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1 Symbolic image of a dynamical system

Let f : M → M be a homeomorphism of a compact manifold M generating a

discrete dynamical system

xn+1 = f(xn), (1)

and ρ(x, y) be a distance on M . In what follows we use the concept of symbolic

image of a dynamical system [17], which brings together symbolic dynamics

[3, 14] and numerical methods [10]. Let C = {M(1), ...,M(n)} be a �nite closed

covering of a manifold M . The set M(i) is called cell with index i.

De�nition. 1 [16] Symbolic image of the dynamical system (1) for a covering

C is an oriented graph G with vertices {i}corresponding to cells {M(i)}. The

vertices i and j are connected by the edge i→ j i�

f(M(i))
⋂
M(j) 6= ∅.

Symbolic image is a tool for a space discretization and graphic representation

of the dynamic of a system under study, which allows the obtaining useful

information about the global structure of the system dynamics. Symbolic image

depends on a covering C. The existence of an edge i→ j guaranties the existence

of a point x ∈M(i) such that f(x) ∈M(j). In other words, an edge i→ j is the

trace of the mapping x→ f(x), where x ∈M(i), f(x) ∈M(j). If there isn't an

edge i→ j on G then there are not the points x ∈M(i) such that f(x) ∈M(j).

We do not place special restrictions on a covering C, but basing on the

theorem about the triangulation of a compact manifold [19] we may without

loss of generality assume that cells M(i) are polyhedrons intesecting on their

boundary disks. In practice M is a compact in Rd, and M(i) are cubes or
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parallelepipeds. Let C be a covering of M by polyhedrons intersecting on their

boundary disks. In what follows we also use a measurable partition C∗, such

that a boundary disk belongs only one of adjoining cells. We assume that cells-

polyhedrons are closures of their interiors.

De�nition. 2 A vertex of a symbolic image G is said to be recurrent if there

is a periodic path passing through it. The set of recurrent vertices is denoted by

RV. The recurrent vertices i and j are called equivalent if there exists a periodic

path passing through i and j.

Thus, the set of recurrent vertices RV is split into equivalence classes {Hk}. In

the graph theory such classes are called strong connectivity components.

Let

diam M(i) = max(ρ(x, y) : x, y ∈M(i))

be the diameter of a cell M(i) and d = diam(C) be the maximum of the

diameters of the cells. The number d is called the diameter of the covering

C.

An oriented graph G is uniquely de�ned by its adjacency matrix ( matrix of

admissible transitions) Π. The matrix Π = (πij) has sizes n×n, where n � is the

number of vertices of G, and πij = 1 i� there exists the edge i→ j, else πij = 0.

Hence an i-th row in Π corresponds to the vertex i (cell M(i)), and on the

place j in this row there is 1 or 0 depending on the existence (or nonexistence)

of nonempty intersection f(M(i)) and M(j). Matrix of admissible transitions

depends on the numbering of vertices (cells of the covering), so that a change of

numeration leads to a change of matrix Π. Note that there exists a numeration

transforming the matrix of admissible transitions to a canonical form.

Proposition. 1 [1] Vertices of a symbolic image G may be numbered such that
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the adjacency matrix has the form

Π =



(Π1) · · · · · · · · · · · ·
. . .

0 (Πk) · · · · · ·
. . .

. . .

0 0 (Πs)


,

where every diagonal block Πk corresponds either an equivalence class Hk of

recurrent vertices or a nonrecurrent vertex and consists of one zero. Under

diagonal blocks are only zeroes (upper triangular matrix)

2 Entropy

In 1865 R. Clausius [5] introduced the most important in thermodynamics con-

cept entropy. To explain the irreversibility of macroscopic states L. Boltzmann

in 1872 [4] �rst introduced statistical approach in thermodynamics : he pro-

posed to describe a state of a system by using its microstates. The Boltzmann

entropy S is statistical entropy for the equiprobable distribution of a system

over P states, it is de�ned as

S = k log(P ), where k is the Boltzmann constant.

In 1948 C. Shannon [20, 21] introduced the notion of capacity (C) for an

information channel as follows

C = lim
T→∞

log2N(T )

T
,

where N(T ) is the number of admissible signals for the time T . He also de�ned

information entropy as follows

h = −
∑
i

pi log2 pi,

where pi is a probability of i-th signal (message), i ∈ 1, ...n, and n is the number

of signals. A. N. Kolmogorov in 1958 [12] introduced entropy in the theory of

dynamical systems. Entropy is a �ne invariant of a dynamical system, it may be
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interpreted as a measure of the system chaoticity. Comprehensive information

on entropy in dynamical systems is given in [7, 11]. It turns out that entropy

characteristics may be obtained both for a system described analytically and

for its phase portraits. The application of such characteristics to digital image

analysis is given in [2].

Motivation Consider a discrete dynamical system xn+1 = f(xn) on a com-

pact manifoldM , where f : M →M is a homeomorphism. Let C = {M(1), ..,M(n)}

be a �nite covering of M and the sequence {xk = fk(x), k = 0, . . . N − 1} be

the N -length part of the trajectory of a point x. The covering C generates a

coding of this part via a �nite sequence ξ(x) = {ik, k = 0, . . . N − 1}, where

xk ∈M(ik). In other words, ik is the number of the cell from C which contains

the point xk = fk(x). Generally speaking, the mapping xk → ik is multivalued.

The sequence ξ = {ik} is said to be (admissible) encoding of the trajectory

{xk = fk(x)} with respect to the covering C. Assume that we know all ad-

missible N -length encodings, and there is a need to predict subsequent p-length

encodings, i.e. to �nd admissible encodings of length N + p.

Let the number of admissible encodings K(N) grows exponentially depend-

ing on N . We estimate the rate of growth of encodings by the number

h = lim
N→+∞

logbK(N)

N
, (2)

where b may be any real number greater than 1. The bases b = 2 (following to

Shannon) or b = e are in common use. The existence of the limit in (2) follows

from the Polya lemma [1, 3, 14].

Lemma. 1 [14], p. 103. If a sequence of non-negative numbers an satis�es the

inequality

an+m ≤ an + am,

then there exists limn→∞ an/n .

For the number of admissible encodings we have

K(n+m) ≤ K(n)K(m),
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hence for the sequence an = logbK(n) there exists the limit (2).

Thus, for the number of encodings K(N) we obtain the estimation

K(N) ∼ BbhN ,

where B is a constant. If h 6= 0 then

K(N + p)

K(N)
∼ bhp.

This relation means that for any N the uncertainty of future encodings grows

with the exponent hp regardless the knowledge of previous encodings.

If the growth of the number of di�erent encodings is not exponential (i. e.

h = 0), for example as

K(N) ∼ BNA,

where A �- a positive number (may be large), then

K(N + p)

K(N)
∼ (1 +

p

N
)A → 1,

when N →∞. In other words, the uncertainty of the future decreases when the

length N of known encodings increases.

Thus, if the growth of the number of di�erent encodings is exponential, the

uncertainty does not depend on N , in other case it decreases as N increases.

Value h may be interpreted as a characteristics of uncertainty (chaoticity) of

the system dynamic considered .

Topological entropy. Let f be a continuous mapping de�ned on a manifoldM

and C = {M(1), . . . ,M(n)} be an open covering of M . For an integer positive

number N consider a sequence

ω = ω1ω2 · · ·ωN ,

where ωk is a number from 1 to n. Construct the intersection of the form

M(ω) = M(ω1) ∩ f−1(M(ω2)) ∩ · · · ∩ f−N+1(M(ωN )), (∗)

which is an open set. The admissible encoding ω corresponds to the nonempty

intersection M(ω), i.e. there exists x ∈ M(ω1) such that fk(x) ∈ M(ωk+1).
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The sequence ω codes the segment of the trajectory {fk(x), k = 1, 2, · · · , N}.

Consider all the admissible N -lentgh encodings {ω} and the collection of sets

CN = {M(ω)}, which is an open covering. Choose in CN a minimal by the

number of elements (denoted further by |CN |) �nite subcovering CN .

Then according to the Polya lemma there exists the limit

H(C) = lim
N→∞

log |CN |
N

. (3)

De�nition. 3 The number

h(f) = sup
C
H(C),

where sup is taken over all open coverings C, is called topological entropy of the

mapping f : M →M .

It is easy to see that there is little point in using this de�nition for practical

calculation of entropy. Consider some methods for entropy calculation.

A covering C2 is said to be re�ned in a covering C1, if any A ∈ C2 lies in

a set B ∈ C1. A sequence of open coverings Cn is called exhaustive if for any

open covering C there exists the number n∗ such that the covering Cn is re�ned

in C for n ≥ n∗.

Proposition. 2 [1] p. 122.

1. If Cn is a sequence of open coverings with diameters

dn = max
A∈Cn

diamA

tending to zero, then Cn is an exhaustive sequence.

2. Entropy of the mapping f is calculated as follows

h(f) = lim
n→∞

H(Cn).

Consider coverings C1 and C2, and construct for each of them nonempty inter-

sections (*). Denote the obtained collections of sets by CN1 and CN2 respectively.

In each collection choose the minimal (by the number of elements) subcovering,

and denote them CN1 and CN2.
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Proposition. 3 If C2 is re�ned in C1, then

|CN1| ≤ |CN2|,

where |CNi| denotes the number of elements in the set considered.

Proof. If A1 ⊂ B1 and A2 ⊂ B2, then A1 ∩ f−1(A2) lies in B1 ∩ f−1(B2). By

the same way one can prove that elements of CN2 are in corresponding elements

of CN1 . Consider CN1 and CN2. Take from CN1 all the elements which contain

corresponding elements of CN2 and form from them the covering C∗N1.

Then |CN1| ≤ |C∗N1| ≤ |CN2|, because CN1 is a minimal subcovering for CN1 .

The proposition is proved.

Corollary. 1 Assume that C2 is re�ned in C1, and the numbers H(C1), H(C2)

are calculated by (3). Then

H(C1) ≤ H(C2).

3 Entropy of a symbolic image

Let G be a graph with the adjacency matrix Π. Denote by bn the number of

admissible n-length paths on G .

De�nition. 4 The number

h(G) = lim
n→∞

ln bn
n

is called the entropy of the graph G.

Remember that the element (Πn)ij is equal to the number of admissible n-length

paths from i to j. Then

bn =
∑
ij

(Πn)ij

Theorem. 1 Let Cn be a sequence of subcoverings of a closed covering, such

that cells are polyhedrons intersecting on boundary disks, and diameters dn of

subcoverings tend to zero. Denote by Gn the symbolic images constructed for a
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mapping f : M →M in accordance with the sequence Cn. Then for the entropy

of f the following inequality holds

h(f) ≤ lim
n→∞

h(Gn).

Proof. Let Cn = {M(i)}be a closed covering from the sequence described above

and Gn be a symbolic image of the mapping f constructed according to Cn.

Consider the set PN of encodings of N -length segments of trajectories. It is

obvious that PN not greater than the number of admissible N -length paths on

Gn,denoted by bN .

Hence the number |CN | of nonempty intersections of the form

M(ω) = M(ω1) ∩ f−1(M(ω2)) ∩ · · · ∩ f−N+1(M(ωN ))

is not greater than bN . Thus,

H(Cn) ≤ h(Gn).

If C is an open covering then there exists the number n∗ such that the

covering Cn is re�ned in C for n ≥ n∗. Then in accordance with Proposition 2

we have

H(C) ≤ H(Cn) ≤ h(Gn).

Now consider an exhausting sequence of open coverings {C̃m}. Let n(m) be the

number n∗ constructed for the covering C̃m, then

H(C̃m) ≤ H(Cn) ≤ h(Gn),

where n ≥ n(m). If m→∞, then according to Proposition 2 we have

h(f) = lim
m→∞

H(C̃m) ≤ lim
n→∞

h(Gn).

The theorem is proved.

Remember that a matrix A(n × n) is called decomposable if it admits an

invariant subspace with dimension less than n, and a matrix A is called nonneg-

ative (positive) if it has nonnegative (positive) elements. If for a nonnegative
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matrix A there is an integer s > 0 such that all the elements of As are positive,

then A is called primitive. In particular the matrix of admissible transitions

Π is nonnegative. It is nondecomposable if the symbolic image consists of one

class of equivalent recurrent vertices.

Theorem. 2 (Perron-Frobenius) [8, 14]

• If A is a decomposable nonnegative matrix then it has an eigenvector e

with positive coordinates and the eigenvalue λ with multiplicity 1, and the

other eigenvalues µ satisfy the inequality |µ| ≤ λ.

• If A is a decomposable nonnegative matrix and |µ| < λ, then A is primitive.

• If A is a decomposable nonnegative matrix and it has h > 1 eigenvalues

which are equal in modulus λ, then A is not primitive, and by an agreed

renumeration of rows and columns it may be transformed to the form

0 A12 0 · · · 0

0 0 A23 · · · 0

. . .
. . .

0 0 0 · · · Ah−1h

Ah1 0 0 · · · 0


,

where Aij are square blocks, and Ah consists of h primitive blocks.

Theorem. 3 The entropy of the graph G is equal to the logarithm of the max-

imal eigenvalue of the adjacency matrix

h(G) = lnλ.

Proof. 1. Consider the case when G consists of one class of equivalent recurrent

vertices. Let e be a positive eigenvector for the maximal eigenvalue λ,i.e.

Πe = λe.

In the coordinate form we have∑
j

(Πn)ijej = λnei. (4)
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Let c = min{ei} and d = max{ei}. In accordance with the Perron-Frobenius

theorem c > 0. Then the following inequalities hold

c
∑
j

(Πn)ij ≤
∑
j

(Πn)ijej ≤ dλn.

It follows that ∑
j

(Πn)ij ≤
d

c
λn

for any i. Summing by i we obtain

bn =
∑
ij

(Πn)ij ≤
dr

c
λn,

where r is the number of rows in the matrix Π. It follows from (4) that

cλn ≤ λnei =
∑
j

(Πn)ijej ≤ d
∑
j

(Πn)ij ≤ d
∑
ij

(Πn)ij .

Hence we obtain the estimation

c

d
λn ≤

∑
ij

(Πn)ij = bn,

and the inequalities
c

d
λn ≤ bn ≤

dr

c
λn.

The required equality follows from it.

2. Consider the case when there are several classes of equivalent recurrent

vertices, i.e the matrix Π is decomposable. According to Proposition 1, by a

renumbering of vertices this matrix may be transformed to the form

Π =



(Π1) · · · · · · · · · · · ·
. . .

0 (Πk) · · · · · ·
. . .

. . .

0 0 (Πs)


,

where each diagonal block Πk corresponds to either one of the classes of equiv-

alent recurrent vertices Hk or some non-recurrent vertex, and consists of one
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zero. Under diagonal blocks are zeroes. Each class Hk has the entropy

h(Hk) = lnλk,

where λk is the maximal eigenvalue of Πk. By the de�nition the entropy of a

symbolic image G equals

h(G) = lim
n→∞

ln bn
n

.

Consider an admissible n-length path ω. Assume that on G there are s classes

of equivalence Hk. The path ω passes both through the vertices from Hk and

non-recurrent vertices which do not belong to these classes. Denote by ωk the

parts of ω which lie in the class Hk. If we delete from ω all the ωk it will contain

only di�erent paths σl passing through non-recurrent vertices. Thus ω is the

sum ωk and σl. Combine all the paths σl into a sequence σ. Generally speaking

it is not an admissible path. Let K be the number of non-recurrent vertices in

G. The sequence σ contains nonrecurrent vertices without repetitions. Hence

the number of the sequences σ is not greater than the number of permutations

of K elements , and it equals K!.

Denote by n(k) the length of the path ωk from the class Hk. Then n(1) +

n(2) + · · ·+n(s) ≤ n. According to item 1 for every class Hk there is a number

d such that the number bk(n(k)) of di�erent n(k)-length paths ωk is estimated

as follows

bk(n(k)) ≤ dλn(k)k ≤ dλn(k),

ãäå λ = maxλk. Then for the number of di�erent paths ωk which are in ω we

have the estimation∏
k

bk(n(k)) ≤ dsλn(1)+n(2)+···+n(s) ≤ dsλn.

Summing the above estimations obtain the following

bn ≤ K!dsλn.

Thus, we have the upper estimation for the entropy of G:

h(G) ≤ lim
n→∞

1

n
ln(K!dsλn) = lnλ.
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Prove the opposite inequality. Note that the number of admissible paths on G

is greater than the number of admissible paths in a class Hk. Then h(G) ≥

h(Hk) = lnλk for any k, which gives the low estimation

h(G) ≥ lnλ.

Hence we have

h(G) = lnλ,

and the proof is completed.

4 Flows on a symbolic image

Let f : M → M be a homeomorphism of a compact manifold M . A measure

µ de�ned on M is said to be f -invariant, if for any measurable set A ⊂ M the

equality

µ(f−1(A)) = µ(A) = µ(f(A))

holds. In what follows we assume that all measures considered are the Borel

ones. The Krylov-Bogoliubov theorem [13, 11] guaranties the existence of an

invariant measure µ which is normed on M : µ(M) = 1. Denote by M(f) the

set of all f -invariant normed measures . This set is a convex closed compact

in weak topology (see [15], p.511). The convergence µn → µ in this topology

means that ∫
M

φdµn →
∫
M

φdµ

for any continuous function φ : M → R.

To understand how a distribution of a measure may appear on a symbolic im-

age, consider the following observation. Assume that there exists a f -invariant

normed measure µ on M , and the cells of a covering C are polyhedrons inter-

secting by boundary disks. Construct a measurable partition C∗ = {M∗(i)}

such that a boundary disk belongs to one of adjoining cells. Then, to every

edge i→ j of a symbolic image G we can assign the measure

mij = µ(M∗(i) ∩ f−1(M∗(j))) = µ(f(M∗(i)) ∩M∗(j)), (5)
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where the last equality follows from the invariance of µ. Besides that, the

invariance of µ leads to the equalities∑
k

mki =
∑
k

µ(f(M∗(k)) ∩M∗(i))) = µ(M∗(i)) =

∑
j

µ(M∗(i) ∩ f−1(M∗(j))) =
∑
j

mij .

The value
∑
kmki is called the �ow incoming in the vertex i, and the

∑
jmij

� the �ow outcoming from i. The equality∑
k

mki =
∑
j

mij (6)

may be interpreted as Kircho�'s law: for any vertex the incoming �ow equals

the outcoming one. Furthemore, we have∑
ij

mij = µ(M) = 1. (7)

It means that the distributionmij is normed (probabilistic). Thus, a f -invariant

measure µ generates on a symbolic image a distribution mij which satis�es the

conditions (6) and (7). The above reasoning leads to the following de�nition.

De�nition. 5 Let G be an oriented graph. The distribution {mij} on edges

{i→ j} such that

• mij ≥ 0;

•
∑
ijmij = 1;

• for any vertex i ∑
k

mki =
∑
j

mij

is called �ow on G.

The last property may be called the invariance of a �ow. The norming condition

may be written as m(G) = 1, where the measure of G is the sum of measures

of all edges. Sometimes in the graph theory for such a distribution the term

�closed �ow� is used.
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For the �ow {mij} on G we may de�ne the measure of a vertex i as

mi =
∑
k

mki =
∑
j

mij .

Then
∑
imi = m(G) = 1.

Thus, a f -invariant measure generates a �ow on a symbolic image. Now we

consider the inverse construction. Let on a symbolic image G a �ow m = {mij}

be given, then we can construct the measure µ on M as follows

µ(A) =
∑
i

mi(v(A ∩M(i))

v(M(i))
. (8)

Here v is a normed onM Lebesgue's measure, and on the assumption v(M(i)) 6=

0. In this case the measure of a cell M(i) coincides with the measure of the

vertex i: µ(M(i)) = mi. As v is the Lebesgue measure, the measure of boundary

disks is equal to zero and the measure of a cell does not depend on the measure

of its boundary. In general, the constructed measure µ is not f -invariant. But

it is an approximation to an invariant measure in the sense that µ converges in

weak topology to an invariant measure if the diameter of the covering tends to

zero.

Theorem. 4 [18] Let on a sequence of symbolic images {Gt} of a homeomor-

phism f a sequence of �ows {mt} be de�ned, and the maximal diameter dt of

partitions tends to zero when t→∞. Then

• there exists the sequence of measures µtk (constructed according to (8))

which converges in weak topology to a f -invariant measure µ;

• if a subsequence of measures µtl converges in weak topology to a measure

µ∗, then µ∗ is f -invariant.

Theorem. 5 [18] For any neighborhood (in weak topology) U of the set M(f)

there is a positive number d0 such that for any partition C with the diameter

d < d0 and any �ow m on a symbolic image G with respect to C, the measure

µ constructed according to (8) by m, lies in U .
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5 Metric entropy

Let µ be a normed invariant measure of a homeomorphism f : M → M and

C = {M1,M2, · · · ,Mm} a measurable partition of the manifold M .

De�nition. 6 The entropy of the partition C is de�ned as

H(C) = −
∑
i

µ(Mi) lnµ(Mi).

Construct a covering CN which consists of nonempty intersections of the form

Ai1 ∩ f−1(Ai2) ∩ · · · ∩ f−N+1(MiN ).

If such an intersection is nonempty then the sequence i1, i2, · · · iN is admissible

with respect to the covering C.

The metric entropy of f for the covering C is de�ned as

H(f, C) = lim
N→∞

1

N
H(CN ).

The existence of the limit follows from the Polya lemma.

De�nition. 7 The entropy of f for an invariant measure µ is de�ned as

h(f, µ) = sup
C
H(f, C),

where sup is taken over all measurable �nite partitions.

The connection between topological and metric entropy is given by the following

theorem.

Theorem. 6 [6, 9] The topological entropy of a homeomorphism f is the least

upper bound of metric entropies

h(f) = sup
µ
h(f, µ).

6 Stohastic Markov chains

Stohastic Markov chain [8, 14] is de�ned by a set of states of a system {i =

1, 2, . . . n} and the matrix of transition probabilities Pij from a state i to state
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j. Such a matrix is called stohastic if it satis�es the following conditions Pij ≥ 0

and
∑
j Pij = 1 for every i. A probabilistic distribution p = (p1, p2, . . . , pn),∑

i pi = 1 is said to be stationary if

(p1, p2, . . . , pn)


P11 P12 . . . P1n

P21 P22 . . . P2n

· · . . . ·

Pn1 Pn2 . . . Pnn

 = (p1, p2, . . . , pn),

i.e. p is a left eigenvector of P .

We show that there is a one-to-one correspondence between a Markov chain

and a �ow on a graph in which vertices correspond to the states with positive

measure.

Let m = {mij} be a �ow on a graph G. The measure of a vertex i equals

mi =
∑
jmij =

∑
kmki. If mi 6= 0 then the vertex {i} is necessary recurrent.

It is easy to verify that any �ow m = {mij} on G generates a stohastic Markov

chain in which the states are vertices with nonzero measures, and the transition

probabilities from i to j are calculated as

Pij =
mij

mi
.

In this case the stohastic matrix P = (mij/mi) has the stationary distri-

bution coinciding with the distribution of the measure m over the vertices

(m1,m2, . . . ,mn). This follows from the equality

(m1,m2, . . . ,mn)


m11

m1

m12

m1
. . . m1n

m1

m21

m2

m12

m2
. . . m2n

m2

· · . . . ·
mn1

mn

mn2

mn
. . . mnn

mn

 = (m1,m2, . . . ,mn).

Thus, any �ow m = {mij} on a graph G generates a stohastic Markov chain for

which the distribution of the measure (mi) on vertices is stationary.

Now we prove the inverse fact: for any stohastic matrixP = (Pij) and its

stationary distribution p = (pi) there exists a �ow m = {mij} on a graph G for
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which the distribution of the measure on vertices coincides with the stationary

distribution, i.e. mi = pi.

Actually, let P be a stohastic matrix and pP = p. Consider a graph G which

has n vertices {i} , and the edge i → j there exists if Pij > 0. Construct the

distribution on edges mij = Pijpi and show that the distribution is a �ow on

G. As P is stohastic then
∑
j Pij = 1 for any i. Hence∑

j

mij =
∑
j

Pijpi = pi
∑
j

Pij = pi.

As pP = p then
∑
k pkPki = pi, hence∑

k

mki =
∑
k

pkPki = pi =
∑
j

mij ,

i.e for the distribution mij the Kircho� law holds. Moreover,∑
ijmij =

∑
i pi = 1.

From the above it follows that the construction of a �ow on a graph results

in obtaining a Markov chain.

7 Flow entropy

The developed technics may be applied to estimate metric entropy. Let for a

mapping f and a covering C a symbolic image G and a �ow m = {mij} be

constructed. As it was proved above, any �ow m may be considered as the

approximation to an invariant measure µ, if the diameter of C is small enough.

The �ow m on G generates the Markov chain in which the states coincide with

vertices of G, and transition probabilities are de�ned as

pij =
mij

mi
.

The matrix P = (pij) has the stationary distribution (m1,m2, . . . ,mn) for which

entropy is calculated by the formula (see [14], p. 443)

hm = −
∑
i

mi

∑
j

pij ln pij .
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Substituting pij = mij/mi we obtain

hm = −
∑
i

mi

∑
j

mij

mi
ln(

mij

mi
) = −

∑
ij

mij ln(
mij

mi
) =

−
∑
ij

mij lnmij +
∑
ij

mij lnmi = −
∑
ij

mij lnmij +
∑
i

mi lnmi.

By this means entropy can be calculated by the �ow mij as

hm = −
∑
ij

mij lnmij +
∑
i

mi lnmi. (9)

The last equality allows estimating the entropy of f for the invariant measure

µ , where the �ow m is an approximation of µ.

8 Flow with maximal entropy

Let Π be the matrix of admissible transitions for a graph G. Our objective is

to construct the �ow which has maximal entropy among all the �ows on G. As

any �ow is grouped on a component of recurrent vertices, it may be thought

that G consists from one component.

Theorem. 7 There is a �ow m on G such that:

hm = h(G) = lnλ.

Proof.

1. Eigenvalues of any real matrix A = (aij) coincide with the eigenvalues of

the transposed (conjugate) matrix A∗ . Really, as detA = detA∗, then

det(A− λE) = det(A− λE)∗ = det(A∗ − λE).

Hence to an eigenvalue λ of A corresponds the conjunctive eigenvalue λ of

A∗. The roots of a real characteristic polynomial are either real or complex-

conjugate, hence the eigenvalues of the matrices A and A∗ coincide.

2. Let A be the matrix of admissible transitions of a graph G and λ be

the maximal eigenvalue from the Perron-Frobenius theorem. Then for A there

18



exists a left eigenvector e with nonnegative coordinates ei,
∑
i ei = 1, such that

eA = λe, A∗e = λe.

Hence for every i we have ∑
j

ajiej = λei, (10)

which leads to the equality ∑
j

ajiej
λei

= 1

for every i. Hence a matrix of the form

P =

(
pij =

ajiej
λei

)
is the stohastic matrix for which vector e is a stationary distribution:

eP = e.

The distribution on edges i→ j de�ned by

mij = pijei =
ajiej
λ

is the �ow m on the graph G such that the measure mi of the vertex i equals

ei. The entropy of m is calculated by the formula

hm = −
∑
ij

mij lnmij +
∑
i

mi lnmi.

Hence

hm = −
∑
ij

ajiej
λ

ln
ajiej
λ

+
∑
i

ei ln ei.

Here we assume that 0 ln 0 = 0. That means that the sum is taken over i, j for

which aij = 1. Thus we obtain

hm = −
∑
ij

ajiej
λ

(ln aij + ln ei − lnλ) +
∑
i

ei ln ei =

(
∑
i

(
∑
j

ajiej
λ

) lnλ−
∑
i

(
∑
j

ajiej
λ

) ln ei +
∑
i

ei ln ei =

lnλ
∑
i

ei −
∑
i

ei ln ei +
∑
i

ei ln ei = lnλ.

The proof is completed.
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