Yu. A. Grigoryev, V. A. Khudobakhshov, A. V. Tsiganov
 Saint Petersburg State University, Russia

Introduction

Yehia found several integrable deformations of the Kovalevskaya top and the Chaplygin system on a sphere, i.e. at the zero value of the surface integral [1].
Here, following the method proposed in [2, 3], we construct separation variables for these deformations.

Phase space with physical coordinates $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $J=\left(J_{1}, J_{2}, J_{3}\right)$,
Lie-Poisson bracket:

$$
\left\{J_{i}, J_{j}\right\}=\varepsilon_{i j k} J_{k}, \quad\left\{J_{i}, x_{j}\right\}=\varepsilon_{i j k} x_{k}, \quad\left\{x_{i}, x_{j}\right\}=0
$$

Casimir functions:

$$
C_{1}=|x|^{2} \equiv \sum_{k=1}^{3} x_{k}^{2}, \quad C_{2}=(x, J) \equiv \sum_{k=1}^{3} x_{k} J_{k}
$$

Systems in question defined by the Hamilton functions

$$
H_{1}=J_{1}^{2}+J_{2}^{2}+2 J_{3}^{2}+2 a x_{1}-\frac{\lambda C_{1}}{x_{3}^{2}}+\frac{c}{\sqrt{x_{1}^{2}+x_{2}^{2}}}+\frac{2 C_{1}-x_{3}^{2}}{x_{2}^{2}}\left(d+\frac{e x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}\right)
$$

and

$$
H_{1}=J_{1}^{2}+J_{2}^{2}+2 J_{3}^{2}-2 b\left(x_{1}^{2}-x_{2}^{2}\right)+\frac{\lambda C_{1}}{x_{3}^{2}}+c\left(\frac{1}{x_{3}^{4}}-\frac{1}{x_{3}^{6}}\right)-\left(2 C_{1}-x_{3}^{2}\right)\left(\frac{d}{x_{1}^{2}}+\frac{e}{x_{2}^{2}}\right)
$$

The first system becomes the Kovalevskaya top in the case $\lambda=c=d=e=0$
The second system was discussed by Chaplygin and Goryachev if $\lambda \neq 0$. For these two systems there are additional integrals of motion (Yehia 2006) We build the separation variables and separated equations from these integrals of motion.

Separation of variables

Consider a dynamical system on a smooth manifold with coordinates x_{1}, \ldots, x_{m} defined by equations of motion

$$
\dot{x}_{i}=X_{i}, \quad i=1, \ldots, m
$$

From these equations we can switch to a vector field

$$
X=\sum X_{i} \frac{\partial}{\partial x_{i}}
$$

The Hamiltonian of the system can be introduced, defining all the dynamics together with the Poisson bivector P

$$
X=P d H
$$

Bi-Hamiltonian manifolds (Magri 1978)

- Two Poisson bi-vectors P, P^{\prime} satisfying compatibility condition $\left[P, P^{\prime}\right]=0$
- Can be used to find integrals $X=P d H_{1}=P^{\prime} d H_{2}$
- Or if we know integrals in involution $X=g_{1} X_{1}+\cdots+g_{n} X_{n}, \quad X_{k}=P^{\prime} d H_{k}$ then we can do the separation of variables (Falqui \& Pedroni 2003)

Separation of variables

Recursion operator
$N=P^{\prime} P^{-1}$

Most of known additional Poisson bi-vectors have the form

Finding Y

$$
P^{\prime}=\mathcal{L}_{Y} P
$$

$$
\left(d H_{k}, \mathcal{L}_{Y} P d H_{m}\right)=0, \quad\left[\mathcal{L}_{Y} P, \mathcal{L}_{Y} P\right]=0
$$

Written in separation variables the solutions are

$$
Y_{j}=0, \quad Y_{n+j}=f_{j}\left(q_{j}, p_{j}\right), \quad j=1 . . n
$$

We need to narrow the solutions set by imposing constraints
Let us make some assumptions about Y

- Introduce vector field A which leads to $Y=A X=A P d H$

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & L
\end{array}\right) \quad \text { or } \quad A=\left(\begin{array}{ll}
\Pi & 0 \\
0 & \Lambda
\end{array}\right)
$$

- Hamiltonian of natural form $(H=T+V)$ leads to $Y=Y_{T}+Y_{V}$

Overview of the method
We start with H_{1} and H_{2}

- Write the equations for the components of P^{\prime}

Use ansatze and solve for components of Y
© Calculate the Poisson bivector P^{\prime}
© Build separation variables and separated equations

Application example

Consider the generalized Chaplygin system

We start with the Hamiltonian

$$
H_{1}=J_{1}^{2}+J_{2}^{2}+2 J_{3}^{2}-2 b\left(x_{1}^{2}-x_{2}^{2}\right)+\frac{\lambda C_{1}}{x_{3}^{2}}+c\left(\frac{1}{x_{3}^{4}}-\frac{1}{x_{3}^{6}}\right)-\left(2 C_{1}-x_{3}^{2}\right)\left(\frac{d}{x_{1}^{2}}+\frac{e}{x_{2}^{2}}\right)
$$

and the integral of motion

$$
\begin{aligned}
H_{2} & =\left(J_{1}^{2}-J_{2}^{2}-2 b x_{3}^{2}-\frac{\lambda\left(x_{1}^{2}-x_{2}^{2}\right)}{x_{3}^{2}}\right)^{2}+\left(2 J_{1} J_{2}-\frac{2 \lambda x_{1} x_{2}}{x_{3}^{2}}\right)^{2} \\
& -2\left(J_{1}^{2}+J_{2}^{2}\right)\left(\frac{c\left(x_{1}^{2}+x_{2}^{2}\right)}{x_{3}^{6}}+\frac{d x_{3}^{2}}{x_{1}^{2}}+\frac{e x_{3}^{2}}{x_{2}^{2}}\right)+x_{3}^{4}\left(\frac{c\left(x_{1}^{2}+x_{2}^{2}\right)}{x_{3}^{8}}+\frac{d}{x_{1}^{2}}+\frac{e}{x_{2}^{2}}\right)^{2} \\
& -4 b\left(\frac{c\left(x_{1}^{2}-x_{2}^{2}\right)}{x_{3}^{4}}+x_{3}^{4}\left(\frac{d}{x_{1}^{2}}-\frac{e}{x_{2}^{2}}\right)\right)-2 \lambda\left(\frac{c\left(x_{1}^{2}+x_{2}^{2}\right)^{2}}{x_{3}^{8}}-\frac{d x_{2}^{2}}{x_{1}^{2}}-\frac{e x_{1}^{2}}{x_{2}^{2}}\right)
\end{aligned}
$$

The case $c=0$ is easy to address.
Using ansatze for the components of Y we find that it is a sum of Y_{T} and Y_{V} :

$$
Y_{T}=\binom{-\frac{2 \cos 2 \theta}{\sin 2 \theta} p_{\phi} p_{\theta}}{-\cot \theta p_{\phi}^{2}+\tan \theta p_{\theta}^{2}}
$$

and Y_{V} has a term for each of the constants

$$
Y_{V}=b\binom{\cos 2 \phi p_{\phi}+\sin 2 \phi \tan \theta p_{\theta}}{\sin 2 \phi \cot \theta p_{\phi}-\cos 2 \phi p_{\theta}}-\frac{d p_{\theta}}{\sin ^{2} \phi}\binom{\frac{2 \cot \phi}{\sin 2 \theta}}{\frac{1}{\sin ^{2} \theta}}+\frac{e p_{\theta}}{\cos ^{2} \phi}\binom{\frac{2 \tan \phi}{\sin 2 \theta}}{-\frac{1}{\sin ^{2} \theta}}
$$

In the case $c=0$ separation variables are the roots of the characteristic polynomial
where
$\left.B(\mu)=\mu^{2}-\left(\frac{J_{1}^{2}+J_{2}^{2}}{x_{3}^{2}}-\frac{d}{x_{1}^{2}}-\frac{e}{x_{2}^{2}}\right) \mu+\frac{b\left(J_{1}^{2}-J_{2}^{2}\right)}{x_{3}^{2}}+\left(\frac{d}{x_{1}^{2}}-\frac{e}{x_{2}^{2}}\right)\right) b-b^{2}=\left(\mu-q_{1}\right)\left(\mu-q_{2}\right)$
The momenta can be constructed from the polynomial

$$
\begin{aligned}
A(\mu) & =\left(\frac{x_{2} J_{1}-x_{1} J_{2}}{x_{3}}\right) \frac{\mu}{2}-\frac{b}{2}\left(\frac{x_{2} J_{1}+x_{1} J_{2}}{x_{3}}\right) \\
& =-\frac{\mu}{2} \tan \theta p_{\theta}-\frac{b}{2}\left(\sin 2 \phi p_{\phi}-\cos 2 \phi \tan \theta p_{\theta}\right)
\end{aligned}
$$

Substituting the equations for separation variables in H_{1} and H_{2} we get

$$
\Phi\left(q_{j}, p_{j}\right)=0, \quad j=1,2
$$

where

$$
\begin{aligned}
\Phi(q, p) & =\left(8\left(q^{2}-b^{2}\right) p^{2}-2 q+H_{1}-\sqrt{H_{2}}-\frac{4 b(q(d-e)+b(d+e))}{q^{2}-b^{2}}\right) \times \\
& \times\left(8\left(q^{2}-b^{2}\right) p^{2}-2 q+H_{1}+\sqrt{H_{2}}-\frac{4 b(q(d-e)+b(d+e))}{q^{2}-b^{2}}\right)+4 \lambda q=0
\end{aligned}
$$

This is a genus two hyperelliptic curve; if $\lambda=0$, it splits into two elliptic curves.
In the case $c \neq 0$ we need a canonical transformation

$$
p_{\theta} \rightarrow p_{\theta}+\frac{\sqrt{c} \sin \theta}{\cos ^{3} \theta}
$$

after which we introduce a new function

$$
\widetilde{\Phi}(q, p)=\Phi(q, p)-16 \sqrt{c}\left(q^{2}-b^{2}\right) p
$$

Equation $\widetilde{\Phi}(q, p)=0$ defines a genus three algebraic curve.
So, we have separation variables and separated equations for the integrable deformation of the Chaplygin system.

Summary

- This method still needs the ansatze to work and how to find it is yet to be determined - We produce separation variables and separated equations starting strating just from integrals of motion.
- The results agree with those of Kovalevskaya but the procedure for constructing separation variables is straighforward.
Where to head next
How to find the ansatze for a given system?
- What to do with the separated equations?

References

[1] H. M. Yehia, The master integrable two-dimensional system with a quartic second integral, J. Phys. A: Math. Gen., 39, 5807 - 5824, 2006.
[2] A.V. Tsiganov, On bi-integrable natural hamiltonian systems on Riemannian manifolds, Journal of Nonlinear Mathematical Physics, v.18, n. 2, pp. 245-268, 2011
3] A. V. Tsiganov, On natural Poisson bivectors on the sphere, J. Phys. A: Math. Theor, 44, 105203 (15pp), 2011.
[4] Yu. A. Grigoryev, V. A. Khudobakhshov, A. V. Tsiganov, Separation of variables for some system with a fourth-order integral of motion, Theoretical and Mathematical Physics, v. 177, n. 3 , pp. 1680-1692, 2013

