} ,$$

or

$$\frac{dx_1}{\sqrt{f(x_1)}} + \frac{dx_2}{\sqrt{f(x_2)}} + \frac{dx_3}{-\sqrt{f(x_3)}} + \frac{dx_4}{-\sqrt{f(x_4)}} = 0,$$
$$\frac{x_1dx_1}{\sqrt{f(x_1)}} + \frac{x_2dx_2}{\sqrt{f(x_2)}} + \frac{x_3dx_3}{-\sqrt{f(x_3)}} + \frac{x_4dx_4}{-\sqrt{f(x_4)}} = 0.$$

Yury Grigoryev

Abel and Backlund

▶ These equations coincide with the Abel equations

$$\mathcal{C}: \qquad y^2 = f(x)$$

due to the hyperelliptic involution $\sigma:\,(y,x)\to(-y,x).$

- ▶ In practice, composition of Bäcklund transformation and hyperelliptic involution yields us an Abel equation.
- ► Its solutions are points of intersection of two plane curves, in our case, the hyperelliptic C and

$$g(x,y) = y - P(x)$$
, $P(x) = \sqrt{a_6}x^3 + b_2x^2 + b_1x + b_0$.

According to Abel, we can eliminate the variable y from these equations and get a polynomial linking all the abscissas of the points of intersection.

The explicit formula for the Abel polynomial

$$\psi(x) = \left(a_5 - 2\sqrt{a_6}b_2\right)(x - x_1)(x - x_2)(x - x_3)(x - x_4)(x - \lambda),$$

linking the coordinates of five points of intersection

$$p_{1,2} = (x_{1,2}, y_{1,2}), \quad p_{3,4} = (x_{3,4}, -y_{3,4}) \text{ and } p_5 = (\lambda, \mu).$$

We can divide the roots into two parts

$$(x - x_3)(x - x_4) = \frac{\psi(x)}{\left(a_5 - 2\sqrt{a_6}b_2\right)(x - x_1)(x - x_2)}$$

or add the y coordinates and write an integral of motion.

Since we know that

$$y_1 - P(x_1) = 0$$
, $y_2 - P(x_2) = 0$ and $\mu - P(\lambda) = 0$,

we can do Lagrange interpolation for P(x):

$$P(x) = \sqrt{a_6}x^3 + b_2x^2 + b_1x + b_0 = \sqrt{a_6}(x - x_1)(x - x_2)(x - \lambda)$$

$$+\frac{y_1(x-x_2)(x-\lambda)}{(x_1-x_2)(x_1-\lambda)}+\frac{y_2(x-x_1)(x-\lambda)}{(x_2-x_1)(x_2-\lambda)}+\frac{\mu(x-x_1)(x-x_2)}{(\lambda-x_1)(\lambda-x_2)}$$

and we can explicitly find b_2 in the Abel polynomial

$$\psi(x) = \left(a_5 - 2\sqrt{a_6}b_2\right)(x - x_1)(x - x_2)(x - x_3)(x - x_4)(x - \lambda),$$

So, we started from the Bäcklund transformation

$$B: \qquad (x_1, y_1, x_2, y_2) \to (x_3, y_3, x_4, y_4),$$

and now we can get x_3, x_4 from Abel polynomial

$$(x - x_3)(x - x_4) = \frac{f(x) - P(x)^2}{\left(a_5 - 2\sqrt{a_6} b_2\right)(x - x_1)(x - x_2)(x - \lambda)}$$

and y_3, y_4 , also as functions of (x_1, y_1) , (x_2, y_2) and (λ, μ) , from

$$-y_i = P(x_i), \qquad i = 3, 4.$$

These equations determine Bäcklund transformations for the two-dimensional Jacobi systems.

Example of application

Let us look at a particular case

$$a_0 = 0$$
, $\lambda = 0$, $\mu = \sqrt{f(0)} = \sqrt{a_0} = 0$

Then,
$$b_2 = \frac{y_1}{x_1(x_1 - x_2)} + \frac{y_2}{x_2(x_2 - x_1)} - \sqrt{a_6}(x_1 + x_2)$$

And the equations for the coordinates $(x_{3,4}, -y_{3,4})$ are

$$\begin{aligned} x_3 + x_4 &= \frac{1}{(x_1 - x_2)^2 (a_5 - 2\sqrt{a_6} b_2)} \Big(2a_6 x_1 x_2 (x_1^2 - x_1 x_2 + x_2^2) + a_5 x_1 x_2 (x_1 + x_2) + 2a_4 x_1 x_2 \\ &+ a_3 (x_1 + x_2) + 2a_2 + \frac{a_1 (x_1 + x_2) - 2\sqrt{a_6} (x_1 - x_2) (y_1 x_2^2 - y_2 x_1^2) - 2y_1 y_2}{x_1 x_2} \Big) , \\ x_3 x_4 &= \frac{a_1}{x_1 x_2 (a_5 - 2\sqrt{a_6} b_2)} , \\ y_k &= -\sqrt{a_6} (x_k - x_1) (x_k - x_2) x_k - \frac{y_1 (x_k - x_2) x_k}{(x_1 - x_2) x_1} - \frac{y_2 (x_k - x_1) x_k}{(x_2 - x_1) x_2} , \quad k = 3, 4. \end{aligned}$$

Parabolic coordinates on a plane

If q_1, q_2 — cartesian coordinates on a plane, we can define parabolic coordinates by setting

$$u - 2q_2 - \frac{q_1^2}{u} = \frac{(u - u_1)(u - u_2)}{u}$$

.

Sunstituting the cartesian coordinates and momenta

$$q_{1} = \sqrt{-u_{1}u_{2}}, \quad q_{2} = \frac{u_{1} + u_{2}}{2},$$
$$p_{1} = \frac{2\sqrt{-u_{1}u_{2}}(p_{u_{1}} - p_{u_{2}})}{u_{1} - u_{2}}, \quad p_{2} = \frac{2(p_{u_{1}}u_{1} - p_{u_{2}}u_{2})}{u_{1} - u_{2}}$$

into the Hamilton function, we get

$$H_1 = \frac{2(p_{u_1}^2 u_1 - p_{u_2}^2 u_2)}{u_1 - u_2} - V(u_1, u_2).$$

This system is integrable, if the potential

$$V(u_1, u_2) = \frac{u_1 U_1(u_1) - u_2 U_2(u_2)}{u_1 - u_2} \,.$$

In this case

$$H_2 = \frac{2u_1u_2(p_{u_1} - p_{u_2})}{u_2 - u_1} - \frac{u_1u_2(U_1(u_1) - U_2(u_2))}{u_2 - u_1},$$

and the separated equations are

$$p_{u_i}^2 = \left(\frac{\partial W_i(q_i, \alpha_1, \alpha_2)}{\partial u_i}\right)^2 = \frac{1}{2} \left(U_i(u_i) + H_1 + \frac{H_2}{u_i}\right), \qquad i = 1, 2.$$

Setting

$$H_{1,2} = 2\alpha_{1,2}$$
, and $U = 2u(au^3 + bu^2 + cu + d)$

one can get equations

$$\frac{du_1}{\sqrt{f(u_1)}} + \frac{du_2}{\sqrt{f(u_2)}} = 4dt_1, \qquad \frac{u_1du_1}{\sqrt{f(u_1)}} + \frac{u_2du_2}{\sqrt{f(u_2)}} = 4dt_2,$$

where f(x) is a polynomial of degree 6 with zero as a tailing coefficient

$$f(u) = u(au^{5} + bu^{4} + cu^{3} + du^{2} + \alpha_{1}u + \alpha_{2}).$$

In the original coordinates,

$$V = 2a(q_1^4 + 12q_1^2q_2^2 + 16q_2^4) + 8bq_2(q_1^2 + 2q_2^2)b + 2(q_1^2 + 4q_2^2)c + 4dq_2 \,.$$

Bäcklund transformation for this system

Now let us find the Bäcklund transformation

$$B: \qquad (u_1, p_{u_1}, u_2, p_{u_2}) \to (\tilde{u}_1, \tilde{p}_{u_1}, \tilde{u}_2, \tilde{p}_{u_2}),$$

For that, we just put

$$\begin{aligned} x_{1,2} &= u_{1,2} , \quad y_{1,2} &= u_{1,2} p_{u_{1,2}} \\ x_{3,4} &= \tilde{u}_{1,2} , \quad y_{3,4} &= \tilde{u}_{1,2} \tilde{p}_{u_{1,2}} \end{aligned}$$

into our equations for $x_{3,4}, y_{3,4}$ expressed in $x_{1,2}, y_{1,2}$.

Then, if $\lambda = 0$, we can use simplified equations to find the coordinates $\tilde{u}_{1,2}$

$$\begin{split} \tilde{u}_1 + \tilde{u}_2 &= \frac{(u_1 - u_2)^2 \left(a(u_1^2 + u_2^2) + b(u_1 + u_2)\right) + (u_1 - u_2) \left(2\sqrt{a}(p_{u_1}u_2 - p_{u_2}u_1) + c\right) - (p_{u_1} - p_{u_2})^2}{(u_2 - u_1) \left(2a(u_1^2 - u_2^2) - 2\sqrt{a}(p_{u_1} - p_{u_2}) + b(u_1 - u_2)\right)} \,, \\ \tilde{u}_1 \tilde{u}_2 &= \frac{a(u_1^4 - u_2^4) + b(u_1^3 - u_2^3) + c(u_1^2 - u_2^2) + d(u_1 - u_2) - p_{u_1}^2 + p_{u_2}^2}{2a(u_1^2 - u_2^2) - 2\sqrt{a}(p_{u_1} - p_{u_2}) + b(u_1 - u_2)} \end{split}$$

and momenta $\tilde{p}_{u_{1,2}}$

$$\bar{p}_{u_i} = \frac{p_{u_1}(u_2 - \tilde{u}_i) - p_{u_2}(u_1 - \tilde{u}_i)}{u_1 - u_2} - \sqrt{a}(u_2 - \tilde{u}_i)(u_1 - \tilde{u}_i),$$

which is the Bäcklund transformation for this system.

We can also rewrite it in the original variables:

$$\begin{split} \tilde{q}_1^2 &= \frac{8q_1^2q_2(q_1^2+2q_2^2)a+2bq_1^2(q_1^2+4q_2^2)+4cq_1^2q_2+2dq_1^2+p_1(p_1q_2-p_2q_1)}{2q_1(p_1\sqrt{a}-4aq_1q_2-bq_1)} \,, \\ \tilde{q}_2 &= \frac{8q_1^2(q_1^2+2q_2^2)a+4q_1(2p_1q_2-p_2q_1)\sqrt{a}+8bq_1^2q_2+4cq_1^2-p_1^2}{8q_1(p_1\sqrt{a}-4aq_1q_2-bq_1)} \,, \\ \tilde{p}_1 &= \tilde{q}_1 \, \frac{8q_1^2(q_1^2+6q_2^2)a^{3/2}-4q_1(p_1q_2+p_2q_1)a+(16bq_1^2q_2+4cq_1^2+p_1^2)\sqrt{a}-2bp_1q_1}{2q_1(p_1\sqrt{a}-4aq_1q_2-bq_1)} \,, \\ \tilde{p}_2 &= -\frac{A}{8q_1^2(p_1\sqrt{a}-4aq_1q_2-bq_1)} \,, \end{split}$$

Using these equations we can explicitly check that this transformation is, indeed, a Bäcklund transformation.

$$\tilde{p}_{u_i}^2 - u_i(au_i^3 + bu_i^2 + cu_i + d) = \frac{H_1}{2} + \frac{H_2}{2\tilde{u}_i}, \qquad i = 1, 2.$$

Integrals of motion

Adding and substracting the separated equations in the new variables we get a new pair of integrals

$$\tilde{H}_1 = \sum_{i=1}^2 \tilde{p}_{u_i}^2 - u_i (au_i^3 + bu_i^2 + cu_i + d) = H_1 + \frac{H_2}{2} \frac{\tilde{u}_1 + \tilde{u}_2}{\tilde{u}_1 \tilde{u}_2}$$

and

$$\sqrt{\tilde{H}_2} = \sum_{i=1}^2 (-1)^i \Big(\tilde{p}_{u_i}^2 - u_i (au_i^3 + bu_i^2 + cu_i + d) \Big) = H_2 \frac{\tilde{u}_2 - \tilde{u}_1}{\tilde{u}_1 \tilde{u}_2}$$

that can also be rewritten in the original variables.

٠

Integrals of motion

First integral

$$\tilde{H}_1 = \frac{p_1^2 + p_2^2}{2} - 2aq_2^2(16q_2^2 + 5q_1^2) + 2\sqrt{a}q_1\left(p_1q_2 - \frac{p_2q_1}{4}\right) - bq_2(16q_2^2 + 3q_1^2) - 2c\left(\frac{q_1^2}{4} - 4q_2^2\right) - 4dq_2.$$

Second integral

$$\tilde{H}_2 = H_2^2 \frac{(\tilde{u}_1 + \tilde{u}_2)^2 - 4\tilde{u}_1\tilde{u}_2}{\tilde{u}_1^2\tilde{u}_2^2}$$

is a fourth-order polynomial in momenta

Second integral

$$\begin{split} \tilde{H}_2 &= \frac{p_1^4}{4} + 2\sqrt{a}p_1^3q_1q_2 - \frac{p_1^2q_1^2}{2} \left(aq_1^2 + 12aq_2^2 + 3p_2\sqrt{a} + 6bq_2 + c\right) + q_1^3(2aq_2 + b)p_1p_2 + \frac{ap_2^2q_1^4}{4} \\ &+ \sqrt{a}q_1^3 \left(6aq_2(q_1^2 + 4q_2^2) + b(q_1^2 + 12q_2^2) + 6cq_2 + 2d\right)p_1 - \frac{\sqrt{a}q_1^4(aq_1^2 + 4aq_2^2 + 2bq_2 + c)p_2}{2} \\ &+ \frac{q_1^4}{4} \left((q_1^2 + 4q_2^2)(q_1^2 - 28q_2^2)a^2 - 2\left(2q_2(3q_1^2 + 20q_2^2)b - (q_1^2 - 12q_2^2)c + 8dq_2\right)a \\ &- 2(q_1^2 - 6q_2^2)b^2 - 4(cq_2 + d)b + c^2\right). \end{split}$$

This system and its integrable deformations is discussed in detail in

- A. P. Sozonov and A. V. Tsiganov, *Theor. Math. Phys.*, 183, 768–781 (2015)
- ▶ Tsiganov A.V., Phys. Letters A, 379, 2903–2907 (2015)

Overview

- ▶ Using this approach we can build Bäcklund transformations for some two-dimensional integrable systems.
 - Parabolic coordinates
 - Elliptic coordinates
- ▶ The key is searching for Bäcklund transformations that allow the system to be integrated in Abel quadratures using the standard parabolic and elliptic coordinates.
- The standard method of building auto Bäcklund transformations relies on a transformation of Lax matrix.

The standard way to build Bäcklund transformations

 $z\to \tilde{z}$

is to use a gauge (or Darboux) transformation of the Lax matrix

$$L(u,z) = ML(u,\tilde{z})M^{-1}$$

The idea [Sklyanin, Kuznetsov] behind this construction is that

- ► Lax matrix $L(u, \tilde{z})$ has the same algebraic form as the original matrix L(u, z)
- ▶ gauge matrix *M* is to have a form of a Lax matrix satisfying the *r*-matrix Poisson bracket with the same *r*-matrix as the original Lax matrix

In practice, this procedure is not straightforward and needs experience and expert knowledge to be successfully applied.

Summary

- ▶ Using this approach we can build Bäcklund transformations for some two-dimensional integrable systems.
- ▶ The key is searching for Bäcklund transformations that allow the system to be integrated in Abel quadratures using the standard parabolic and elliptic coordinates.
- ▶ The standard method of building auto Bäcklund tranformations relies on a transformation of Lax matrix.
- ▶ Where to head next
 - Other integrable systems?
 - ▶ Higher dimensions?