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1 Symbolic image of a dynamical system

Let f: M — M be a homeomorphism of a compact manifold M generating a

discrete dynamical system
Tn+1 = f(xn)v (1)

and p(z,y) be a distance on M. In what follows we use the concept of symbolic
image of a dynamical system [17], which brings together symbolic dynamics
[3, 14] and numerical methods [10]. Let C' = {M(1),..., M(n)} be a finite closed

covering of a manifold M. The set M (i) is called cell with index i.

Definition. 1 [16] Symbolic image of the dynamical system (1) for a covering
C' is an oriented graph G with vertices {i}corresponding to cells {M(i)}. The

vertices i and j are connected by the edge i — j iff

FO(@)) (M) # 0.

Symbolic image is a tool for a space discretization and graphic representation
of the dynamic of a system under study, which allows the obtaining useful
information about the global structure of the system dynamics. Symbolic image
depends on a covering C'. The existence of an edge ¢ — j guaranties the existence
of a point x € M (i) such that f(x) € M(j). In other words, an edge ¢ — j is the
trace of the mapping = — f(x), where x € M (i), f(z) € M(j). If there isn’t an
edge i — j on G then there are not the points € M () such that f(x) € M(j).

We do not place special restrictions on a covering C, but basing on the
theorem about the triangulation of a compact manifold [19] we may without
loss of generality assume that cells M (i) are polyhedrons intesecting on their

boundary disks. In practice M is a compact in R?, and M (i) are cubes or



parallelepipeds. Let C' be a covering of M by polyhedrons intersecting on their
boundary disks. In what follows we also use a measurable partition C*, such
that a boundary disk belongs only one of adjoining cells. We assume that cells-

polyhedrons are closures of their interiors.

Definition. 2 A wvertex of a symbolic image G is said to be recurrent if there
is a periodic path passing through it. The set of recurrent vertices is denoted by
RV. The recurrent vertices i and j are called equivalent if there exists a periodic

path passing through i and j.

Thus, the set of recurrent vertices RV is split into equivalence classes { Hx}. In
the graph theory such classes are called strong connectivity components.
Let
diam M (i) = max(p(z,y) : z,y € M (7))

be the diameter of a cell M (i) and d = diam(C) be the maximum of the
diameters of the cells. The number d is called the diameter of the covering
C.

An oriented graph G is uniquely defined by its adjacency matrix ( matrix of
admissible transitions) II. The matrix IT = (7;;) has sizes nxn, where n — is the
number of vertices of G, and m;; = 1 iff there exists the edge i — j, else m;; = 0.
Hence an i-th row in II corresponds to the vertex ¢ (cell M (7)), and on the
place j in this row there is 1 or 0 depending on the existence (or nonexistence)
of nonempty intersection f(M(i)) and M(j). Matrix of admissible transitions
depends on the numbering of vertices (cells of the covering), so that a change of
numeration leads to a change of matrix II. Note that there exists a numeration

transforming the matrix of admissible transitions to a canonical form.

Proposition. 1 [1] Vertices of a symbolic image G may be numbered such that



the adjacency matrixz has the form

(IL)
II = 0 (Hk) s
0 0 (1)

where every diagonal block Il corresponds either an equivalence class Hy of
recurrent vertices or a monrecurrent vertex and consists of one zero. Under

diagonal blocks are only zeroes (upper triangular matriz)

2 Entropy

In 1865 R. Clausius [5] introduced the most important in thermodynamics con-
cept entropy. To explain the irreversibility of macroscopic states L. Boltzmann
in 1872 [4] first introduced statistical approach in thermodynamics : he pro-
posed to describe a state of a system by using its microstates. The Boltzmann
entropy S is statistical entropy for the equiprobable distribution of a system
over P states, it is defined as

S = klog(P), where k is the Boltzmann constant.

In 1948 C. Shannon [20, 21] introduced the notion of capacity (C) for an
information channel as follows

0= fim 7,

where N(T') is the number of admissible signals for the time 7. He also defined

information entropy as follows
h=—Y pilog,p;,
i

where p; is a probability of i-th signal (message), i € 1,...n, and n is the number
of signals. A. N. Kolmogorov in 1958 [12] introduced entropy in the theory of

dynamical systems. Entropy is a fine invariant of a dynamical system, it may be



interpreted as a measure of the system chaoticity. Comprehensive information
on entropy in dynamical systems is given in [7, 11]. It turns out that entropy
characteristics may be obtained both for a system described analytically and
for its phase portraits. The application of such characteristics to digital image
analysis is given in [2].

Motivation Consider a discrete dynamical system z,1; = f(z,) on a com-
pact manifold M, where f : M — M is a homeomorphism. Let C' = {M(1),..,M(n)}
be a finite covering of M and the sequence {z; = f*(z),k = 0,...N — 1} be
the N-length part of the trajectory of a point x. The covering C' generates a
coding of this part via a finite sequence £(x) = {ix,k = 0,...N — 1}, where
xp, € M(i). In other words, i is the number of the cell from C which contains
the point xj, = f¥(x). Generally speaking, the mapping x;, — i, is multivalued.
The sequence & = {iy} is said to be (admissible) encoding of the trajectory
{z) = f¥(z)} with respect to the covering C. Assume that we know all ad-
missible N-length encodings, and there is a need to predict subsequent p-length
encodings, i.e. to find admissible encodings of length N + p.

Let the number of admissible encodings K (NN) grows exponentially depend-

ing on N. We estimate the rate of growth of encodings by the number

log;, K(N)

h= 1 2
im N (2)

N——+oco

where b may be any real number greater than 1. The bases b = 2 (following to
Shannon) or b = e are in common use. The existence of the limit in (2) follows

from the Polya lemma [1, 3, 14].

Lemma. 1 [14], p. 103. If a sequence of non-negative numbers a,, satisfies the
inequality

Untm < Qp + A,

then there exists lim, oo an/n .

For the number of admissible encodings we have

K(n+m) < K(n)K(m),



hence for the sequence a,, = log, K (n) there exists the limit (2).

Thus, for the number of encodings K (N) we obtain the estimation
K(N) ~ BV,

where B is a constant. If h # 0 then

K(N+p) b,
K(N)
This relation means that for any N the uncertainty of future encodings grows
with the exponent hp regardless the knowledge of previous encodings.
If the growth of the number of different encodings is not exponential (i. e.

h = 0), for example as

K(N)~ BN4,
where A — a positive number (may be large), then

K(N +p)

RE) ~ (14 2y

N

when N — oco. In other words, the uncertainty of the future decreases when the
length N of known encodings increases.

Thus, if the growth of the number of different encodings is exponential, the
uncertainty does not depend on N, in other case it decreases as IN increases.
Value h may be interpreted as a characteristics of uncertainty (chaoticity) of
the system dynamic considered .

Topological entropy. Let f be a continuous mapping defined on a manifold M
and C = {M(1),...,M(n)} be an open covering of M. For an integer positive

number N consider a sequence
W= wiwy - WN,
where wy, is a number from 1 to n. Construct the intersection of the form
M(w) = M(w) N fH (M (wa)) N0 V(M (W), (5)

which is an open set. The admissible encoding w corresponds to the nonempty

intersection M (w), i.e. there exists 2 € M(w;) such that f*(x) € M(wpi1)-



The sequence w codes the segment of the trajectory {f*(z), k=1, 2, ---, N}.
Consider all the admissible N-lentgh encodings {w} and the collection of sets
CN = {M(w)}, which is an open covering. Choose in C" a minimal by the
number of elements (denoted further by |Cy|) finite subcovering Chy.

Then according to the Polya lemma there exists the limit

H(C) = tim 2810V

N —oc0

Definition. 3 The number

h(f) :sng(C),

where sup is taken over all open coverings C, is called topological entropy of the

mapping f: M — M.

It is easy to see that there is little point in using this definition for practical
calculation of entropy. Consider some methods for entropy calculation.

A covering Cs is said to be refined in a covering Cy, if any A € Cs lies in
a set B € C1. A sequence of open coverings C,, is called exhaustive if for any
open covering C there exists the number n* such that the covering C,, is refined

in C for n > n*.
Proposition. 2 [1] p. 122.

1. If C, is a sequence of open coverings with diameters

d, = max diamA
AeC,,

tending to zero, then C,, is an exhaustive sequence.
2. Entropy of the mapping f is calculated as follows

h(f) = lim H(C).

n—oQ

Consider coverings C and Cs, and construct for each of them nonempty inter-
sections (*). Denote the obtained collections of sets by C{ and C3' respectively.
In each collection choose the minimal (by the number of elements) subcovering,

and denote them Cpx; and Cyo.



Proposition. 3 If Cs is refined in Cy, then
|Cn1] < |Cnal,

where |Cy;| denotes the number of elements in the set considered.

Proof. If A; C By and Ay C B, then A; N f~1(Ay) lies in By N f~(By). By
the same way one can prove that elements of CJ¥ are in corresponding elements
of CNN. Consider Oy and Cyo. Take from C{V all the elements which contain
corresponding elements of C'n2 and form from them the covering C'y;;.

Then |Cn1| < |Cxyl < |Cna2l, because Cy1 is a minimal subcovering for cy.

The proposition is proved.

Corollary. 1 Assume that Cy is refined in Cy, and the numbers H(C1), H(C3)
are calculated by (3). Then

H(Cy) < H(Cy).

3 Entropy of a symbolic image

Let G be a graph with the adjacency matrix II. Denote by b, the number of
admissible n-length paths on G .

Definition. 4 The number

BG) = Tim 0o

n—oo N

is called the entropy of the graph G.

Remember that the element (II"),; is equal to the number of admissible n-length

paths from ¢ to j. Then

by = > (II");

ij
Theorem. 1 Let C,, be a sequence of subcoverings of a closed covering, such
that cells are polyhedrons intersecting on boundary disks, and diameters d,, of

subcoverings tend to zero. Denote by G,, the symbolic images constructed for a



mapping f : M — M in accordance with the sequence C,,. Then for the entropy
of f the following inequality holds

h(f) < lim h(Gy).

T n—ooo

Proof. Let C,, = {M (i)}be a closed covering from the sequence described above
and G,, be a symbolic image of the mapping f constructed according to C,,.
Consider the set Py of encodings of N-length segments of trajectories. It is
obvious that Py not greater than the number of admissible NV-length paths on
G,denoted by by.

Hence the number |C| of nonempty intersections of the form

M(w) = M(w1) 0 f7H (M (w2)) N0 FVFH (M (wn))

is not greater than by. Thus,
H(C,) < h(G,).

If C is an open covering then there exists the number n* such that the
covering (', is refined in C for n > n*. Then in accordance with Proposition 2

we have

H(C) < H(C) < h(Gy).

Now consider an exhausting sequence of open coverings {C, }. Let n(m) be the

number n* constructed for the covering 5m, then

H(Cp) < H(Cn) < h(Gr),

where n > n(m). If m — oo, then according to Proposition 2 we have

h(f) = lim H(Cp) < lim h(Gy).

m— oo n— 00

The theorem is proved.
Remember that a matrix A(n X n) is called decomposable if it admits an
invariant subspace with dimension less than n, and a matrix A is called nonneg-

ative (positive) if it has nonnegative (positive) elements. If for a nonnegative



matrix A there is an integer s > 0 such that all the elements of A® are positive,
then A is called primitive. In particular the matrix of admissible transitions
IT is nonnegative. It is nondecomposable if the symbolic image consists of one

class of equivalent recurrent vertices.

Theorem. 2 (Perron-Frobenius) [8, 14]

o If A is a decomposable nonnegative matriz then it has an eigenvector e
with positive coordinates and the eigenvalue A with multiplicity 1, and the

other eigenvalues p satisfy the inequality |u| < A.
e If A is a decomposable nonnegative matriz and || < A, then A is primitive.

o If A is a decomposable nonnegative matriz and it has h > 1 eigenvalues
which are equal in modulus X\, then A is not primitive, and by an agreed

renumeration of rows and columns it may be transformed to the form

0 Ap 0 - 0

0 0 Agg --- 0

0 0 0 -+ Ap_1n
A O o .- 0

where A;; are square blocks, and A" consists of h primitive blocks.

Theorem. 3 The entropy of the graph G is equal to the logarithm of the mazx-

imal eigenvalue of the adjacency matric
h(G) =In A\

Proof. 1. Consider the case when G consists of one class of equivalent recurrent

vertices. Let e be a positive eigenvector for the maximal eigenvalue \,i.e.
IIe = Me.

In the coordinate form we have

Z(Hn)ijej = /\"ei. (4)

J



Let ¢ = min{e;} and d = max{e;}. In accordance with the Perron-Frobenius

theorem ¢ > 0. Then the following inequalities hold
e (") <Y (I1")i5e; < dA™.
J J

It follows that
n d n
Z(H Jij < A
J

for any 7. Summing by ¢ we obtain

ij
where 7 is the number of rows in the matrix II. It follows from (4) that

A" < )\"ei = Z(Hn)ije]’ < dZ(Hn)U < dZ(Hn)z]
J J ij

Hence we obtain the estimation
c
8/\n = ;(Hn)ij = bn,

and the inequalities
gv <b, < d—ZA”.
The required equality follows from it.
2. Consider the case when there are several classes of equivalent recurrent
vertices, i.e the matrix II is decomposable. According to Proposition 1, by a

renumbering of vertices this matrix may be transformed to the form

(IL)
II= 0 (Hk) )
0 0 (1)

where each diagonal block II; corresponds to either one of the classes of equiv-

alent recurrent vertices Hj or some non-recurrent vertex, and consists of one

10



zero. Under diagonal blocks are zeroes. Each class Hy has the entropy
h(Hk) =1In /\k;

where A\ is the maximal eigenvalue of II;. By the definition the entropy of a

symbolic image G equals
1
BG) = tim B0

n—oo n

Consider an admissible n-length path w. Assume that on G there are s classes
of equivalence Hy. The path w passes both through the vertices from Hj and
non-recurrent vertices which do not belong to these classes. Denote by wy the
parts of w which lie in the class Hy. If we delete from w all the wy, it will contain
only different paths o; passing through non-recurrent vertices. Thus w is the
sum wy, and o;. Combine all the paths o; into a sequence o. Generally speaking
it is not an admissible path. Let K be the number of non-recurrent vertices in
G. The sequence o contains nonrecurrent vertices without repetitions. Hence
the number of the sequences o is not greater than the number of permutations
of K elements , and it equals K.

Denote by n(k) the length of the path wy from the class Hy. Then n(1) +
n(2) +---+n(s) <n. According to item 1 for every class Hj, there is a number
d such that the number by (n(k)) of different n(k)-length paths wy is estimated
as follows

be(n(k)) < dAr®) < aan®),

rame A = max Ag. Then for the number of different paths w; which are in w we

have the estimation
ku(n(k)) < @EArWFn@)+nls) < gsyn
k
Summing the above estimations obtain the following
by, < K1d°A™.
Thus, we have the upper estimation for the entropy of G:

W@ < Tim ~In(KId*A™) = In A

n—o00 N,

11



Prove the opposite inequality. Note that the number of admissible paths on G
is greater than the number of admissible paths in a class Hy. Then h(G) >

h(Hg) = In A for any k, which gives the low estimation
h(G) > In A

Hence we have

h(G) =In A,

and the proof is completed.

4 Flows on a symbolic image

Let f: M — M be a homeomorphism of a compact manifold M. A measure
1t defined on M is said to be f-invariant, if for any measurable set A C M the
equality
u(fHA)) = u(4) = u(f(A))

holds. In what follows we assume that all measures considered are the Borel
ones. The Krylov-Bogoliubov theorem [13, 11| guaranties the existence of an
invariant measure p which is normed on M: p(M) = 1. Denote by M(f) the
set of all f-invariant normed measures . This set is a convex closed compact

in weak topology (see [15], p.511). The convergence p, — p in this topology

/M Ohin = /M o

for any continuous function ¢ : M — R.

means that

To understand how a distribution of a measure may appear on a symbolic im-
age, consider the following observation. Assume that there exists a f-invariant
normed measure p on M, and the cells of a covering C are polyhedrons inter-
secting by boundary disks. Construct a measurable partition C* = {M*(i)}
such that a boundary disk belongs to one of adjoining cells. Then, to every

edge i — j of a symbolic image G we can assign the measure
mij = p(M* (i) 0 f7HM*(5)) = p(f(M*(5)) N M*(3)), (5)

12



where the last equality follows from the invariance of p. Besides that, the

invariance of u leads to the equalities

D omu =y p(f(M* (k) VM (i) = p(M* (i) =
k k

S u @) 0 O ) = 3 my.

The value ), my, is called the flow incoming in the vertex ¢, and the ) M

— the flow outcoming from i. The equality
D ki =3 mig (6)
k J

may be interpreted as Kirchoff’s law: for any vertex the incoming flow equals

the outcoming one. Furthemore, we have
S = (M) = 1. (7)
ij

It means that the distribution m;; is normed (probabilistic). Thus, a f-invariant
measure p generates on a symbolic image a distribution m;; which satisfies the

conditions (6) and (7). The above reasoning leads to the following definition.

Definition. 5 Let G be an oriented graph. The distribution {m;;} on edges
{i — j} such that

e m;; > 0;
b Zij mi; = 1;
e for any vertex i
DM =) mig
k J
is called flow on G.

The last property may be called the invariance of a flow. The norming condition
may be written as m(G) = 1, where the measure of G is the sum of measures
of all edges. Sometimes in the graph theory for such a distribution the term

’closed flow” is used.

13



For the flow {m;;} on G we may define the measure of a vertex i as

m; = E Mmp; = E ﬂ@w.
k J

Then ), m; =m(G) = 1.

Thus, a f-invariant measure generates a flow on a symbolic image. Now we
consider the inverse construction. Let on a symbolic image G a flow m = {m;;}
be given, then we can construct the measure p on M as follows
mi(v(ANM(3))
wA) =y (8)
2 v(M(i))

i
Here v is a normed on M Lebesgue’s measure, and on the assumption v(M (i)) #
0. In this case the measure of a cell M (i) coincides with the measure of the
vertex i: u(M(i)) = m;. As v is the Lebesgue measure, the measure of boundary
disks is equal to zero and the measure of a cell does not depend on the measure
of its boundary. In general, the constructed measure p is not f-invariant. But
it is an approximation to an invariant measure in the sense that p converges in
weak topology to an invariant measure if the diameter of the covering tends to

zero.

Theorem. 4 [18] Let on a sequence of symbolic images {G:} of a homeomor-
phism [ a sequence of flows {m'} be defined, and the mazimal diameter d; of

partitions tends to zero when t — co. Then

e there exists the sequence of measures u, (constructed according to (8))

which converges in weak topology to a f-invariant measure p;

o if a subsequence of measures i, converges in weak topology to a measure

w*, then p* is f-invariant.

Theorem. 5 [18] For any neighborhood (in weak topology) U of the set M(f)
there is a positive number dy such that for any partition C with the diameter
d < dy and any flow m on a symbolic image G with respect to C, the measure

w constructed according to (8) by m, lies in U.

14



5 Metric entropy

Let p be a normed invariant measure of a homeomorphism f : M — M and

C ={My,Ms,---,M,,} ameasurable partition of the manifold M.

Definition. 6 The entropy of the partition C is defined as

Zu i) In (D).

Construct a covering CV which consists of nonempty intersections of the form
Ai1 ﬁfil(Aiz)m mf N+1(M7«N)

If such an intersection is nonempty then the sequence i1, 4o, - iy is admissible
with respect to the covering C.

The metric entropy of f for the covering C' is defined as
1
H(f,0)= Jim —H(CY).
The existence of the limit follows from the Polya lemma.
Definition. 7 The entropy of f for an invariant measure u is defined as
W(f, ) = sup H(F,C),
where sup is taken over all measurable finite partitions.

The connection between topological and metric entropy is given by the following

theorem.

Theorem. 6 [6, 9] The topological entropy of a homeomorphism f is the least

upper bound of metric entropies

h(f) = Sliph(f, 1)-

6 Stohastic Markov chains

Stohastic Markov chain [8, 14] is defined by a set of states of a system {i =

1, 2, ...n} and the matrix of transition probabilities P;; from a state i to state

15



J. Such a matrix is called stohastic if it satisfies the following conditions P;; > 0
and Zj P;; = 1 for every i. A probabilistic distribution p = (p1,p2,...,Pn);
> ;i =1 is said to be stationary if

Pi1 Py ... Py,
Po1 Py ... Py,

(p17p27'-'7pn) :(p17p27"'7pn)7
P Pyo ... Py,

i.e. pis a left eigenvector of P.

We show that there is a one-to-one correspondence between a Markov chain
and a flow on a graph in which vertices correspond to the states with positive
measure.

Let m = {m;;} be a flow on a graph G. The measure of a vertex ¢ equals
m; = Zj Mij = Y, Mii- If m; # 0 then the vertex {i} is necessary recurrent.
It is easy to verify that any flow m = {m;;} on G generates a stohastic Markov
chain in which the states are vertices with nonzero measures, and the transition

probabilities from ¢ to j are calculated as

Py ="
mg
In this case the stohastic matrix P = (m;;/m;) has the stationary distri-

bution coinciding with the distribution of the measure m over the vertices

(m1, ma, ..., my). This follows from the equality
mi1 mi2 Min
ma ma mi
ma1 mi2 maon
mo m2 mo —

(my1,ma,...,my) = (my, ma,...,my).

Mp1 My Myn
resli el o

Thus, any flow m = {m;;} on a graph G generates a stohastic Markov chain for
which the distribution of the measure (m;) on vertices is stationary.
Now we prove the inverse fact: for any stohastic matrixP = (P;;) and its

stationary distribution p = (p;) there exists a flow m = {m;;} on a graph G for

16



which the distribution of the measure on vertices coincides with the stationary
distribution, i.e. m; = p;.

Actually, let P be a stohastic matrix and pP = p. Consider a graph G which
has n vertices {i¢} , and the edge ¢ — j there exists if P;; > 0. Construct the
distribution on edges m;; = P;;p; and show that the distribution is a flow on

G. As P is stohastic then ), P;; =1 for any 4. Hence
Zmij = ZPijpi :pizpij = p;.
J J J
As pP = p then ), pi.Pri = p;, hence
> mki =Y pePri=pi =Y mij,
k k J

ie for the distribution m;; the Kirchoff law holds. Moreover,
Zij mij = pi = 1.
From the above it follows that the construction of a flow on a graph results

in obtaining a Markov chain.

7 Flow entropy

The developed technics may be applied to estimate metric entropy. Let for a
mapping f and a covering C a symbolic image G and a flow m = {m,;} be
constructed. As it was proved above, any flow m may be considered as the
approximation to an invariant measure u, if the diameter of C' is small enough.
The flow m on G generates the Markov chain in which the states coincide with

vertices of GG, and transition probabilities are defined as

bij = i
7 m; .
The matrix P = (p;;) has the stationary distribution (mi, mo, ..., m,,) for which

entropy is calculated by the formula (see [14], p. 443)

hen == _mi y_ pijInpg;.
i J

17



Substituting p;; = m;;/m; we obtain

My My
=22 T ) = = 2
— E mijlnmijJr E mijlnmi:f E mijlnmiqu E mﬂnmi
i i i %

By this means entropy can be calculated by the flow m;; as

—Zmij lnmij —I—Zml lnmi. (9)
%] %

The last equality allows estimating the entropy of f for the invariant measure

i, where the flow m is an approximation of u.

8 Flow with maximal entropy

Let IT be the matrix of admissible transitions for a graph G. Our objective is
to construct the flow which has maximal entropy among all the flows on G. As
any flow is grouped on a component of recurrent vertices, it may be thought

that G consists from one component.

Theorem. 7 There is a flow m on G such that:
hm = h(G) =1n .

Proof.
1. Eigenvalues of any real matrix A = (a;;) coincide with the eigenvalues of

the transposed (conjugate) matrix A* . Really, as det A = det A*, then
det(A — A\E) = det(A — A\E)* = det(A* — \E).

Hence to an eigenvalue A of A corresponds the conjunctive eigenvalue A of
A*. The roots of a real characteristic polynomial are either real or complex-
conjugate, hence the eigenvalues of the matrices A and A* coincide.

2. Let A be the matrix of admissible transitions of a graph G and A be

the maximal eigenvalue from the Perron-Frobenius theorem. Then for A there

18



exists a left eigenvector e with nonnegative coordinates e;,» , e; = 1, such that
eA = e, A*e = )e.

Hence for every ¢ we have
Zajiej = )\62‘, (10)
J

which leads to the equality

Z aji€j _
e,

for every i. Hence a matrix of the form

aj;€;
ey

is the stohastic matrix for which vector e is a stationary distribution:

eP =e.

The distribution on edges ¢ — j defined by

ajiej

A

Mij = Pij€i =

is the flow m on the graph G such that the measure m; of the vertex i equals

e;. The entropy of m is calculated by the formula
= —Zm,»j Inm,; + Zmi Inm;.
ij i

Hence

_ N Wil i€ o
Ry, = ZTIHT +Z€11H€z-
i i
Here we assume that 0In0 = 0. That means that the sum is taken over i, j for

which a;; = 1. Thus we obtain

hy = —Z aj;\ej (Ina;; +Ine; —InA) +Z€i1n€i =
ij

(Z(Zaﬂe] In\— Zzaﬂej In el—i—Zezlnel—
i
ln)\ZeZ ZezlnelJrZezlnei In .

The proof is completed.
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