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Introduction

Even for completely integrable systems the existence of bi-Hamiltonian structure is not
always satisfied. Fernandes and Olver announced that the perturbed Kepler problem is a
completely integrable system without a bi-Hamiltonian formulation with respect to non-
degenerate compatible Poisson structures. Here the perturbed Kepler problem is shown to
be a bi-Hamiltonian system despite the fact that the graph of the Hamilton function is not
a hypersurface of translation.

Bi-Hamiltonian formulation

Consider a dynamical system on a smooth manifold with coordinates x1, . . . ,xm defined by
equations of motion

ẋi = Xi, i = 1, . . . ,m

From these equations we can switch to a vector field

X = ∑Xi
∂

∂xi
The Hamiltonian of the system can be introduced, defining all the dynamics together with
the Poisson bivector P

X = PdH

Bi-Hamiltonian manifolds (Magri 1978)

• Two Poisson bi-vectors P,P′ satisfying compatibility condition

[P,P] = [P,P′] = [P′,P′] = 0

• Can be used to find integrals of motion X = PdH1 = P′dH2

• Or if we know integrals in involution X = g1X1+ · · ·+gnXn, Xk = P′dHk,

then we can do the separation of variables (Falqui & Pedroni 2003)

Perturbed Kepler problem

Perturbed Kepler system has the Hamiltonian

H =
p2

x + p2
y + p2

z

2
− 1

r
+

ε

2r2 , r =
√

x2+ y2+ z2 ,

and canonical Poisson bivector

P =

(
0 I
−I 0

)
.

Let us find non-degenerate compatible Poisson structures for it. We will look for a bi-
Hamiltonian formulation in the domain of definition of the action-angle variables.
Bogoyavlenskij construction
The vector field X is called non-degenerate or anisochronous if the Kolmogorov condition

det
∣∣∣∣∂ 2H(J1, . . . ,Jn)

∂Ji∂Jk

∣∣∣∣ 6= 0

is met almost everywhere in the given action-angle coordinates.
For the degenerate or isochronous systems, if in the domain of definition of the action-
angle variables we have some nonzero derivative

a =
∂H
∂Jm
6= 0 ,

we can make the following canonical transformation

J̃k = Jk , ω̃k = ωk−
∂H
∂Jk

a−1 ωm , k 6= m

J̃m = H , ω̃m = a−1ωm .

This canonical transformation does not add new singularities to the initial action-angle
variables and reduces the Hamiltonian to the simplest form

H = J̃m.

It allows us to construct bi-Hamiltonian formulation of the initial vector field X with two
functionally dependent Hamiltonians

H = J̃m and K = g(J̃m) ,

but with the non-degenerate second Poisson bivector

P′ =
n

∑
k 6=m

βk(J̃k)
∂

∂ J̃k
∧ ∂

∂ωk
+

(
dg
dJ̃m

)−1
∂

∂ J̃m
∧ ∂

∂ω̃m
,

where βk(J̃k) are arbitrary nonzero functions and g(J̃m) is such that g′ 6= 0. In this case
the eigenvalues of the corresponding recursion operator N = P′P−1 are integrals of motion
only, see examples of this type bi-Hamiltonian formulations of the Kepler problem in [3].

Action-angle variables

In the spherical variables Hamiltonian H takes the form

H =
1
2

(
p2

r +
p2

θ

r2 +
p2

φ

r2 sin2
θ

)
− 1

r
+

ε

2r2 ,

and we can introduce two commuting integrals

l2 = p2
θ +

p2
φ

sin2
θ
, m = pφ .

Then, the action variables can be explicitly calculated and the corresponding angle vari-
ables can be obtained from the Jacobi equations.
In the action-angle variables the Hamiltonian takes the form

H =− 1

2
(
Jr +

√
(Jθ + Jφ)2+ ε

)2 .

that is not a hypersurface of translation in the action variables in contrast with the initial
Kepler problem at ε = 0.
Both the perturbed Kepler problem and the unperturbed Kepler problem are degenerate or
isochronous systems with well-defined derivative

a =
∂H
∂Jr

=−(−2h)3/2 .

According to the Bogoyavlenskij theorem it allows us to have bi-Hamiltonian formulation
of these systems in the action-angle variables.

Delaunay type variables

Instead of action-angle variables, we can address the system in the Delaunay type variables

J1 = Jφ , J2 = Jφ + Jθ , J3 = Jr +
√

(Jφ + Jθ)2+ ε ,

ω1 = ωφ −ωθ , ω2 = ωθ −
Jφ + Jθ√

(Jφ + Jθ)2+ ε
ωr , ω3 = ωr .

The Delaunay variables, which at ε = 0 coincide with the classical Delaunay elements,
have a geometrical meaning directly related to the description of the orbits and their vari-
ations are more significant for astronomers than those of Cartesian or spherical variables.
In these variables the Hamiltonian takes the form

H =− 1
2J2

3

and we can construct bi-Hamiltonian formulation with the second bivector P′ given by the
previously used formula. For instance, if

β1(J1) = J1 , β2(J2) = J2 , and K =− 1
3J3

3
,

second bivector is equal to

P′ =
3

∑
k=1

Jk
∂

∂Jk
∧ ∂

∂ωk
=


0 0 0 J1 0 0
0 0 0 0 J2 0
0 0 0 0 0 J3
−J1 0 0 0 0 0

0 −J2 0 0 0 0
0 0 −J3 0 0 0

 .

The corresponding recursion operator has three functionally independent eigenvalues
which are the first integrals.
In the initial action-angle variables (ωr,ωθ ,ωφ ,Jr,Jθ ,Jφ) this bivector translates to a more
complicated form

P′ =


0 0 0 Jr+

√
(Jφ+Jθ )

2+ε 0 0
0 0 0 −η Jθ+Jφ 0
0 0 0 −η Jθ Jφ

−Jr−
√

(Jφ+Jθ )
2+ε η η 0 0 0

0 −Jθ−Jφ −Jθ 0 0 0
0 0 −Jφ 0 0 0


where

η =
`(`− Jr−

√
`2+ ε )√

`2+ ε
, `= Jθ + Jφ .

In much the same way we can obtain other bi-Hamiltonian formulations associated with
the two families of the Poincaré type action-angle variables or with other known types of
action-angle variables for the perturbed Kepler problem.

Summary

• Both initial and perturbed Kepler problem are degenerate and, therefore, the
Fernandes theorem cannot be applied to them.

• The construction used here to obtain bi-Hamiltonian structure for perturbed Kepler
system can be applied to other degenerate systems.
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