

Supplementary Information

The Origin of the Non-Constancy of the Bulk Resistance of Ion-Selective Electrode Membranes within the Nernstian Response Range

Valentina Keresten, Elena Solovyeva and Konstantin Mikhelson *

Chemistry Institute, c/o St.Petersburg State University, 26 Universitetsky Prospect, Stary Peterhof 198504, St. Petersburg, Russia; v_lukina@list.ru (V.M.K.); solovyeva.elena.v@gmail.com (E.V.S.) * Correspondence: konst@km3241.spb.edu

SUMMARY

Number of pages: 4 Number of Figures: 3 Number of Tables: 3

Figure S1. Electrode constructs. Left: classical Ion-Selective Electrode (ISE) with internal reference solution and internal reference electrode. Right: solid-contact electrode.

Figure S2. Cross-section of the membrane with thickness of 100 μm on a pyroceramic substrate.

Citation: Keresten, V.; Solovyeva, E.; Mikhelson, K. The Origin of the Non-Constancy of the Bulk Resistance of Ion-Selective Electrode Membranes within the NernstianResponse Range. *Membranes* **2021**, *11*, 344. https://doi.org/10.3390/ membranes11050344

Academic Editor:

Academic Editor: Beata Paczosa-Bator

Received: 14 April 2021 Accepted: 4 May 2021 Published: date

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Figure S3. Nyquist plots of the impedance spectra of dry membranes. (a) K-; (b) Ca; (c) Cd; (d) NO₃.

Figure S4. Chronopotentiometric curves ("slow" protocol) obtained by passing current with density of 1.27·10⁻⁷ A/cm² across dry membranes (solid lines) and membranes equilibrated with Solution #10 (dotted lines).

Table S1. Ohmic drops (V) registered in "fast" and "slow" chronopotentiometric measurements, and S/F: the ratio of the
value obtained in "slow" protocol over that obtained in "fast" protocol.

logTCI	logIS	K-ISE			Ca-ISE			Cd-ISE			NO ₃ -ISE		
		Fast	Slow	S/F	Fast	Slow	S/F	Fast	Slow	S/F	Fast	Slow	S/F
-1.02	-1.28	0.107	0.109	1.02	0.019	0.019	1.02	0.025	0.026	1.02	0.180	0.180	1.01
-1.28	-1.46	0.134	0.138	1.03	0.029	0.030	1.03	0.028	0.028	1.03	0.173	0.177	1.03
-1.46	-1.47	0.108	0.110	1.02	0.020	0.020	1.00	0.025	0.026	1.03	0.175	0.177	1.02
-1.78	-1.88	0.107	0.109	1.02	0.019	0.019	1.02	0.026	0.026	1.02	0.180	0.185	1.03
-1.79	-1.79	0.115	0.117	1.02	0.025	0.025	1.01	0.025	0.026	1.03	0.155	0.159	1.02
-2.27	-2.37	0.098	0.101	1.03	0.017	0.018	1.03	0.024	0.025	1.02	0.156	0.160	1.03
-2.65	-2.94	0.109	0.111	1.02	0.020	0.020	1.03	0.028	0.029	1.02	0.152	0.156	1.02
-2.75	-2.86	0.113	0.113	1.01	0.021	0.022	1.02	0.028	0.029	1.02	0.155	0.157	1.01
-2.82	-3.03	0.117	0.120	1.02	0.021	0.022	1.02	0.031	0.031	1.01	0.163	0.164	1.00
-3.57	-3.82	0.113	0.116	1.03	0.030	0.031	1.03	0.043	0.044	1.02	0.170	0.176	1.03
-4.15	-4.30	0.168	0.172	1.02	0.067	0.069	1.02	0.083	0.086	1.03	0.255	0.259	1.01
Dry mer	nbranes	0.047	0.058	0.059	1.03	0.053	0.054	1.03	0.006	0.006	1.03	0.125	1.02

Table S2. Resistivity of the ISE membranes (M Ω ·m) obtained	by chronopotentiometric (fast protocol) and impedance
measurements.	

		K-ISE		Ca	-ISE	Cd	-ISE	NO ₃ -ISE		
$1_{\alpha\alpha}(TCI)$	log(IS)	Chrono-		Chrono-		Chrono-		Chrono-		
10g(1CI)		potentio-	Impedance	potentio-	Impedance	potentio-	Impedance	potentio-	Impedance	
		metry		metry		metry		metry		
-1.02	-1.28	0.171	0.166	0.025	0.025	0.055	0.054	0.395	0.391	
-1.28	-1.46	0.214	0.213	0.038	0.037	0.060	0.059	0.380	0.377	
-1.46	-1.47	0.172	0.169	0.026	0.024	0.055	0.053	0.384	0.380	
-1.78	-1.88	0.171	0.171	0.025	0.024	0.056	0.055	0.396	0.388	
-1.79	-1.79	0.184	0.180	0.033	0.032	0.054	0.053	0.341	0.336	
-2.27	-2.37	0.157	0.150	0.023	0.022	0.052	0.050	0.343	0.331	
-2.65	-2.94	0.174	0.169	0.026	0.025	0.061	0.060	0.335	0.329	
-2.75	-2.86	0.180	0.178	0.028	0.027	0.061	0.060	0.341	0.335	
-2.82	-3.03	0.187	0.183	0.028	0.027	0.067	0.065	0.359	0.349	
-3.57	-3.82	0.181	0.178	0.040	0.039	0.093	0.092	0.375	0.372	
-4.15	-4.30	0.268	0.266	0.089	0.083	0.180	0.169	0.562	0.536	
Dry me	mbrane	0.092	0.090	0.070	0.069	0.012	0.012	0.274	0.273	

 Table S3. Water uptake (weight %) by the membranes equilibrated with mixed solutions.

	K-membrane		Ca-men	nbrane	Cd-mer	nbrane	NO ₃ -membrane	
log(ICI)	Mean	SD	Mean	SD	Mean	SD	Mean	SD
-1.02	0.32	0.30	2.59	0.36	4.05	0.24	0.40	0.27
-1.28	0.33	0.26	2.55	0.25	4.18	0.35	0.36	0.19
-1.46	0.34	0.17	2.58	0.36	4.07	0.34	0.40	0.20
-1.78	0.34	0.17	2.60	0.26	4.05	0.37	0.48	0.22
-1.79	0.34	0.27	2.67	0.27	4.26	0.35	0.57	0.28
-2.27	0.37	0.19	2.51	0.27	4.39	0.36	0.33	0.31
-2.65	0.40	0.30	2.81	0.24	4.36	0.33	0.36	0.39
-2.75	0.40	0.20	2.81	0.28	4.37	0.36	0.41	0.32
-2.82	0.42	0.21	2.80	0.29	4.47	0.37	0.59	0.17
-3.57	0.50	0.36	3.04	0.31	4.80	0.37	1.00	0.24
-4.15	0.59	0.29	3.42	0.24	5.35	0.44	1.71	0.42