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Introduction

Yehia found several integrable deformations of the Kovalevskaya top and the Chaplygin
system on a sphere, i. e. at the zero value of the surface integral [1].
Here, following the method proposed in [2, 3], we construct separation variables for these
deformations.

Phase space with physical coordinates x = (x1,x2,x3) and J = (J1,J2,J3).
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Systems in question defined by the Hamilton functions
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The first system becomes the Kovalevskaya top in the case λ = c = d = e = 0.
The second system was discussed by Chaplygin and Goryachev if λ 6= 0.
For these two systems there are additional integrals of motion (Yehia 2006).
We build the separation variables and separated equations from these integrals of motion.

Separation of variables

Consider a dynamical system on a smooth manifold with coordinates x1, . . . ,xm defined by
equations of motion

ẋi = Xi, i = 1, . . . ,m

From these equations we can switch to a vector field

X = ∑Xi
∂

∂xi

The Hamiltonian of the system can be introduced, defining all the dynamics together with
the Poisson bivector P

X = PdH

Bi-Hamiltonian manifolds (Magri 1978)

• Two Poisson bi-vectors P,P′ satisfying compatibility condition [P,P′] = 0
• Can be used to find integrals X = PdH1 = P′dH2

• Or if we know integrals in involution X = g1X1+ · · ·+gnXn, Xk = P′dHk then we
can do the separation of variables (Falqui & Pedroni 2003)

Separation of variables
Recursion operator

N = P′P−1

Eigenvalues are separation variables

Most of known additional Poisson bi-vectors have the form

P′ = LY P

Finding Y
(dHk,LY PdHm) = 0, [LY P,LY P] = 0

Written in separation variables the solutions are

Yj = 0, Yn+ j = f j(q j, p j), j = 1..n

We need to narrow the solutions set by imposing constraints
Let us make some assumptions about Y

• Introduce vector field A which leads to Y = AX = APdH

A =

(
0 0
0 L

)
or A =

(
Π 0
0 Λ

)
• Hamiltonian of natural form (H = T +V ) leads to Y = YT +YV

Overview of the method
We start with H1 and H2

1 Write the equations for the components of P′

2 Use ansatze and solve for components of Y
3 Calculate the Poisson bivector P′

4 Build separation variables and separated equations

Application example

Consider the generalized Chaplygin system
We start with the Hamiltonian
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and the integral of motion
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The case c = 0 is easy to address.
Using ansatze for the components of Y we find that it is a sum of YT and YV :

YT =

 −2cos2θ

sin2θ
pφ pθ

−cotθ p2
φ
+ tanθ p2

θ


and YV has a term for each of the constants

YV = b

 cos2φ pφ + sin2φ tanθ pθ
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In the case c = 0 separation variables are the roots of the characteristic polynomial

det(N−µI) = B2(µ)

where
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The momenta can be constructed from the polynomial

A(µ) =
(
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x3

)
µ

2
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2

(
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x3
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(
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)
.

Substituting the equations for separation variables in H1 and H2 we get

Φ(q j, p j) = 0, j = 1,2

where

Φ(q, p) =

(
8(q2−b2)p2−2q+H1−

√
H2−

4b
(
q(d− e)+b(d + e)

)
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×
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This is a genus two hyperelliptic curve; if λ = 0, it splits into two elliptic curves.
In the case c 6= 0 we need a canonical transformation

pθ → pθ +

√
csinθ

cos3 θ

after which we introduce a new function

Φ̃(q, p) = Φ(q, p)−16
√

c(q2−b2)p

Equation Φ̃(q, p) = 0 defines a genus three algebraic curve.
So, we have separation variables and separated equations for the integrable deformation of
the Chaplygin system.

Summary

• This method still needs the ansatze to work and how to find it is yet to be determined.

• We produce separation variables and separated equations starting strating just from
integrals of motion.

• The results agree with those of Kovalevskaya but the procedure for constructing
separation variables is straighforward.

• Where to head next
• How to find the ansatze for a given system?
• What to do with the separated equations?
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