On bi-Hamiltonian formulation of the perturbed Kepler problem

Introduction

Even for completely integrable systems the existence of bi-Hamiltonian structure 1s not
always satisfied. Fernandes and Olver announced that the perturbed Kepler problem is a
completely integrable system without a bi-Hamiltonian formulation with respect to non-
degenerate compatible Poisson structures. Here the perturbed Kepler problem 1s shown to
be a bi-Hamiltonian system despite the fact that the graph of the Hamilton function 1s not
a hypersurface of translation.

Bi-Hamiltonian formulation

Consider a dynamical system on a smooth manifold with coordinates x1,...,x,, defined by
equations of motion
Xi:Xi izl,...,m

From these equations we can switch to a vector field

d
X = ZXi&’_x,-

The Hamiltonian of the system can be introduced, defining all the dynamics together with

the Poisson bivector P
X = PdH

Bi-Hamiltonian manifolds (Magri 1978)
- Two Poisson bi-vectors P, P’ satisfying compatibility condition
P.P|=[PP|=[P,P]=0
- Can be used to find integrals of motion X = PdH; = P'dH>

- Or if we know integrals in involution X = ¢1X; + -+ g,X,, Xi = P'dH,,
then we can do the separation of variables (Falqui & Pedroni1 2003)

Perturbed Kepler problem

Perturbed Kepler system has the Hamiltonian

2 2 2
+ ps+ 1 £
H:px py pZ___|_ ’ r:\/x2_|_y2_|_Z2’
) ro 2r2

and canonical Poisson bivector
0 I
P = .

Let us find non-degenerate compatible Poisson structures for it. We will look for a bi-

Hamiltonian formulation 1n the domain of definition of the action-angle variables.
Bogoyavlenskij construction
The vector field X 1s called non-degenerate or anisochronous if the Kolmogorov condition
°H(J1,...,J,) 40

dJ i&J k
1s met almost everywhere 1n the given action-angle coordinates.

det

For the degenerate or isochronous systems, if in the domain of definition of the action-
angle variables we have some nonzero derivative
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we can make the following canonical transtformation

3 JH

Jir = Ji, (Dk:(x)k——a_la)m, k#m
dJ

J,=H, &, =a 'w,.

This canonical transformation does not add new singularities to the initial action-angle
variables and reduces the Hamiltonian to the simplest form

~/

H=J,.

It allows us to construct bi-Hamiltonian formulation of the initial vector field X with two
functionally dependent Hamiltonians

~/

H=J, and K=2g(J,),

but with the non-degenerate second Poisson bivector

nooo 9 0 dg\' 9 0
P = _ | > — A ,

where By (J)) are arbitrary nonzero functions and g(J,,) is such that g’ # 0. In this case

the eigenvalues of the corresponding recursion operator N = P'P~! are integrals of motion
only, see examples of this type bi-Hamiltonian formulations of the Kepler problem 1n [3].

Action-angle variables

In the spherical variables Hamiltonian H takes the form

2
1 p2 P 1 €
H(p% ,,29’ ¢ )+

2 r2sin” 0 ro 2r%
and we can introduce two commuting integrals
2
Py
I = p2 m=pg.
0 sin? @’ ¢

Then, the action variables can be explicitly calculated and the corresponding angle vari-
ables can be obtained from the Jacobi equations.

In the action-angle variables the Hamiltonian takes the form
1

5 -
2(Jr++/(Jo+Jp)*+€)
that 1s not a hypersurface of translation 1n the action variables in contrast with the initial

H=-—

Kepler problem at € = 0.
Both the perturbed Kepler problem and the unperturbed Kepler problem are degenerate or
1sochronous systems with well-defined derivative
JH
=~ = —(=2h)*2.
8Jr ( )
According to the Bogoyavlenskij theorem it allows us to have bi-Hamiltonian formulation

a

of these systems in the action-angle variables.

Delaunay type variables

Instead of action-angle variables, we can address the system 1n the Delaunay type variables
Ji1=Jy, Jr=Jy+Jp, JB=Jr4++/(Jp+Jo)*+ €,

Jo +Jo
\/(J¢ +Jg)?+ €

W1 = Wy — Wg W = W — @y, W3 = .
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The Delaunay variables, which at € = O coincide with the classical Delaunay elements,
have a geometrical meaning directly related to the description of the orbits and their vari-
ations are more significant for astronomers than those of Cartesian or spherical variables.

In these variables the Hamiltonian takes the form
1

_2_]%

and we can construct bi-Hamiltonian formulation with the second bivector P’ given by the

previously used formula. For instance, 1f

1

pi(J1) =Ji, pa(2) = Ja, and K=—-7173;

3J3

second bivector 1s equal to

0 0 0 J; 00
SRR E RN
P=YJisA5—=| 7,0 0000
k;l dJy  dax 0 —J, 0 00 0

0 0 —J3000
The corresponding recursion operator has three functionally independent eigenvalues
which are the first integrals.
In the initial action-angle variables (@,, g, Wy,Jr,Jo,Jy) this bivector translates to a more
complicated form

/ 0 0 0 Jr+v/(Jp+Jg)?+e 0 0 \
0 0 vy Jo+Js 0
P/ _ 0 0 0 —MN ]9 J¢
—Jr—/(Jp+Jp)>+e M n 0 0 0
0 ~Jo—Jy —Jg 0 0 0
\ 0 0 —Jy 0 0 0
where
0(0—J.—\ 2+ ¢
(= Jr ) {=Jo+Js.

n p—
VI2+e |
In much the same way we can obtain other bi-Hamiltonian formulations associated with

the two families of the Poincaré type action-angle variables or with other known types of
action-angle variables for the perturbed Kepler problem.

Summary

 Both 1nitial and perturbed Kepler problem are degenerate and, therefore, the
Fernandes theorem cannot be applied to them.

« The construction used here to obtain bi-Hamiltonian structure for perturbed Kepler
system can be applied to other degenerate systems.
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