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Abstract. The goal of this project is to review the structure and geometry
of the nine Gosset—Elte uniform polytopes in dimensions 6 through 8, of
exceptional symmetry types E6, E7 and E8. These polytopes were extensively
studied by Coxeter, Conway, Sloane, Moody, Patera, McMullen, and many
other remarkable mathematicians. We develop a new easier approach towards
their combinatorial and geometric properties. In particular, we propose a new
way to describe the faces of these polytopes, and their adjacencies, inscribed
subpolytopes, compounds, independent subsets, foldings, and the like. Our
main tools — weight diagrams, description of root subsystems and conjugacy
classes of the Weyl group — are elementary and standard in the representation
theory of algebraic groups. But we believe their specific use in the study of
polytopes might be new, and considerably simplifies computations. As an
illustration of our methods that seems to be new, we calculate the cycle indices
for the actions of the Weyl groups on the faces of these polytopes. With
our tools, this can be done by hand in the easier cases, such as the Schläfli
and Hesse polytopes for E6 and E7. Nevertheless, the senior polytopes and
the case of E8 require the use of computers anyway, even after all possible
simplifications. Since our actual new results are mostly of technical and/or
computational nature, the talk itself will be mostly expository, explaining the
background and the basic ideas of our approach, and presenting much easier
proofs of the classical results.

Introduction

Marcel Berger [11], p. 39–40, attributes to René Thom the division of mathematical
structures into

The second named author was supported by the “Basis” Foundation grant 20-7-1-27-1. The actual
polynomial and numerical computations behind the present work were performed with the help
of Mathematica 11.3.
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• rich = rigid, that become progressively scarce in higher dimensions, orders,
ranks, etc., and

• poor = soft that abound in higher sizes, and that eventually become im-
possible to classify.

One of the classical examples of this phenomenon are regular polytopes and
their kin, such as semiregular and other strictly uniform polytopes. They abound in
dimension 2, are still quite freakish in dimension 3, and then eventually crystallise
to very few possible shapes that self-reproduce throughout all dimensions.

Essentially everything that is of earnest mathematical interest takes place
in dimensions 3 through 8, and is closely related to quaternions, octonions1, ex-
ceptional root systems H3, D4, F4, H4, D5, E6, E7 and E8, see, in particular ,
[2, 3, 12, 18, 21, 22, 24, 25, 26, 27, 28, 29, 30, 41, 42, 51, 55, 63, 64, 66, 67, 72,
73, 78, 79, 80, 82, 85, 88, 89, 93, 94, 106, 107], see also [8, 14, 10, 20, 31, 33, 37,
43, 46, 47, 48, 56, 57, 58, 59, 60, 68, 69, 76, 77] for applications and more gen-
eral contexts2. We highly recommend the reference book by Peter McMullen and
Egon Schulte [75], and especially the recent book by McMullen [74], which contain
systematic bibliographies.

The second-named author became genuinely interested in these matters in
the process of his work with Alexander Luzgarev on the explicit equations defining
the exceptional Chevalley groups of types E6, E7 and E8, see, in particular, [4, 61,
98, 101, 102, 103, 104], and references therein.

There, the polynomial equations themselves and/or the occurring monomials
would correspond to the faces of the Schläfli, Hesse and Gosset polytopes, and
their kin, with some weird coincidences and kinky symmetries.

Thus, for instance, the highest Weyl orbit of equations on the orbit of the
highest weight vector consists of

• 27 Borel—Freudenthal equations defining the projective octave plane E6/P1

for (E6, $1);
• 126 Freudenthal equations defining the 27-dimensional Freudenthal variety

E7/P7 for (E7, $7);
• 270 quadratic equations in the adjoint representation (E6, $2);
• 756 quadratic equations in the adjoint representation (E7, $1);
• 2160 quadratic equations in the adjoint representation (E8, $8);

1Even professional mathematicians seldom realise that the fact that in dimension n = 3 the
regular tetrahedron can be vertex embedded in a cube is just another expression of the existence
of quaternions, and that the next dimension, where the same happens, is n = 7, see [23].
2There are also hundreds of papers of related interest in physics, crystallography, chemistry and
biology journals. We browsed through a few dozens of those. The upside of it is that mostly they
are highly repetitive. It comes with a penalty, though: nobody cares. Our overall impression can
be summarised by the identity 9 · 6 · 8 = 192 that we’ve found at the top of page 11207 in [52]. In
another paper the number of roots in E7 is listed as 128 instead of 126. That’s about everything
you wanted to know about those papers. They can be used as raw experimental material, which
may contain amusing observations, but otherwise precarious.
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and similar results for other orbits. In the two senior cases the explanation of these
numbers in terms of the embeddings A7 ⊆ E7 and D8 ⊆ E8 were not immediate
to us, and required separate explanation, see [99]. They are now, in terms of the
faces of the corresponding Gosset—Elte polytopes!

This is why, after encountering the same exceptional symmetries in his recent
research on higher symbols and presentations of the exceptional Chevalley groups
in the framework of his “Basis” project, he felt committed, rather than merely
involved.

The current talk is based on the Diploma project by the first-named author
under the supervision of the second-named author, whose idea was to reconsider
and recast the theory of exceptional uniform polytopes from scratch, with the tools
standard in the structure theory and the representation theory of algebraic groups
alone.

1. Semiregular polytopes
Here we very briefly describe the place of the Gosset—Elte polytopes in a general
context.

1.1. Regular polytopes
For regular polytopes their symmetry group acts transitively on flags (a vertex,
an edge containing this vertex, a 2-face containing this edge, etc.). Their are three
series of classical regular polytopes that are present in all dimensions n ≥ 2 and
constructed by obvious generic procedures from the smaller-dimensional ones.

• Cones: simplices3 αn = {3. . . . , 3} with n+1 vertices = the weight polytopes
of the vector representation (An−1, $1);

• Suspensions: hyperoctahedra βn = {3, . . . , 3, 4} with 2n vertices = or-
thoplexes = cross-polytopes = the weight polytopes of the vector representation
(Dl, $1);

• Products: hypercubes γn = {4, 3, . . . , 3} with 2n vertices = the weight
polytopes of the spin representation (Bl, $n).

In dimension 2 regularity is a very weak requirement and there are regular
polygons {m} with an arbitrary number of vertices m. Their Weyl groups are di-
hedral groups Dm, denoted in this context as I2(m). The junior of these symmetry
types have separate names

I2(2) = A1 + A1, I2(3) = A2, I2(4) = B2 = C2, I2(5) = H2, I2(6) = G2.

• As we all know, in dimension n = 3 there are two such exceptional regular
polytopes, the 12-cell = dodecahedron {5, 3} and its dual the 20-cell = icosahedron
{3, 5} of symmetry type H3. Collectively, the 5 regular polyhedra of dimension
n = 3 are called Platonic solids.

3As everybody knows, complices are made of simplices.
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• Through 1850–1852 Ludwig Schläfli discovered three exceptional regular
polytopes in dimension n = 4, the 24-cell {3, 4, 3}, the 600-cell {3, 3, 5}, and the
120-cell {5, 3, 3}. For us they are the (self-dual) root polytope of type F4 — or,
what is the same, of type D4; the root polytope of type H4; and its dual. However,
his opus magnum was not published until 1901, and was partially rediscovered by
several mathematicians in the meantime.

That’s about it. Starting with dimension n ≥ 5 regular polytopes become
exceedingly dull, they are all classical. This means that to get further fascinating
examples one has to relax the transitivity condition.

1.2. Uniform polytopes
The regularity condition is too rigid, one has to slack it. One of the most exoteric
generalisations is due to Coxeter.

• A polytope is called uniform if its symmetry group is vertex transitive and
its facets (= the faces of codimension 1) are themselves uniform.

• A uniform polytope is called semiregular if its facets are regular . This
is Gosset’s definition. Elte would define semiregularity inductively and allow the
facets themselves to be semiregular .

• A classification of semiregular polyhedra of dimension n = 3 was obtained
by Johannes Kepler in 1596–1620. The 13 such semiregular polyhedra, different
from Platonic solids, prisms and anti-prisms, are called Archimedean solids.

The two most interesting Archimedean solids in our context are the cuboc-
tahedron r{4, 3}, and the icosidodecahedron r{5, 3}, which are the root polytopes
of types A3 and H3, respectively.

• In 1900 Thorold Gosset published a list of 7 semiregular polytopes, 3 in
dimension n = 4 and one in dimensions n = 5, 6, 7, 8 each, the four remarkable
semiregular polytopes of symmetry types D5, E6, E7 and E8, the Clebsch polytope
121, the Schläfli polytope 221, the Hesse polytope 321, and the Gosset polytope
421.

• In 1912 Emanuel Elte rediscovered those, relaxed the notion of semiregu-
larity, and constructed further exceptional polytopes of symmetry types E6, E7

and E8, the Elte polytopes 122, 231, 132, 241 in Coxeter notation.
In the next section we start discussing these polytopes in more details.

Comment 1. Without additional regularity assumptions on faces, vertex transitiv-
ity itself imposes essentially no restrictions on the symmetry type. Laszlo Babai
[5] has proven that essentially any finite group, is the full symmetry group of some
vertex regular polytope. The only exceptions are [most of] the abelian ones and
[some of] those that have an abelian subgroup of index 2,
Comment 2. On the other hand, in dimension n = 3 regularity of faces alone with-
out some kind of vertex transitivity or the like produces scores of warped polytopes
with low symmetry, whose classification becomes an exacting problem of metric
geometry. The classification of such solids, known as Johnson solids, is highly
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non-trivial, and the completeness of the Norman Johnson list of 92 such convex
polytopes [50] was only established by Viktor Zalgaller [108] in 1967, compare [44]
for a comprehensive historical account.

In dimensions d ≥ 5, a similar classification up to isomorphism was completed
by Gerd and Roswitha Blind before 1980. There, nothing unexpected occurs, just
the regular and semiregular solids, pyramids and bipyramids. Morally , this tells
us that in dimensions n ≥ 5 there are no regular-faced polytopes, apart from the
semi-regular ones.

But for n = 4 regular-faced polytopes thrive outlandishly. Namely, truncating
the regular 600-cell by ≤ 24 icosahedral pyramids at non-adjacent vertices, Math-
ieu Dutour Sikirić and Wendy Myrvold in [34] produce as many as 314 248 344
isomorphism classes of polytopes whose facets are regular tetrahedra and icosahe-
dra4.
Comment 3. There are a number of constructions that allow to create new uniform
polytopes of the same symmetry type from the old ones, most notably the Wythoff
constructions proposed byWillemWythoff in 1918. These constructions admit very
natural interpretations from the viewpoint of representation theory, but we cannot
discuss them here.
Comment 4. Another possible generalisation is to renounce convexity, allow self-
intersections, hidden faces, etc. Such stellated polytopes, in particular, theKepler—
Poinsot star polyhedra, polytope compounds, and the like were studied at least
since Luca Paciolis’s De Divina Proportione, 1509.
Comment 5. Even while considering graphs and other face complexes of the excep-
tional semiregular polytopes purely combinatorially, one should bear in mind that
they come from actual geometric polytopes in Euclidean spaces. Abstract semireg-
ular polytopes are not nearly as symmetric. In fact, even in the case of polytopes
all of whose facets are isomorphic, one can construct examples with arbitrarily
large number of orbits on flags, or even on smaller dimensional faces, see [85].

1.3. The status of the classification of semiregular polytopes
Most laymen — initially including ourselves! — believe that the combinatorial
structure of the Gosset polytopes was known to Gosset and Elte more than a
century ago and that the classification of semiregular polytopes in all dimensions
was completed by Coxeter not later than 1948.

Both claims are outrageous oversimplifications!
It is a fact that Coxeter made absolutely amazing discoveries, and was instru-

mental in reviving the interest in the subject. However, in what regards higher-
dimensional uniform polytopes, the proofs in the books [26, 29] are far from be-
ing conclusive. Therein, neither the tables of the (non-convex) uniform polytopes
themselves, nor the description of the faces of the exceptional polytopes and their
adjacency, are consummate.

4John Stembridge observed: “It is a general principle that unique or canonical objects are easier
to construct than those that require choices to be made”, [91].
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In fact, we do not believe that even the completeness of the Gosset list has
been rigorously validated before the 1990-ies. Even for n = 4 the first accepted
proof was only published in 1988 by Petr Makarov5 [63, 64]. Whereas the com-
pleteness of the Gosset list in dimensions d ≥ 5 was only established by Gerd and
Roswitha Blind [12] in 1991, as a spin-off of their classification of the regular-faced
polytopes.

The above referred to convex polytopes. One can imagine the mess with the
rest! Thus, in 2018 Peter McMullen [73] has found 6 new regular compounds in
dimension 4. Five of them are vertex-embedded in the 120-cell and consisting,
respectively, of

• 720 copies of the 4-simplex,

• 120 copies of the 4-simplex6,

• 75 copies of the 4-hyperoctaheder,

• 75 copies of the 4-hypercube,

• 25 copies of the 24-cell.

• The last example is the dual of the previous example, consisting of 25 copies
of the 24-cell vertex-embedded in the 600-cell.

We believe that the first definitive classification of such polytopes was ob-
tained not by Coxeter in 1948, but rather 70+ years later by McMullen [74].

The same applies to the combinatorial structure of these polytopes. Gosset
himself has not given a complete combinatorial description of the polytopes, just
their facets and some incidence properties of the following type: a (d− 3)-face of
the d-dimensional polytope is contained in two (d − 1)-hyperoctahedra and one
(d− 1)-simplex, etc.

The detailed proofs of such a description announced by Coxeter in 1940–
1948 were never published before 1988–1992, by Coxeter himself, Conway, Sloane,
Moody, and Patera, see [28, 22, 79], with some circumstantials being clarified long
after that.

2. Roots, weights and symmetries

2.1. Basic notation
In all that concerns root systems, including the numbering of simple roots, we
follow Bourbaki [15], see also [49]. In particular, Φ is a reduced irreducible root
system of rank l, whereas W = W (Φ) is its Weyl group. For a root α ∈ Φ we
denote by wα ∈W the corresponding root reflection.

5Not to be confused with his father Vitaly Makarov, famous for his work on regular polytopes
in Lobachevsky spaces.
6A different configuration from the one listed by Coxeter in [26].
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The Weyl groups of senior exceptional types have the following orders

|W (E6)| = 51840 = 72 · 6! = 27 · 34 · 5,
|W (E7)| = 2903040 = 72 · 8! = 210 · 34 · 5 · 7,
|W (E8)| = 696729600 = 192 · 10! = 214 · 35 · 52 · 7.

We fix an order on Φ, and let Π = {α1, . . . , αl} be the corresponding set of
fundamental roots, Φ+ and Φ− be the corresponding sets of positive and negative
roots, respectively. Usually we denote the fundamental root reflection wαi

simply
by wi. The Weyl group is generated already by the fundamental reflections, W =
〈w1, . . . , wl〉.

Let Π be the extended fundamental system of Φ. It is obtained by appending
to Π the root α0 = −δ, where δ is the maximal root of Φ with respect to the
fundamental system Π. Recall that in the Dynkin form the maximal roots of E6,
E7 and E8 are depicted as

12321
2

, 234321
2

, 2465432
3

.

For two root systems ∆ and Σ we denote by ∆ + Σ their orthogonal sum. In
particular, k lta = ∆ + . . .+ ∆ is the orthogonal sum of k isomorphic summands.
It is sometimes convenient to consider also the empty root system A0 = ∅ of rank
0. Recall that D1 = D0 = ∅.

Here, we are only interested in the simply laced systems, in which case the
roots are usually normalised so that (α, α) = 2.

Further, we denote by Q(Φ) the root lattice, generated by α1, . . . , al, and by
P (Φ) the [dual] weight lattice7 generated by the fundamental weights $1, . . . , $l.
Recall that ($i, αj) = δij .

2.2. Hyperbolic realisation of El
Most of the non-trivial calculations with root systems pertain to the cases Φ =
E6,E7,E8. As in our previous works that relied on massive computations in root
systems, such as [45, 96, 97, 98, 100, 101, 102, 103, 104] we use the hyperbolic
realisation of these systems in the (l+ 1)-dimensional Minkowsky space [65]. This
realisation is considerably more adapted to the large-scale calculations, than the
usual realisations in Euclidean space.

Consider a real vector space U = <l,1 of dimension l + 1 endowed with a
non-degenerate symmetric inner product ( , ) : U ×U → R of signature (l, 1). Fix
an orthonormal base e0, e1, . . . , el such that (e0, e0) = −1 and (ei, ei) = 1 for all
1 ≤ i ≤ l. We are primarily interested in the case l = 8.

7In the textbooks on lattices and sphere packings the root lattices Q(El) are usually denoted
simply by E6, E7 and E8, whereas the weight lattices P (El) are denoted by E∗

6 and E∗
7. The

lattice P (E8) is unimodular and self-dual, E∗
8 = E8.
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In this realisation, up to sign every element of Φ = E8 has one of the following
forms: 

ei − ej , i > j,

e0 + ei + ej + eh,

2e0 + e1 + . . .+ êi + . . .+ êj + . . .+ e8,

3e0 + e1 + . . .+ 2ei + . . .+ e8,

where indices i, j, h = 1, . . . , 8 are pair-wise distinct, while the hat ˆ over an index
signifies that this index should be omitted.

Fix the following fundamental system Π = {α1, . . . , α8} in Φ = E8:

α1 = e2 − e1, α2 = e0 + e1 + e2 + e3, α3 = e3 − e2, α4 = e4 − e3,

α5 = e5 − e4, α6 = e6 − e5, α7 = e7 − e6, α8 = e8 − e7.

The root system Φ = E7 and its fundamental root system are obtained by
dropping e8 and α8, thereby the last type of roots disappear. The root system
Φ = E6 is obtained by dropping both e8 and e7, or, respectively, both α8 and α7,
thereby the third type of roots reduces to the single root 2e0 + e1 + . . .+ e6.

2.3. Subsystems of root systems
Classification of all subsystems of root systems, including the maximal ones, was
obtained by Borel—de Siebenthal [13] and Dynkin [35], many further details are
produced in [105, 17, 45, 100, 36, 83] Their construction can be described as follows.

• For every r, 1 ≤ r ≤ l, we consider the subsystem ∆r in Φ, generated by
Π \ {αr}, or, in other words, the smallest subsystem containing these roots. It is
the smallest closed set of roots containing both these roots themselves and their
opposites.

Subsystems ∆r are themaximal rank subsystems, they have rank l. In general
subsystems ∆r are not necessarily irreducible. Moreover, they are only maximal,
when the coefficient with which αr occurs in α0 is prime8.

• Applying the above procedure to all irreducible components of the systems
∆r and repeating this process until complete satisfaction, we obtain all subsystems
∆ ⊆ Φ of maximal rank.

• Now all subsystems ∆ ⊆ Φ can be obtained as follows. Let Σ ⊆ Φ be a
subsystem of maximal rank, Ξ be its fundamental system. Then the subsystem
of ∆ generated by any subset J ⊆ Ξ is a closed subsystem of Φ and all closed
subsystems of Φ can be obtained this way.

For exceptional systems there are — up to conjugacy by an element of W (Φ) —
the following number of proper subsystems: 20 for E6, 46 for E7 and 76 for E8,

8Otherwise they either coincide with Φ, when the coefficient is 1, or are sub-maximal, when it is
the product of two primes.
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Two subsystems ∆,Σ ⊆ Φ of the same type are almost always conjugate by
an element of W (Φ). All possible exceptions are listed below9.

• Subsystems D2 and 2A1, as also subsystems D3 and A3 are isomorphic, but
not conjugate subsystems of Dl. Moreover, for l ≥ 5 they are not conjugate not only
by an element ofW (Dl), but even by an external automorphism Aut(Dl) = W (Bl).
In fact, for l = 4 they become conjugate by an element of Aut(D4) = W (F4), the
phenomenon known as triality.

•When k1, . . . , kt are all odd, then Dl has two conjugacy classes of subsystems

∆ = Ak1 + . . .+ Ak+t, l = (k1 + 1) + . . .+ (kt + 1),

which are conjugate by an external automorphism.
• In the root system E7 there are two conjugate classes of subsystems of the

following types:

A5 + A1, A5, A3 + 2A1, A3 + A1, 4A1, 3A1.

In turn, in the root system E8 there are two conjugate classes of subsystems of the
following types:

A7, A5 + A1, 2A3, A3 + 2A1, 4A1.

Observe that in the case of E7 these are exactly the pairs of subsystems that were
not conjugate in D6 + A1, whereas in the case of E8 these are exactly the pairs of
subsystems that were not conjugate in D8.

We denote by ∆′ the subsystem of type ∆, that is contained in A7 or, respec-
tively, in A8, and by ∆′′ we denote the one that is not contained there. It should
be noted that in [17] the notation ∆′ and ∆′′ has the opposite meaning!

2.4. Conjugacy classes of the Weyl group
Most of our actual computations depend on an explicit knowledge of the conjugacy
classes of the Weyl groups. An ad hoc description of the conjugacy classes of the
exceptional Weyl groups was given by Sutherland Frame [38, 39]. Roger Carter
[16, 17] proposed a conceptual explanation. Roughly the situation can be described
as follows.

• Most — but by no means all! — of the conjugacy classes of the Weyl group
W (Φ) are represented by the class C(∆ of Coxeter elements

cox∆ = wβ1 . . . wβr ,

where β1, . . . , βr are the fundamental roots of a subsystem ∆ ≤ Φ.
• There are precisely two cases when for two non-conjugate subsystems

∆,Σ ⊆ Φ their Coxeter classes C(∆) and C(Σ) coincide in W (Φ). The only one
of interest for us10 is C(D5 + A3) = C(A7 + A1) in E8.

9For multiply laced systems one should also distinguish long root embeddings and short root
embedding.
10The other one, C(B2 + 2A1) = C(A3 + A1) occurs in a multiply laced root system F4.
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• However, the converse is far from being true. Other conjugacy classes come
from Carter graphs, which are essentially bipartite Dynkin diagrams with cycles.
The vertices of a Carter diagram C are partitioned into two sets C = C1 t C2,
both consisting of pairwise orthogonal roots, and the remaining conjugacy classes
are represented as products of two involutions w = w1w2, where wi, i = 1, 2, is
the product of all root reflections wα, α ∈ Ci.

There is one new indecomposable Carter graph with cycles for D4 and D5

each; 2 for D6 and E6 each, 5 for E8 and 10 for E8.
Overall, with Carter graphs coming from smaller ranks and their sums with

small rank Coxeter elements, this gives 4 non-Coxeter classes for E6; 13 such classes
for E7; and 36 such classes for E8, which by manual computations already produces
some strain.

• A further remarkable conceptual advance was made by Rafael Stekolshchik
[90], who has modified Carter’s list by observing that Carter graphs with long
cycles are equivalent to Carter graphs containing only cycles of length 4. In other
words, the graphs with cycles of length 6 in the original Carter’s list (in our case
one for D6, one for E7 and two for E8), can be reduced to other forms, more
suitable for actual computations.

• Yet another remarkable conceptual advance was not made by Eugenii
Dynkin and Andrei Minchenko [36]. They introduced a marvelous combinatorial
tool, enhanced Dynkin diagrams, to explain the inclusions among root subsystems,
but failed to notice their connection with the description of the conjugacy classes
of the Weyl group11.

In fact, all Carter diagrams, both in the original form and Stekolshchik form,
can be readily accounted for by the enhanced Dynkin diagrams, which are as
follows.

• The 8 vertex graph consisting of three squares with common edge, for E6.
• The 11 vertex graph, consisting of the 4 vertices and the 6 edge midpoints

of a tetrahedron + its centre joined to the vertices, for E7.
• The 4× 4 net on a torus12, for E8.

In this form, the contents of this and previous subsections should be in Bourbaki,
Chapter 6 1

2 , but it isn’t!

2.5. Weight diagrams
Our major tool are weight diagrams, which are a standard tool in the represen-
tation theory of Lie algebras and algebraic groups, see [86, 95, 96, 97, 98] for the
details and many further references. There are two usual ways to render excep-
tional polytopes as 2D pictures.

11The same graphs also occur in a completely different context, as graphs with certain extremal
properties for their eigenvalues, in [70, 71].
12Exceptional behaviour of this net was observed by Vladimir Kornyak [53]. The second author
immediately observed the connection with triality and F4, but failed to notice the relation to E8!
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Figure 1. Weight diagram (E6, $1)

• The usual “publicity photo” of E8, as reproduced in hundreds of places
[26, 6, 7, 14, 40, 54, 62, 92], are beautiful, but completely unsuitable for actual
computations. The orthogonal projections to smaller dimensions, usually, 2D, 3D
or 4D, which try to keep vertices distinct and faithfully depict all edges become a
complete mess. Already for the root polytope of type E8 with 240 vertices there are
as many as 6720 edges, which makes the corresponding picture completely unfit
for human calculations.

• The McMullen projections [74] are terribly much handier, but they give
a very schematic picture, where some of the vertices represent actual vertices,
whereas some other represent higher dimensional faces, sometimes the whole facet!
As a result, you should be able to use several of those in conjunction, in the
same calculation. To visualise the whole symmetry of a multidimensional object
with these pictures is possible, as Peter McMullen himself amply and brilliantly
illustrates, but it requires some serious mental exercise.

We chose the middle way. The pictures we use to visualise the polytopes
are a blend of Schreier graphs depicting the cosets of the Weyl group modulo a
parabolic subgroup, or weight diagrams common in representation theory of alge-
braic groups and related fields. Both are much more schematic and shorthand than
the usual Coxeter like projections, and at the same time much more faithful and
informative than McMullen diagrams. One such picture serves as a genuine short-
hand reproduction of the whole multidimensional object. With moderate practice,
all properties of this multidimensional object can be read off from such a picture
purely combinatorially.

Roughly, the difference is as follows. All polytopes we consider can be scaled
so that all of their vertices are integral weights = lattice point of P (Φ). We depict
all vertices of the polytope, but [as a first approximation] only draw the edges that
correspond to the fundamental roots, marking them accordingly.

The corresponding weight graph is obtained when you draw the edges corre-
sponding to all positive roots, instead of drawing just the ones that correspond to
the fundamental ones. The missing edges can be easily restored as those paths in
these graphs, for which the multiplicities of marks coincide with the coefficients in
the linear expansion of a given root with respect to the fundamental ones.
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Figure 2. Weight diagram (E7, $7)

Such similar pictures can be interpreted in a number of ways. Purely com-
binatorially, for uniform polytopes these pictures are Schreier graphs of the coset
spaces W (Φ)/W (∆), where for type (Φ, $i) the subsystem ∆ is the sub-maximal
rank subsystem of Φ generated by Π \ {αi}.

What makes these pictures useful is that in the interesting cases they are
intimately related to the actual geometry of weights and constitute part of what
is known as weight diagrams, or crystal graphs in representation theory.

For the three microweight polytopes — the Clebsch, the Schläfli and the Hesse
— all of their vertices are extremal weights of the corresponding representation.
Moreover, the action of a root reflection consists in subtracting/adding the corre-
sponding root. Thus, in these cases we get a genuine picture that fully captures
all properties of the corresponding. These are precisely the (E6, $1) and (E7, $7),
reproduced in dozens of texts, including [95, 86, 96, 97, 101, 103].

For the three root polytopes — of which only the one corresponding to E8

is semiregular — the usual way to draw the weight diagrams as crystal graphs.
Below we reproduce half of the picture of (E8, $8), the diagrams of the adjoint
representations (E6, $2) and (E7, $7) are part of it, and are reproduced in [86, 97].
The pictures of the senior polytopes such as (E8, $1) or (E8, $2) are too large
anyway, to be used for manual computations.
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Figure 3. Weight diagram (E8, $8)

3. Yet another look at the structure of the Gosset—Elte polytopes

In the talk we will show how to reconstruct all usual properties of the exceptional
uniform polytopes from the weight diagrams, tables of roots, root subsystems, and
conjugacy classes.
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3.1. The treasury of exceptional polytopes

In the first place, we are interested with the 8 (or 9, depending on how you count
them) classical Gosset—Elte polytopes in dimensions 6, 7 and 8. But they are
closely related also to some further related Voronoi and Delaunay polytopes of
exceptional lattices, further polytopes related to the Weyl orbits on weights, etc.
Here is the beginning of the list.

Dimension 6:

• 221 with 27 vertices — Schläfli polytope of type (E6, $1) = Delaunay poly-
tope for Q(E6). Or, dually, 212 of type (E6, $6).

• 122 with 72 vertices — the root polytope for E6 of type (E6, $2) = the
contact polytope for Q(E6).

There are many further extremely interesting related examples, which are not
themselves on the Gosset—Elte list, but closely related to those, like, for instance:

• Diplo-Schläfli polytope with 54 vertices = the convex hull of two dual
Schläfli polytopes 221 and 212 = Voronoi polytope for Q(E6).

• Voronoi polytope for P (E6) with 720 vertices.

Dimension 7:

• 321 with 56 vertices = Hesse polytope of type (E7, $7) = contact polytope
for P (E7).

• 231 with 126 vertices = the root polytope for E7 of type (E7, $1) = the
contact polytope for Q(E7).

• 132 with 576 vertices = Voronoi polytope of P (E7) of type (E7, $2).

Dimension 8

• 421 with 240 vertices = Gosset polytope of type (E8, $8) = the contact
polytope for Q(E8).

• 241 with 2160 vertices = the deep hole polytope for Q(E8) of type (E8, $1).

• 142 with 17280 vertices = the shallow hole polytope for Q(E8) of type
(E8, $2).

The terminology for E8 is borrowed from the book by Conway and Sloane.
The 240 roots of E8 are the lattice points of norm 2. A hole is a point of <8, whose
distance to Q(E8) is a local maximum. The 2 160 deep holes near the origin are
halves of the lattice points of norm 4. The 17540 lattice points of norm 8 fall into
two orbits under the action of W (E8), or which 240 are twice the roots, and 17280
are 3 times the shallow holes near the origin.

That’s not the complete list even of the most interesting uniform exceptional
polytopes, but that gives you some idea.
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3.2. Structure of exceptional polytopes
We start with repeating with our methods all results on the structure, number
and adjacency of faces of the above polytopes. With our tools, such a description
becomes immediate.

For instance, look at Figure 1. Since the polytope is uniform, the highest
weight $1 = the left-most node of the diagram, is incident to faces of all types,
which thus correspond to parabolic root subsystems containing α1.

Since from $1 there are unique descending paths of lengths 1, 2 and 3, and
the roots susbystems they generate have types A1, A2 and A3, respectively. This
means that there are only one type of the faces of dimension 2,3, and that they
are triangles and tetrahedra.

Their number can be easily computed as well. Since the Weyl group W (E6)
acts transitively on roots, the number of edges equals 6·|E+

6 |. Alternatively,W (E6)
acts transitively on vertices, and there are 16 vertices at distance 1 from a given
one in the weight graph. Thus, the number of edges equals 27 ·16/2 = 36 ·6 = 216.

Obviously, in dimension 4 something funny happens. Namely, there are two
different ways to embed A3 = 〈α1, α3, α4 intoA4. One is to proceed with α2, and
this cannot be further embedded into A5, and another one is to proceed with α5,
which can then be embedded into A5 by further adjoining α6. Both ways produce
faces of type A4, which are 4-simplices, but they form two distinct orbits.

Finally, there are two types of facets. There are 5-simplices α5, 72 of them,
that correspond to the roots of E6, and there are 5-hyperoctahedra β5, that cor-
respond to the 27 pairs of non-comparable weights.

This accounts for the distinction between two types of 4-dimensional faces.
Indeed, α5 has 6 facets, which gives 72 · 6 = 432, whereas β5 has 32 facets, which
gives 27 · 32 = 864. This means that 432 of the 4-faces are common faces of an
α5 and a β5, whereas the 216 remaining ones are shared by two β5. Clearly, they
form two distinct Weyl orbits.

Of course, the case of (E6, $1) is by far the simplest one. Nevertheless, for
all other cases the types of faces, their incidence numbers, etc. can be easi8ly
recuperated within half an hour by such similar means, perhaps with some little
help of the tables of root subsystems, orders of the Weyl group, and the like. For
that one even does not need the whole Schreier graph W (Φ)/W (∆)/the whole the
weight diagram (Φ, $i), just the neighbourhood of the highest weight.

3.3. Colourings of the exceptional polytopes
Coxeter discovered that instead of duality one should rather consider triality. The
exceptional polytopes come in triples, the facets of each one of them corresponding
to the vertices of the other two. As we already know, in dimension 6 the facets of
221 correspond to the 27 vertices of 212 and to the 72 vertices of 122.

Dually — or should one say trially in this case? — the facets of the root
polytope of E6 are all of them Clebsch polytopes = 5-demicubes, but they come in
two denominations, the positive half spin and the negative half spin, 54 = 27 + 27,
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the positive ones corresponding to the vertices of (E6, $1) and the negative ones
— to the vertices of the dual polytope (E6, $6).

The 5-demicube has 16 facets α4 and 10 facets β4 and any two adjacent 5-
demicubes of the same parity intersect in α4, whereas two adjacent demicubes of
different parities intersect in β4. In particular, (E6, $2) has two types of α4 faces:
the positive and the negative ones.

An easy calculation using Figure 1 and arguments of the above type shows
that the cycle index of the action on the vertices of (E6, $1) is

Z27[x1, . . . x12] =
1

51840

(
x27

1 + 36x15
1 x

6
2 + 270x7

1x
10
2 + 240x9

1x
6
3 + 585x3

1x
12
2 +

1440x3
1x

3
2x

4
3x6 + 1620x5

1x2x
5
4 + 2160x3

1x
3
2x

4
3x6 + 560x9

3 + 3780x1x
3
2x

5
4+

5184x2
1x

5
5 + 1440x3

1x
3
2x

3
6 + 540x3

1x
6
4 + 1440x5

3x
2
6 + 5184x2x

3
5x10+

6480x3x
4
6 + 6480x1x2x

3
8 + 4320x1x

2
4x6x12 + 4320x3x

2
12 + 5760x3

9

)
Observe the presence of all rotation axes of orders 5, 8, 10 and 12, which are
already possible for crystals of dimensions 4 and 513, as also the appearance of a
rotation axis of order 9, that first occurs in dimension 6.

However, since all elements ofW (E6) are real (= conjugate to their inverses),
the action on (E6, $6) is exactly the same. This means that to calculate the cycle
index of the action of W (E6) on the facets of (E6, $2), one only has to replace the
variables in the above formula by their squares. In particular, there are

350 661 193 456

essentially different colourings of the facets of root polytope of type E6 in 2 colours;

1 121 791 681 317 791 814 588

such colourings in 3 colours, etc.

It’s nothing special that such things can be easily done nowadays. What seems
to be a bit special, is that this calculation was essentially done by us manually
within a couple of evenings14.

By hand, we have performed similar computations also for the Hesse polytope
321 with 56 vertices, which by triality gives the colourings of the 56 facets of type
221 of the root polytope 231. But we decided that to calculate the cycle index on
the 576 simplicial facets would be a bit too much of a good thing.

Of course, performing similar calculations by hand for the 123 — not to say
for 214 and 124 — would require much more leisure, and should be rather relegated
to a computer. For the polytope 412 it was indeed implemented by David Madore,

13The root polytope of type E6 folds to icosidodecahedron in dimension 3, which inherits part
of these symmetries, but that’s not crystallographic.
14Samuel Wagstaff: "Multiply 2071723 × 5363222357 by hand. Feel the joy.”
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and can be found at his home page [62]. Computer realisations for other small
cases are straightforward15.

4. Whither from here?
Currently, we proceed to describing further structural properties of the excep-
tional polytopes, various generalisations, and applications of the above, such as,
for instance:

• Classification of vertex embeddings in exceptional polytopes [1].
• Classification of d-codes and maximal independent sets [32].
• Explicit description of foldings E6 −→ H3, E8 −→ H4, and the like, [52].
• Classification of exceptional compounds. In particular, it seems quite plau-

sible that the new 4D compounds discovered by Peter McMullen [73, 74] all come
from the folding E8 −→ H4.

• Exceptional virtual polytopes [84].
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