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1 Introduction

Yehia found several integrable deformations of the Kovalevskaya top and the Chaplygin system on a sphere[1].
Here, following the method proposed in [2, 3], we construct separation variables for these deformations.

The phase space with physical coordinates x = (x1, x2, x3) and J = (J1, J2, J3) and a Lie-Poisson bracket{
Ji , Jj

}
= εijkJk ,

{
Ji , xj

}
= εijkxk ,

{
xi , xj

}
= 0

having two Casimir functions C1 = |x|2 ≡
∑3
k=1 x

2
k, C2 = (x, J) ≡

∑3
k=1 xkJk is where we will work.

Systems in question defined by the Hamilton functions

H1 = J2
1 + J2

2 + 2J2
3 + 2ax1 −

λC1

x23
+

c√
x21 + x22

+
2C1 − x23

x22

(
d+

ex1√
x21 + x22

)
and

H1 = J2
1 + J2

2 + 2J2
3 − 2b(x21 − x22) +

λC1

x23
+ c

(
1

x43
− 1

x63

)
− (2C1 − x23)

(
d

x21
+

e

x22

)
.

The first system is a generalisation of the Kovalevskaya top, and the second is a generalisation of a system
discussed by Chaplygin and Goryachev. We will consider them on a sphere, i. e. at (x, J) = 0.

If C1 = 1 and C2 = 0, the Hamiltonians of these two systems commute with respect to Poisson brackets
with the intergrals of motion, respectively:

H2 =

(
J2
1 − J2

2 − 2ax1 +
λ(x21 − x22)

x23

)2

+

(
2J1J2 − ax2 +

2λx1x2
x23

)2

+
1

x42

(
dx23 +

cx22 + ex23x1√
x21 + x22

)(
2x22(J2

1 + J2
2 ) + dx23 +

cx22 + ex23x1√
x21 + x22

)

− 4ax23(dx1 + e
√
x21 + x22)

x22
− 2λ

x22

(√
x21 + x22)(cx22 − ex23x1)

x23
− dx21

)
and

H2 =

(
J2
1 − J2

2 − 2bx23 −
λ(x21 − x22)

x23

)2

+

(
2J1J2 −

2λx1x2
x23

)2

− 2(J2
1 + J2

2 )

(
c (x21 + x22)

x63
+
dx23
x21

+
ex23
x22

)
+ x43

(
c(x21 + x22)

x83
+

d

x21
+

e

x22

)2

− 4b

(
c(x21 − x22)

x43
+ x43

(
d

x21
− e

x22

))
− 2λ

(
c(x21 + x22)2

x83
− dx22

x21
− ex21

x22

)
These integrals of motion were found in [1]. Here we construct separation variables and separated equations

using only the Hamilton functions and the integrals of motion for these systems.
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2 Separation of variables

If we consider a dynamical system on a smooth manifold with coordinates x1, . . . , xm defined by equations of

motion ẋi = Xi, i = 1, . . . ,m we can say these equations yield a vector field X =
∑
Xi

∂

∂xi
.

If we approach the system from a physical point of view, we need to introduce the Hamiltonian function,
which defines all the dynamics together with the Poisson bivector P , which we assume known beforehand from
the kinematic considerations:

X = PdH

2.1 Bi-Hamiltonian systems

Moving further, we consider bi-Hamiltonian systems (due to Magri 1978) that have two Poisson bi-vectors P, P ′

satisfying the compatibility condition with respect to the Schouten bracket

[P, P ′] = 0.

Studying such systems we can take two different approaches:

• We can use the bi-Hamiltonian structure to find integrals of motion from the construction

X = PdH1 = P ′dH2

• Or if we beforehand know the integrals in involution, then we can construct the decomposition of the
original vector field X = g1X1 + · · ·+ gnXn, Xk = P ′dHk and do the separation of variables (Falqui &
Pedroni 2003).

The separation of variables for the latter case is based on constructing the recursion operator N = P ′P−1

whose eigenvalues are separation variables for the system. So, eventually the key to this method is finding the
second Poisson bivector P ′.

2.2 Ansatze for P ′

Most of known additional Poisson bi-vectors have the form

P ′ = LY P,

where LY is a Lie derivative along some vector field Y . But finding Y from this equation coupled with the
compatibility condition between the two Poisson bivectors is still difficult, because the solutions we obtain from
there are too common and too gereral to be of use. To get practical results we need to introduce yet another
constraints on Y to narrow the set of solutions or, which is the same, the set of systems in question.

These assumptions about Y can be make, e. g., by introducing proportionality A between Y and X

Y = AX = AP dH, where A =

(
0 0
0 L

)
or A =

(
Π 0
0 Λ

)
In our situation we do not need to write A explicitly, but instead declare that for the Hamiltonian of

natural form (H = T + V ) vector field Y splits likewise into two components corresponding to two parts of the
Hamiltonian: Y = YT + YV .

2.3 Overview of the method

We start with H1 and H2

1. Write the equations for the components of the second Poisson bivector P ′

2. Use ansatze and solve compatibility condition for the components of Y

3. From the obtained P ′ calculate the recursion operatior N

4. Build separation variables and separated equations

And then we can introduce additional terms to the system in question and repeat this again.
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3 Application example

In this handout what follows is a brief overview of the procedure applied to the generalized Chaplygin system,
and for more details and also for the results for the generalized Kovalevskaya top you can see the full paper [4].

We start with the Hamiltonian

H1 = J2
1 + J2

2 + 2J2
3 − 2b(x21 − x22) +

λC1

x23
+ c

(
1

x43
− 1

x63

)
− (2C1 − x23)

(
d

x21
+

e

x22

)
and the integral of motion

H2 =

(
J2
1 − J2

2 − 2bx23 −
λ(x21 − x22)

x23

)2

+

(
2J1J2 −

2λx1x2
x23

)2

− 2(J2
1 + J2

2 )

(
c (x21 + x22)

x63
+
dx23
x21

+
ex23
x22

)
+ x43

(
c(x21 + x22)

x83
+

d

x21
+

e

x22

)2

− 4b

(
c(x21 − x22)

x43
+ x43

(
d

x21
− e

x22

))
− 2λ

(
c(x21 + x22)2

x83
− dx22

x21
− ex21

x22

)
3.1 The case c = 0

Using ansatze for the components of Y we find that it is a sum of YT and YV :

YT =

 −2 cos 2θ

sin 2θ
pφpθ

− cot θp2φ + tan θp2θ


and YV has a term for each of the constants

YV = b

 cos 2φpφ + sin 2φ tan θpθ

sin 2φ cot θpφ − cos 2φpθ

− d pθ

sin2 φ


2 cotφ

sin 2θ

1

sin2 θ

+
e pθ

cos2 φ


2 tanφ

sin 2θ

− 1

sin2 θ


In the case c = 0 separation variables are the roots of the characteristic polynomial

det(N − µI) = B2(µ)

where

B(µ) = µ2 −
(
J2
1 + J2

2

x23
− d

x21
− e

x22

)
µ+

b(J2
1 − J2

2 )

x23
+

(
d

x21
− e

x22
)

)
b− b2 = (µ− q1)(µ− q2).

The momenta can be constructed from the polynomial

A(µ) =

(
x2J1 − x1J2

x3

)
µ

2
− b

2

(
x2J1 + x1J2

x3

)
= −µ

2
tan θ pθ −

b

2

(
sin 2φ pφ − cos 2φ tan θ pθ

)
.

this way:

pj =
1

q2j − b2
A(µ = qj) , j = 1, 2 .

Substituting the equations for separation variables in H1 and H2 we get

Φ(qj , pj) = 0, j = 1, 2

where

Φ(q, p) =

(
8(q2 − b2)p2 − 2q +H1 −

√
H2 −

4b
(
q(d− e) + b(d+ e)

)
q2 − b2

)
×

×

(
8(q2 − b2)p2 − 2q +H1 +

√
H2 −

4b
(
q(d− e) + b(d+ e)

)
q2 − b2

)
+ 4λq = 0

This is a genus two hyperelliptic curve; if λ = 0, it splits into two elliptic curves.
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3.2 The case c 6= 0

For the general situation the separation variables differ from those found above by the canonical transformation

pθ → pθ +

√
c sin θ

cos3 θ

Substituting the separation variables into equation

Φ̃(q, p) = Φ(q, p)− 16
√
c (q2 − b2)p

we get a Hamiltonian

H1 = J2
1 + J2

2 + 2J2
3 − 2b(x21 − x22) +

λC1

x23
+

2(x2J1 − x1J2)
√
c

x33
− (2C1 − x23)

(
d

x21
+

e

x22

)
,

which matches the original Hamiltonian after a transformation

J1 = J1 −
√
c x2
x33

, J1 = J2 +

√
c x1
x33

.

Equation Φ̃(q, p) = 0 defines a genus three algebraic curve.
So, this ends the procedure of obtaining separation variables and separated equations for the integrable

deformation of the Chaplygin system.

4 Summary

• This method still needs the ansatze to work and how to find it is yet to be determined.

• We produce separation variables and separated equations starting strating just from integrals of motion.

• The results agree with those of Kovalevskaya but the procedure for constructing separation variables is
straighforward.

• Where to head next

– How to find the ansatze for a given system?

– What to do with the separated equations?
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