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Аннотация. Было исследовано влияние плотностной неоднородности набегающего 

сверхзвукового потока на температуру и тепловой поток на пластине, установленной 

под углом к направлению потока. Плотностная неоднородность достигалась 

введением в основной поток воздуха тонкой струи гелия. Зафиксирована 

перестройка течения возле модели, возникающая в следствие взаимодействия 

плотностной неоднородности с ударной волной.  

ВВЕДЕНИЕ 

С увеличением скорости полета летательного аппарата становится актуальным поиск 

путей уменьшения силовых и тепловых нагрузок на теле. Известны газодинамические 

способы управления обтеканием тела при сверхзвуковых скоростях с помощью отрывных 

потоков и возвратных течений, которые позволяют значительно уменьшить 

аэродинамическое сопротивление затупленных тел, например, с помощью механической 

иглы или воздушной струи, истекающей из вершины затупленного тела навстречу 

сверхзвуковому потоку. С середины 40-х годов прошлого столетия проводятся 

исследования влияния тонких протяженных каналов с пониженной плотностью, 

расположенных перед головной ударной волной, на перестройку газодинамического 

течения у тела [1]. Значительный интерес в последнее время вызывает использование 

разнообразных разрядов (лазерный, микроволновый, тлеющий) для управления 

сверхзвуковым потоком [2]. Применение разрядов видится перспективным во многих 

аэрокосмических технологиях: управление аэродинамическими характеристиками 

летательного аппарата, получение эффективного метода снижения лобового 

сопротивления тела, смешение и зажигание газов в двигательной установке и многое 

другое. Обзор исследований по названным направлениям можно найти, например, в [3, 4]. 

Теоретическими исследованиями [5] и экспериментами [6] установлено, что основным 

фактором, который приводит к перестройке течения около тела, является нагрев газа 

после разряда. Поэтому при компьютерном симулировании взаимодействия разряда с 

ударным слоем на теле часто используется система уравнений Эйлера и модель 

совершенного газа [4], а нагрев газа в области разряда определяется отношением 

плотностей газа в области разряда и набегающем потоке. При этом, если при численном 

моделировании не возникает препятствий для рассмотрения нагретой области газа любой 

длины, то в экспериментальных исследованиях создание нагретой области квази-

бесконечной длины сопряжено с техническими трудностями. 

Было проведено исследование, которое показало, что достаточно точно моделировать 

квази-бесконечную нагретую область можно при помощи введения в основной поток 

воздуха тонкой струи газа меньшей плотности [7]. В проведенных экспериментах в 

качестве такого газа использовался гелий. 
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В данной работе представлены результаты экспериментального исследования влияния 

плотностной неоднородности набегающего сверхзвукового потока на температуру и 

тепловой поток на пластине. 

 

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕМПЕРАТУРЫ И ТЕПЛОВОГО 

ПОТОКА НА ПЛАСТИНЕ В СВЕРХЗВУКОВОМ ПОТОКЕ 

Экспериментальная установка 

Экспериментальные исследования проводились на установке, которая описана в работе 

[6]. Схема установки представлена на Рис. 1.  Для решения поставленной задачи между 

форкамерой аэродинамической трубы 1 и соплом 2 было установлена дополнительная 

секция 3, внутри которой на двух трубках 5 и 6 была закреплена небольшая форкамера 4. 

Трубка 6 была соединена с вакууметром 7 для контроля давления газа в форкамере 4. 

Трубка 5 была соединена с краном 8, через который можно было подавать как воздух, так 

и гелий из баллона 10 через редуктор 9. Форкамера 4 имела два съемных наконечника, к 

каждому из которых была припаяна трубка с внутренним и внешним диаметрами 2 и 3 мм 

соответственно. Выходное сечение трубки выводилось на срез рабочего сопла 

аэродинамической трубы. Один из наконечников имел на конце трубки коническое 

расширение для формирования сверхзвукового истечения и использовался для 

экспериментов с воздухом, второй - без расширения и использовался для подачи гелия.   
 

 

Рис. 1. Схема установки. 

 

Для создания рабочего потока использовалось профилированное сопло с числом Маха 

2.1. В экспериментах давление в рабочем потоке контролировалось с помощью 

вакуумметра и составляло около 40 Торр. Температура торможения в рабочем потоке 

290К.  
 



 

 

 

Рис. 2. Экспериментальная установка. 

 

Диагностическое оборудование 

Исследование поведения головной ударной волны при взаимодействии плотностной 

неоднородности с моделью проводилось с использованием метода Шлирена. Изображения 

потока были записаны цифровой видеокамерой PCO Dicam Pro с разрешением 1024х1024 

пикселей. Система синхронизации и управления была построена на универсальной плате 

сбора данных NI USB 6343. 

Градиентный датчик теплового потока (ГДТП), который использовался в 

экспериментах, был изготовлен в Санкт-Петербургском политехническом университете 

им. Петра Великого из монокристаллического висмута. Работа датчика основана на 

поперечном эффекте Зеебека. Размеры 2,4х2,4 мм, толщина 0.5 мм.  

Для измерения температуры поверхности модели использовалась хромель-копелевая 

термопара. 

В качестве модели использовалась пластина, изготовленная из ABS-пластика на 3D 

принтере Picaso в ресурсном центре прикладной аэродинамики СПбГУ. Модель 

устанавливалась на цилиндрическую державку под углом 15 градусов к оси потока. На 

внешней поверхности модели помещался датчик теплового потока. Также модель имела 

дополнительное отверстие, в которое была установлена термопара. 
 

     

Рис. 3. Экспериментальная модель. 

 

 

Подготовка к эксперименту 

Для проведения экспериментов необходимо было создать рабочий сверхзвуковой 

поток, на оси которого вводится тонкая струйка гелия. Чтобы моделировать тепловую 

неоднородность и не вызывать каких-либо дополнительных возмущений в набегающем 



 

 

потоке, скорость истечения гелия на срезе трубочки должна была равняться скорости 

рабочего потока. Были рассчитаны геометрические и газодинамические параметры, 

необходимые для обеспечения требуемого режима истечения. Разработанная методика 

была опробована на подаче в рабочий поток тонкой струйки воздуха. С помощью 

оптических и пневмометрических средств был произведен контроль параметров рабочего 

потока. Эксперименты показали, что вдув воздуха в сверхзвуковой поток можно 

обеспечить, не возмущая его течения. Такие же действия были произведены с гелием. 

Таким образом, был создан сверхзвуковой поток, на оси которого расположена область 

газа с пониженной плотностью, двигающаяся с той же скоростью, что и рабочий поток.  

 

  

Рис. 4. Контроль параметров рабочего потока с введением струи воздуха. 

 

Результаты исследований  

Была проведена серия экспериментов, в которых менялось положение пластины 

относительно струи гелия. 

 

   

Рис. 5. Течение возле модели. 

 

В первую очередь был проведен эксперимент, в котором модель была установлена 

выше трубки и гелий по трубке не подавался, рисунок 5а. Это было сделано для того, 

чтобы измерить тепловой поток и температуру при обтекании пластины чистым потоком 

воздуха. На рисунке 5б представлена картина обтекания пластины при подаче гелия на 

носик модели, а на рисунке 5в – выше носика модели. При этом были получены 

следующие зависимости: 



 

 

 
 

Рис. 6. Графики теплового потока и температуры. 

 

На рисунке 6а представлен график зависимости теплового потока в вольтах от времени 

в секундах, а на рисунке 6б график зависимости температуры пластины в градусах 

Цельсия от времени в секундах. На обоих графиках зеленая линия соответствует 

обтеканию чистым потоком воздуха, красная – подачи воздуха на носик модели, а желтая 

– выше носика. 

 

Заключение  

Экспериментально показано, что введение тонкой струи газа меньшей плотности в 

основной поток приводит к существенной перестройке течения возле модели и 

существенному уменьшению теплового потока. Также видно, что большей эффект 

достигается при подаче гелия выше носика модели. (нужно еще написать про 

температуру, но как объяснить ее уменьшение? Нужно как-то объяснить скачек в зеленом 

тепловом потоке.)  
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