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The paper considers the thermodynamic and phase ordering properties of a multi-component
Zwanzig mixture of hard rectangular biaxial parallelepipeds. An equation of state (EOS)

is derived based on an estimate of the number of arrangements of the particles on a three-
dimensional cubic lattice. The methodology is a generalization of the Flory–DiMarzio
counting scheme, but, unlike previous work, this treatment is thermodynamically consistent.
The results are independent of the order in which particles are placed on the lattice.

By taking the limit of zero lattice spacing, a translationally continuous variant of the model
(the off-lattice variant) is obtained. The EOS is identical to that obtained previously by a
wide variety of different approaches. In the off-lattice limit, it corresponds to a third-level

y-expansion and, in the case of a binary mixture of square platelets, it also corresponds to the
EOS obtained from fundamental measure theory. On the lattice it is identical to the EOS
obtained by retaining only complete stars in the virial expansion. The off-lattice theory is used

to study binary mixtures of rods (R1�R2) and binary mixtures of platelets (P1�P2). The
particles were uniaxial, of length (thickness) L and width D. The aspect ratios �i¼Li/Di of
the components were kept constant (�1R¼ 15, �1P¼ 1/15 and �2R¼ 150, �2P¼ 1/150), so the

second virial coefficient of R1 was identical to P1 and similarly for R2 and P2. The volume
ratio of particles 1 and 2, v1/v2, was then varied, with the constraints that viR¼ viP and
v2R ¼ 150D3

2R: Results on nematic–isotropic (N� I) phase coexistence at an infinite dilution of
component 2, are qualitatively similar for rods and platelets. At small values of the ratio v1/v2,

the addition of component 2 (i.e. a thin rod (e.g. a polymer) or a thin plate) results
in the stabilization of the nematic phase. For larger values of v1/v2, however, this effect is
reversed and the addition of component 2 destabilizes the nematic. For similar molecular

volumes of the two components strong fractionation is observed: shorter rods and thicker
platelets congregate in the isotropic phase. In general, the stabilization of the ordered phase
and the fractionation between the phases are both weaker in the platelet mixtures.

The calculated spinodal curves for isotropic-isotropic demixing are noticeably different
between the R1�R2 and the P1�P2 systems. The platelet mixtures turn out to be stable with
respect to de-mixing up to extremely high densities. The values of the consolute points for the

R1�R2 blends are remarkably similar to those obtained using the Parsons–Lee approximation
for bi-disperse mixtures of freely rotating cylinders with similar aspect ratios [S. Varga.
A. Galindo, G. Jackson, Mol. Phys., 101, 817 (2003)]. In a number of R1�R2 mixtures, phase
diagrams exhibiting both N� I equilibrium and I� I de-mixing were calculated. The latter is

pre-empted by nematic ordering in all the cases studied. Calculations show the possible
appearance of azeotropes in the N� I coexistence domain.

1. Introduction

Much effort has gone into the study of the rich phase

behaviour exhibited by liquid-crystal-forming colloidal

suspensions. These systems are usually modelled in

terms of mixtures of hard bodies of various shapes.

Many of the theoretical approaches [1–4] are based on

the ideas of Onsager [5], where the steric interactions are

treated in terms of an orientational dependent second

virial coefficient and all virial coefficients of higher order*Corresponding author. Email: esok@evergreen.spb.ru
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are neglected. While this methodology is exact for long,
thin rods, it cannot quantitatively describe the phase
behaviour of less anisotropic particles. Scaling meth-
odologies [6] have provided an approximate but some-
times accurate means of extending the limits of
applicability of Onsager’s theory both to lower particle
anisotropies and to higher fluid densities. Using these
methods, a variety of interesting phenomena have been
discovered, all resulting from the interplay between
orientational and mixing entropic contributions and
excluded volume effects. In the case of rod–rod [7, 8],
rod–plate [8] and plate–plate [9] mixtures, such theories
have predicted nematic–nematic and isotropic–isotropic
de-mixing, the formation of biaxial phases and the
fractionation of the longer rods and the thinner plates
into the nematic phase. It is worth noting that
theoretical predictions of such equilibria involving
uniaxial nematic phases have been corroborated by
experimental studies of sterically stabilized colloid
rods [10] and of colloid platelets [11] dispersed in
non-aqueous solvents.
An alternative theoretical strategy is to use models in

which the particles can only take up discrete orienta-
tions. The off-lattice Zwanzig model [12] is of this type
and has been extensively studied. The disadvantage with
respect to Onsager-like theories is that not all orienta-
tions are allowed. The advantage is that one can readily
go beyond second-virial level theories, incorporating
higher virial coefficients, without the need for extensive
numerical work. Qualitatively one would expect the
predictions from the two types of theory to be similar.
Examples of previous studies using the Zwanzig model
are on the phase behaviour of binary mixtures of hard
rectangular parallelepipeds (HRP) at the second and
fourth levels of the virial equation [13], on biaxial
nematic phase stability with respect to nematic–nematic
phase separation in mixtures of rods and plates [14]
and on fluid–fluid de-mixing in suspensions of long
colloidal rods and stiff polymer in the limit of zero
diameter [15].
Discrete orientation models are also interesting in

their own right, as they form a convenient testing
ground for density functional theories, such as
Rosenfeld’s fundamental measure theory (FMT) [16].
Cuesta [17] used such methods to study de-mixing in a
binary mixture of parallel hard cubes, obtaining results
in qualitative agreement with computer simulations.
The approach was then extended by Martı́nez-Ratón
and Cuesta to explore the possible transitions to
inhomogeneous phases (such as smectic, columnar and
plastic solid) and poly-dispersity effects in mixtures of
rods and plates [18].
FMT was also applied to investigate the phase

behaviour of inhomogeneous and bulk homogeneous

binary mixtures of square platelets [19, 20]. The FMT
free energy for the uniform phases turned out to be
identical to a y variable expansion [21] carried out to
third order (a y3 theory). A nematic–nematic de-mixing
transition was predicted for certain values of the model
parameters and it was noted that the topology of the
phase diagram was in agreement with results obtained
for freely rotating platelets using the functional scaling
approximation [9].

Another algorithm for calculating the properties of
these discrete orientational models is to arrange the
particles on a lattice and estimate the number of possible
distinguishable arrangements. DiMarzio generalized
the Flory–Huggins lattice arguments [22] to obtain a
mean-field theory which described the isotropic-nematic
transition in a system of hard rods [23]. Extensions to
the theory have also been made so as to study the effects
of side chain flexibility on the isotropic-nematic transi-
tion [24] and to investigate the nematic–smectic
A transition [25].

In the case of mixtures, however, it has proved
difficult to generalize this method in a way that is
thermodynamically consistent. Shih and Alben [26]
studied a system of biaxial rods with restricted orienta-
tions, but their estimate of the total number of
configurations depended upon the order in which the
objects were placed on the lattice. Later research by
DiMarzio et al. [27] and by Boehm and Martire [28]
on mixtures of hard rectangles on a square
lattice suffers from the same difficulties. Study by
Sokolova and Tumanyan [29] gives an enhanced
counting scheme which, when applied to a case of
multi-component mixtures of hard rectangles able of
forming an orientationally ordered phase, provides
thermodynamically consistent results.

However, the configurational partition function of a
mixture of HRPs on a cubic lattice developed earlier
by Tumanyan and Sokolova [30] has not been detailed
so far. In this paper we first address this problem, so as
to obtain thermodynamically consistent expressions for
the Helmholtz energy of multi-component mixtures of
bi-axial HRPs with restricted orientations. The excess
free energy for the lattice model under study is identical
to that obtained by retaining only the complete star
diagrams in the virial expansion [36]. Furthermore,
in the limit of zero lattice spacing the expression for the
Helmholtz energy proved to be identical to the FMT
and y3 expansion expressions discussed earlier. The fact
that these different theoretical approaches give the same
answer is obviously no accident and might be of interest
for further investigation.

The off-lattice version of the model has been
applied to studies of orientational and thermodynamic
properties of nematic systems modeling mixtures of
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low-molecular mesogens [31, 32]. In this paper, we
concentrate on bulk phase diagrams of mixtures
composed of highly anisotropic in shape colloidal
particles, making comparisons with previous theoretical
work. Our results support the conclusion that this
restricted orientation model can predict many aspects of
phase behaviour as are found by studying continuous
orientation models.
The paper is divided into four sections. The next

section gives the thermodynamically consistent
estimation of the configurational partition function of
a mixture of biaxial HRP on a simple cubic lattice
by applying the orientation dependent version of
Flory–Huggins statistics. The limit of infinitesimal
mesh size has been considered as the corresponding
off-lattice model. We discuss the accuracy of the EOS
and for the case of a binary mixture of uniaxial platelets
we view the interrelations between the EOS of the
present approach and that of the FMT [19]. In the third
section, the model is employed in the study of phase
behaviour and orientational properties of bidisperse
hard-rod fluids and bidisperse hard-platelet fluids,
forming isotropic and nematic phases. Apart
from getting novel information about special features
of the phase diagram of hard-particle mixtures, this
study was aimed at comparison with results of
continuous orientation approach [7]. Section 4 presents
conclusions.

2. Lattice and off-lattice versions of the Zwanzig

model (y3 level)

2.1. Equation of state

We consider a k�component mixture of rectangular
parallelepipeds on a simple cubic lattice. The lattice has
M cells and each cell has a volume �v¼x3, where x is
the length of an edge. Component k consists of particles
with volume vk and with dimensions A1k�A2k�A3k.
In general each particle may take up six orientations,
corresponding to the alignment of the particle’s
principal axes with those of the lattice (figure 1).
The notation for the labeling of these orientations is
shown in figure 1. For a given component, k, we denote
the fraction of those particles which have an
orientation � by s�k. Thus, if Nk is the number of
particles of type k and N�k is the number of particles of
type k with orientation �, then s�k¼N�k/Nk and clearlyP6

�¼1 s�k ¼ 1: A particle of type k occupies rk ¼
Q3

i¼1 r
ðiÞ
�k

adjacent lattice cells. Here, r
ðiÞ
�k is the number of cells

that make up the ith edge of a particle of type k and
orientation �. The ith edge is that edge which is aligned
along lattice axis i.

The configurational contribution to the Helmholtz
energy takes the form [26]

�Flatt ¼ � ln
ð�vÞN � gd ðfN�g;MÞ

6N
Q

k

Q6
�¼1 N�!

" #
, ð1Þ

where gd ({N�};M) is the total number of ways to
arrange {N�} distinguishable particles on M lattice sites,
�¼ 1/kBT and the index � � �k labels a particle of type
k and orientation � (1� �� 6k). In the thermodynamic
limit, gd ({N�};M) is minimized with respect to
variables {s�k}.

Approximate methods to estimate gd have been given
previously [22, 23, 26–28]. Except for linear rods,
however, these methods suffer from the problem that
the value obtained for gd depends upon the order in
which the particles are placed on the lattice, which is
unphysical and thermodynamically inconsistent. An
improved methodology has been developed for hard
rectangles on a square lattice [29] and this has been
shown to give thermodynamically consistent results. We
now generalize this result for parallelepipeds.

We first review the earlier Flory–DiMarzio–Alben
counting schemes. If {X�} particles have already been
placed on the lattice, one has to estimate the number
of configurations, v�({X�};X�þ 1), available for the
(X�þ 1) th particle of type �. This can be done using
the following approximation:

�� X�f g;X� þ 1ð Þ ¼ X0
�P X�f g; r� � 1ð Þð Þ ¼ X0

�P�, ð2Þ

where X0ð¼ M�
P

� X�r�, r� � rkÞ is the number of
vacant cells which can accommodate one of the corner
segments of the new block to be placed on the lattice.

Figure 1. Allowed orientations of a cuboidal particle on a
cubic lattice. In the nematic phase we take the director ~n to be
parallel to the z-axis. Orientations labelled by indices in
parentheses may constructed by rotation of those, which are
drawn, about molecule axes A1, A2 and A3 through �/2.
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�P� is the probability of finding all r�� 1 adjacent lattice
cells vacant, so there is space to insert the whole particle,
given the positioning of the corner.
As in our earlier studies [29, 30], we shall seek

expressions for v�, which satisfy the reciprocity relations:

@ ln ��
@X�

� �
T,M,fX� 6¼�g

¼
@ ln ��
@X�

� �
T,M,fX� 6¼�g

, ð3Þ

where v� is related to gd, in the thermodynamic limit, by

ln �� ¼
@ ln gdðfX�g;MÞ

@X�
: ð4Þ

Equation (3) can be re-written in terms of a Maxwell
relationship between chemical potentials, �latt

� ¼

@Flatt=@X�, i.e.

@�latt
�

@X�

� �
T,V,fX� 6¼�g

¼
@�latt

�

@X�

� �
T,V,fX�6¼�g

, ð5Þ

where V¼M�v is the volume of the system.
Relations (3) and (5) provide a criterion for the

thermodynamic consistency of one’s expression for
gd ({N�};M) and the free energy Flatt [26].
In order to compute the probability �P�, defined in

equation (2), we follow Flory and introduce the quantity
Pn. This is the conditional probability that an empty cell
has an empty neighbour along a direction ~n: Assuming
a random distribution of empty and occupied cells,
one obtains

Pn ¼
X0

X0 þ Bn
, ð6Þ

where Bn is the number of particle segments which could
possibly occupy a cell in that direction.
For the case of parallelepipeds, possible directions of

~n are shown in figure 2. If the unit vectors ~i, ~j and ~k
are co-linear with the lattice axes, then the vector ~n
may be

1. parallel to ~i, ~j or ~k (contacts of type ‘a’, n¼ 1, 2,
or 3);

2. parallel to ~i� ~j, ~i� ~k or ~j� ~k (contacts of type ‘b’,
n¼ 12, 13, or 23);

3. parallel to ~i� ~j� ~k (contacts of type ‘c’, n¼ 123).

The symmetry of the system dictates that the
directions ~n and �~n are equivalent, so B~n ¼ B�~n: In
the case of type ‘b’ contacts, we have B~iþ~j

¼

B~i�~j
, B~iþ ~k

¼ B~i� ~k
, B~jþ ~k

¼ B~j� ~k
, while for case ‘c’ all

possible B~n are equal. In later discussion, when each

types of contact is treated explicitly, we replace the

subscripts in B~n and P~n by the numerical indices

shown in figure 2.
Expressions for Bn may be obtained by simple

geometric reasoning. First, consider case ‘a’ where we

view along a direction i(i¼ 1, 2 or 3) from an empty

lattice cell taken at random. The only way that the

neighboring cell could be occupied by a particle with

orientation � is if the cell were occupied by a segment

belonging to the face normal to the direction i. The

number of segments in such a face is r
ðjÞ
� � r

ðkÞ
� ¼ r�=r

ðiÞ
� : If

one multiplies this quantity by the number of particles

X� and then sums over all values of �, one obtains an

expression for Bi in the form

Bi ¼
X
�

X�r�

r
ðiÞ
�

: ð7:1Þ

We now turn to case ‘b’, in which we move from an

empty cell in directions 12, 13 or 23. If the neighboring

cell is occupied by a particle of orientation �, then this

may be due to any segment on two faces of the particle.

For the general direction ij, the total number of such

segments is r
ðiÞ
� r

ðkÞ
� þ r

ðjÞ
� r

ðkÞ
� � r

ðkÞ
� : The last term is

subtracted to avoid the double counting of the segments

on the common edge that is parallel to k. In this case

the expression for Bij is

Bij ¼
X
�

X�r�
1

r
ðiÞ
�

þ
1

r
ðjÞ
�

�
1

r
ðiÞ
� r

ðjÞ
�

 !
: ð7:2Þ

Finally, we come to case (3) and consider a move

from an empty cell in the direction 123. If this cell is

Figure 2. Layout of the cell adjacencies on a lattice,
indicating connections via a common facet (a), an edge
(b) or a vertex (c). As shown on the figure, each site adjacency
is characterized by a combination of the lattice primitive
vectors f~i,~j, ~kg: The number beside the pair of sites in contact
indicates a direction with respect to the lattice frame and is
used in the text to define probability of the vacancy/occupancy
state of a cell.
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occupied by a particle with orientation �, this may be
due to cells on all three faces of the particle. The number
of such cells is r� �

Q3
i¼1 ðr

ðiÞ
� � 1Þ: Thus, for B123

we have:

B123 ¼
X
�

X� r� �
Y3
i¼1

r
ðiÞ
� � 1

� �" #
: ð7:3Þ

As was shown earlier, the Flory–DiMarzio–Alben
statistics violates the condition of thermodynamic
consistency when applied to a system of 2D and 3D
hard particles [29, 30]. To avoid this problem, the
counting scheme has to take more care about taking into
account the occupancy/vacancy states of adjacent lattice
cells needed to accommodate the segments of facets and
the interior of the (X�þ 1) th particle. To do this, we
introduce the conditional probability, P�

i,j,k, that a given
lattice cell is vacant given that the adjacent cells in the
directions i, j and k are simultaneously vacant. As is
shown in figure 2, each of these indices can take the
values 1, 2, 3, 12, 23, 13. We assume, that if j¼ k or i¼ k
one has: P�

i,j,k ¼ P�
i,j,j ¼ P�

i,j and P�
i,j,i ¼ P�

i,j if i¼ j¼ k it
holds: P�

i,i,i ¼ Pi: In the case of rigid one-dimensional
objects when one considers only contacts of type ‘a’, i
takes the values 1, 2 or 3.
To proceed, we express the probabilities P�

i,j,k in terms
of Pn, defined in equation (6). Let first consider the
case i¼ 1 and j¼ 2. We define the probability P�

1,2 as
follows:

P�
1,2 ¼

X0P1P2

X0P12
¼

P1P2

P12
, ð8Þ

where X0P12 is the average number of cells in pairs with
adjacency implemented as is shown in figure 3 (a0), the

cross-marked cell (figure 3 (b0)) being either vacant or
occupied. The product X0P12 corresponds to the average
number of cells, which can be either vacant or occupied,
whose neighbours in the directions 1 and 2 are vacant.
Similarly, the product X0P1P2 is the average number of
three vacant adjacent cells as is shown in figure 3 (b0).
Then, the ratio of X0P1P2 and X0P12 can be equated to
the probability of finding a given cell empty provided
two adjacent cells in the directions 1 and 2 are also
empty.

In general one has:

P�
i,j ¼

X0PiPj

X0Pij
¼

PiPj

Pij
: ð9Þ

The indices on the r.h.s. can only be 1, 2 or 3. For P�
i,j the

indices span the set i, j¼ 1; 2; 3; 12; 13; 23. The indices
may not both be two figure indices (e.g. P�

12,13 is not
permitted).

Analogous to the definition of P�
i,j discussed above, we

consider now the probability P�
1,2,3 of finding a vacant

4-particle cluster of configuration a (figure 3). Let the
quantity A1 be the number of vacant cells, whose
neighbours in the directions 1, 2 and 3 are also vacant.
Making use of Flory’s definition of Pn (equation (6)),
one gets: A1¼X0P1P2P3. It then follows that
P�
1,2,3 ¼ A1=A2, where the quantity, A2, is the

average number of 3-cell clusters of vacancies (case b
in figure 3), which are adjacent to a cross-marked cell
shown in configuration a, whether this cell is empty or
occupied.

To proceed, the probability of finding a cluster with
configuration b ought to be connected with the
previously defined probabilities Pij and P123. We
consider clusters of vacancies with configurations c, d,
e (figure 3). We denote their average numbers by A3, A4

and A5, respectively. It then follows that

A3 ¼ X0P123

A4 ¼ A3P
�
2,13 ¼ X0P123P

�
2,13

A5 ¼ A4P
�
1,23 ¼ X0P123P

�
2,13P

�
1,23:

Alternatively, A5 is related to A2 by A5 ¼ A2P
�
1,2, where

P�
1,2 is the probability that two neighbouring cells of a

cross-marked one (configuration e), in the directions 1
and 3, are empty.

Substituting A2 ¼ A5=P
�
1,2 and A5 ¼ X0P123P

�
2,13P

�
1,23

into the definition of P�
1,2,3 and making use of equa-

tion (9) we get:

P�
1,2,3 ¼

P1P2P3P123

P12P13P23
: ð10ÞFigure 3. Adjacencies of the lattice sites explaining the

definition of the conditional probabilities P�
1,2 and P�

1,2,3:
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By using (9) and (10), v� can be written in the
following form:

�� ¼ X0

Y3
i¼1

P
rðiÞ� �1ð Þ
i

Y3
i<j

P�
i,j

� � r
ði Þ
� �1ð Þ r

ðj Þ
� �1ð Þ

� P�
1,2,3

� �Q3
i¼1

r
ði Þ
� �1ð Þ

: ð11Þ

Here, the product X0P
ðr

ð1Þ
� �1Þ

1 can be interpreted as
the average number of vacant cells having ðr

ð1Þ
� � 1Þ

contiguous neighboring lattice cells in the direction 1

vacant; X0P
ðr

ð1Þ
� �1Þ

1 P
ðr

ð2Þ
� �1Þ

2 is the average number of
vacant lattice cells whose contiguous ðr

ð1Þ
� � 1Þ and

ðr
ð2Þ
� � 1Þ adjacent cells in the directions 1 and 2,

respectively, are empty, etc.
Now we show that the quantities v� obey the

self-consistency criterion, equation (3). In view of
relationships (8)–(10), expression (11) can be rearranged
to give:

�� ¼
Xr�

0

Q3
i<j X0 þ Bij

� �r�ð1�1=rðiÞ� Þð1�1=rðjÞ� Þ

X0 þ B123½ �

Q3

i¼1
ðr

ðiÞ
� �1ÞQ3

i¼1 X0 þ Bi½ �
rvð1�1=rðiÞ� Þ

: ð12Þ

After straightforward manipulations one finds:

@ ln ��
@X�

¼

Q3
i¼1 ðr

ðiÞ
� � 1Þðr

ðjÞ
� � 1Þ

X0 þ B123

þ
X3
i¼1

r�r� � ðr
ðiÞ
� � 1Þðr

ðiÞ
� � 1Þ

r
ðiÞ
� r

ðiÞ
� � ðX0 þ BiÞ

�
X3
i<j
l6¼i,j

r
ðlÞ
� r

ðlÞ
� �

Q3
i¼1 ðr

ðiÞ
� � 1Þðr

ðiÞ
� � 1Þ

ðr
ðlÞ
� � 1Þðr

ðlÞ
� � 1ÞðX0 þ BijÞ

�
r�r�
X0

: ð13Þ

It is obvious that relation (13) is symmetric with respect
to permutation of the subscripts � and �. Thus, the
Maxwell relation (equation (3)) is satisfied, providing a
condition of integrability of the following equation for

the calculation of the combinatorial factor gd:

ln gdðfN�gÞ ¼

Z N1

0

ln �1ðX1ÞdX1 þ

Z N2

0

ln �2ðN1;X2ÞdX2

þ � � � þ

Z N�

0

ln ��ðfN�g�<�
;X�ÞdX�: ð14Þ

Using equation (12), integrating equation (14) making
use of Stirling’s approximation and finally replacing X�

in equation (7) with N�k yields:

gðfN�gÞ ¼
ðN0 þ B123Þ!

Q3
i¼1 ðN0 þ BiÞ!

N0!
Q

� N�!
Q3

i<j ðN0 þ BijÞ!
, ð15Þ

where N0 ¼ M�
P

k Nkrk and the expressions for Bi, Bij

and B123 are obtained from equation (7) by replacing X�

with N�.
According to (1) and (15), the equation of state of the

multi-component fluid under consideration takes the
form:

�P�v ¼
ðN0 þ B123Þ

Q3
i¼1 ðN0 þ BiÞ

N0

Q3
i<j ðN0 þ BijÞ

: ð16Þ

The generalization to continuous translational space
is achieved by following the procedure previously
devised for the hard rectangle fluids [29]. For a 3D
lattice system of parallelepipeds, we gave details of
derivation earlier [31; (1997)]. It can be performed by
taking the limit (z¼ x/a is the dimensionless edge of a
cubic lattice cell, a is the unit length):

Fconf ¼ lim
z!0

Flatt: ð17Þ

Combining equations (1), (15) and performing the
necessary transformations in (17) one obtains the
following expression for the configurational Helmholtz
energy, Fconf({N�k}), of an athermal multi-component
fluid of particles with D2h symmetry:

�Fconf fN�kgð Þ ¼
X
k

Nk

X
�

s�kðlns�k � 1Þ þ ln
’k=vk
�V� 1

(

þ fk
1

ð �V� 1Þ

X3
i¼1

aibi þ
1

ð �V� 1Þ2

Y3
i¼1

ai

" #)

ð18Þ

Here, ’k ¼ Nkvk=
P

l Nlvl is the volume fraction of com-
ponent k, � ¼

P
l Nlvl=V is the packing fraction, V ¼

1=�, ai �
P

k ’k
P

� s�k=f
ðiÞ
�k,bi �

P
k ’k

P
� s�kf

ðiÞ
�k=fk,

fk ¼ vk=a
3 and the quantity f

ðiÞ
�k ¼ r

ðiÞ
�kz is the dimen-

sionless length of an edge of a particle of type k with
orientation � constrained along the direction i.

To determine the equilibrium orientational distribu-
tion of particles, one has to minimize Fconf with respect
to {N�k} or to {s�k} while maintaining the constraintP6

"¼1 N�k ¼ Nk or, equivalently,
P6

"¼1 s�k ¼ 1: If a
nematic phase composed of biaxial particles has biaxial
symmetry, it implies that the number of variables
necessary for minimizing the functional (18) is equal to
5k, and s1k 6¼ s2k 6¼ � � � 6¼ s6k: In this case, if one chooses
s6k as independent variables, equilibrium values {s�k}
may be located from the following set of equations:

�
@Fconf

@N�k

� �
fNkg

¼ ��k � �6k ¼ 0, ð19Þ
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where

���k ¼ �
@Fconf

@N�k

� �
V,fN�6¼�g

¼ �1þ �Pvk þ ln
’k�

vkð1� �Þ
þ ln s�k

þ
fk�

1� �

X3
i¼1

ai
f
ðiÞ
�k

fk
þ bi

1

f
ðiÞ
�k

" #

þ
fk�

2

ð1� �Þ2

Y3
i¼1

ai
X3
i¼1

1

ai f
ðiÞ
�k

ð20Þ

is a chemical potential of a particle of kind k with
orientation �, and

�Pa3 ¼ ��a3
@Fconf

@V

� �
T,fN�kg

¼
	a3

1� �
þ

�2

ð1� �Þ2

X3
i¼1

aibi þ
2�3

ð1� �Þ3

Y3
i¼1

ai ð21Þ

is the dimensionless pressure, 	 ¼
P

k Nk=V is the
number density.
At equilibrium, the following identities are also

necessarily obeyed:

�k ¼ ��k, � ¼ 1, . . . , 6, ð22Þ

where �k ¼ ð@Fconf=@NkÞT,V,Nl6¼k
is the chemical potential

per molecule of component k.
In uniaxial nematics with D2h particles, symmetry

considerations (see figure 1) imply that s1k¼ s4k,
s2k¼ s5k, s3k¼ s6k, which means that the set (19)
contains 2k equations. For square cross-section
parallelepipeds there are k equations in the set (19).
Expressions (18)–(21) are thermodynamically consis-

tent in that equations (3), (4) and (5) have been obeyed.
This model permits the study of multi-component
mixtures of biaxial particles, with the possibility of
predicting a biaxial nematic phase. Although the model
does not allow for continuous orientations, it does have
the advantage that one is dealing with sets of non-linear
algebraic equations rather than a system of nonlinear
integral equations. As was pointed out in the introduc-
tion, the Zwanzig approximation provides qualitatively
accurate accounts of a variety of properties of nematic
mixtures as well as of non-uniform systems [33, 34]. In
order, however, to give an accurate account of soft
phase transitions, as is the case for real liquid crystal
systems, orientations need to be treated as continuous
variables. Order parameters of higher order than the
second play a dominant role in determining the nature
and features of the nematic-isotropic transition [35].
These effects are not present in the restricted orientation
model studied here.

2.2. Comparison of the EOS of the uniform system with
those obtained from other approaches

As mentioned in the Introduction, the EOS derived in
the previous section is identical to that derived
previously using seemingly completely different sets of
approximations. First, we note the work of Mitra and
Allnatt [36] who obtained this EOS by retaining only the
full Mayer star diagrams in the virial expansion and then
summing the series. Some details of their approach are
given in Appendix 1.

Second, we consider the results obtained by applying
FMT to systems of hard rectangular particles [18–20].
For the sake of future comparison we focus on the case
of a binary fluid of square platelets with dimensions
Lk�Dk�Dk (Lk5Dk, k¼ 1, 2). The FMT EOS of such
a fluid has been derived in [19] by generalizing Cuesta’s
result for hard parallel cubes [17] and used to study
isotropic-nematic interfaces and the phase behaviour of
model lamellar colloids.

The FMT expression for the reduced free energy
density of a mixture is given by Fconf¼FidþFex, where
the ideal part, Fid, has the form

�id ¼
X
k,�

	ðkÞ� ðln 	ðkÞ� � 1Þ,� ¼ x,y,z, ð23Þ

while the excess free energy density is represented by the
following equation:

�ex ¼ �n0 lnð1� n3Þ þ
~n1 � ~n2
1� n3

þ
n2,xn2,yn2,z

ð1� n3Þ
2
: ð24Þ

In (23) and (24), according to [19], in the case of a
homogeneous bulk fluid the density variables {ni} are
determined as

n0 ¼
X2
k¼1

ð	ðkÞx þ	ðkÞy þ 	ðkÞz Þ,

~n1 ¼
X2
k¼1

Lk	
ðkÞ
x þDk	

ðkÞ
y þDk	

ðkÞ
z

Dk	
ðkÞ
x þ Lk	

ðkÞ
y þDk	

ðkÞ
z

Dk	
ðkÞ
x þDk	

ðkÞ
y þ Lk	

ðkÞ
z

0
BBB@

1
CCCA

~n2 ¼
X2
k¼1

Dk	
ðkÞ
x þ Lk	

ðkÞ
y þ Lk	

ðkÞ
z

Lk	
ðkÞ
x þDk	

ðkÞ
y þ Lk	

ðkÞ
z

Lk	
ðkÞ
x þ Lk	

ðkÞ
y þDk	

ðkÞ
z

0
BBB@

1
CCCADk

n3 ¼
X2
k¼1

LkD
2
kð	

ðkÞ
x þ	ðkÞy þ 	ðkÞz Þ,
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Here, 	ðkÞ� is the number density of platelets of species k
with orientation � and n2,� is the projection of the vector
~n2 in the � (¼ x, y, z) direction. Insofar as within the
Zwanzig model the orientational distribution function
for the species k is defined by the set of fractions s�k, the
number densities are 	ðkÞ� ¼ Nks�k=V,

P
� 	

ðkÞ
� ¼ 	k:

Now consider the free energy density of the fluid in
terms of the present approach. According to equation
(18) it may be brought to the form:

�FconfðfN�kgÞ

V
¼
X
k

	k �1þ ln 	k þ
Xn
�¼1

s�k ln s�k

" #

þ
�FexðfN�kgÞ

V

� �
, ð25Þ

where the first term, �Fid/V¼Fid, is the ideal part
(with 	ðkÞ� ¼ Nks�k=V,

P
� 	

ðkÞ
� ¼ 	k, n0 ¼

P
k 	kÞ, and

Fex({N�k})/V is the excess free energy density of a fluid
with restricted orientations of particles, relative to an
ideal multi-component hard-platelet mixture:

�FexðfN�kgÞ

V
¼
X
k

	k � lnð1� �Þ þ fk
�

1� �

X3
i¼1

aibi

 "

þ
�2

ð1� �Þ2

Y3
i¼1

ai

!#
: ð26Þ

Expressing ai and bi in the form

ai ¼
X2
k¼1

Nkfk

 !�1X2
k¼1

Nk

X3
�¼1

s�kfk

f
ðiÞ
�k

,

bi ¼
X2
k¼1

Nkfk

 !�1X2
k¼1

Nk

X3
�¼1

s�k f
ðiÞ
�k,

equation (26) can be written in the form (with
~f
ðiÞ
�k ¼ f

ðiÞ
�kaÞ :

�FexfN�kg

V
¼ 	 ln

1

1� �

þ

P3
i¼1

P
k,�

	ðkÞ�
~f
ðiÞ
�k

 ! P
k,�

	ðkÞ� vk= ~f
ðiÞ
�k

 !

1� �

þ

Q3
i¼1

P
k,�

	ðkÞ� vk= ~f
ðiÞ
�k

ð1� �Þ2
: ð27Þ

In accordance with the chosen labelling of orientations
(elements i¼ 1, 2, 3 correspond, respectively, to the
directions along the axis x, y and z, the plate director
lies along the z axis), the geometric characteristics of the

particles, vk= ~f
ðiÞ
�k and

~f
ðiÞ
�k, are given by the following

elements:

Making use of the data in the table, it is
straightforward to show the equivalence of equations
(24) and (27). The identity of the free energy
expressions means that for spatially homogeneous
bulk phases both our approach and FMT predict
identical phase diagrams and thermodynamic
properties.

Third, the EOS is identical to that given by the
y3-expansion [21], which requires as input the values of
all partial second and third virial coefficients.
Although the calculation of these quantities is possible
for restricted orientation models, as the Mayer
functions reduce to products of Heaviside step
functions, the direct computation of these coefficients
in multi-component mixtures of biaxial particles turns
out to be cumbersome. In contrast, the present approach
avoids the need to directly evaluate the virial
coefficients.

Finally, we review the differences between lattice and
off-lattice versions of the model, by comparing the
values of the virial coefficients Bn in a one-component
fluid of parallel hard cubes. These have been calculated
up to the seventh order [37]. The data given in
Appendix 2 show that discretizing the positions of the
particles strongly affects the Bn values and considerably
weakens the role of steric repulsions. In the context of
this observation it is important to remember that
the discretization of particle positions in lattice approx-
imations may lead to incorrect inferences about the
relative stabilities of smectic and columnar phases
when studying translational ordered liquid-crystalline
systems [38].

3. Applications

In this section, we focus on the analysis of
novel characteristics relating to the stability of
nematic and isotropic phases in mixtures of rods and
in mixtures of plates. We make comparisons with
previous theoretical studies of freely rotating hard
cylinders [7].

� vk= ~f
ðiÞ
�k

~f ðiÞ�k

i 1 5 3 1 5 3

1 DkDk LkDk LkDk Lk Dk Dk

2 LkDk DkDk LkDk Dk Lk Dk

3 LkDk LkDk DkDk Dk Dk Lk
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3.1. Isotropic–nematic transition and fluid–fluid
de-mixing in related rod–rod and plate–plate
mixtures (composed of particles with equal
aspect ratios)

Here, we present results obtained by applying the model

to binary rod–rod and binary plate–plate mixtures.

In each case, the two components differ substantially in

volume and aspect ratio. The volume and the aspect

ratio of the thicker rods (R1) are chosen to be identical

to those of the thicker plates (P1), and the same holds

for the thin rods (R2) and thin plates (P2). Thus, at the

second virial level of description, the pure R1 and P1

systems are identical, as are the pure R2 and P2 systems.

For long thin rods the third virial contribution is

negligible. This is not, however, the case for plates,

no matter how thin [5, 9]. We may illustrate this for the

case of one-component isotropic fluids composed of

cuboids with dimensions L�D�D We compare

the ratio B3=B
2
2 (Bn is the nth-order virial coefficients)

for rods and plates with various aspect ratios �¼L/D.

The isotropric values of B2 and B3 are given by [19, 21,

31; (1997)]:

B2

v
¼

1

3
ð�þ 2Þð��1 þ 2Þ þ 1, ð28Þ

B3

v2
¼

1

9

2

3�2
þ
16

�
þ
52�

3
þ 47

� �
: ð29Þ

It is evident that at intermediate aspect ratios the
virial expansion converges slowly, and, especially for

platelets, the triplet interactions can never be ignored.

For continuous orientation models, the ratio B3=B
2
2 was

estimated to be 0.51 for hard discs with an aspect ratio

of 0.1 [39; (1992)] and 0.313 for spherocylinders with an

aspect ratio of 10 [39; (1987)]. In these models higher

virial terms can be approximately incorporated into

Onsager’s theory by rescaling the second virial term; this

method has been generalized to cater for mixtures of

particles with low and intermediate aspect ratios [7–9].
In view of these results it is obvious that one needs to

exploit more rapidly convergent expansions. As was

shown in the previous section, our model gives the third

y� expansion expression with exact third virial coeffi-

cients for mixtures of hard cuboids. In the context of

recent statistical thermodynamic and experimental

studies of hard-rod [1, 7–11] and platelet [9, 19, 20]

mixtures, it gives grounds for a comparative study of the
behaviour of mixtures, the different phase behaviour
being caused by the difference of shape of particles with
the same volume. This circumstance could be studied on
the basis of a single statistical thermodynamic approach.
To this end we considered the said two series of binary
hard-particle mixtures. The first is the R1�R2 mixture,
consisting of rods with dimensions LiR�DiR�DiR

(�iR¼LiR/DiR,�iR4 1), whilst the second one is a
P1�P2 mixture, composed of platelets LiP�DiP�DiP

(�iP¼LiP/DiP,�iP5 1). It is of particular interest to
compare systems for which viR¼ viP and �iR ¼ ��1

iP , as
any differences must be due to higher order effects than
the second virial coefficients.

We study systems in which �1R¼ 15 and �1P¼ 1/15.
To ensure equal volumes, we must have D1P¼ 152/3

D1R¼ 6.0822D1R. For the second, thin components we
set the aspect ratios to be 150 and 1/150 accordingly.
D2R was fixed at unity, so for equal volumes we must
have D2P¼ 1502/3¼ 28.231. D1R was varied between 2
and 50. Consequently, given equal volumes for P1 and
R1, the ratio of the widths of the two plates was given by
D1P/D2P¼ 0.12/3D1R/D2R¼ 0.21544D1R. Given these
choices for the geometrical parameters of the species,
only the ratio dR¼D1R/D2R may be varied.

It should be noticed that the average aspect ratios of
real prototypes of hard particles, such as a rodlike
boehmite colloid and a platelike gibbsite colloid, have
values of about 10–20 and 1/15 [1, 11 (2000)]. Although
a rod aspect ratio of 150 does not seem realistic in
this context, rod mixtures with these particular sets of
molecular parameters are chosen because of an oppor-
tunity to compare our results with the recent study of
hard freely rotating cylinders with aspect ratios of 15
and 150 [7]. The underlying theory was a Parsons–Lee
extension of Onsager theory. A binary blend of
hard spherocylinders with the same aspect ratio had
previously been studied by Gibbs ensemble Monte Carlo
simulations [40]. Our focus is first to compare features of
the N� I phase coexistence in R1�R2 and P1�P2

mixtures for small concentrations of component 2 – i.e.
component 2 is dissolved in excess liquid crystal solvent
(mimicked by component 1). We also aimed to study
fluid–fluid phase separation as a function of the particle
volume ratio. In addition to this, for a number of
R1�R2 blends we investigate the stability of an I� I
demixing with respect to the N� I transition.

3.2. Calculation procedure

Calculation of the limiting slopes of coexisting nematic
(N) and isotropic (I) phases, �ðrÞ

2,1 ¼ � limx2!0 dðt
�Þ

ðrÞ=
dx2, r ¼ I,Nð Þ, in the vicinity of component 1 was
performed in terms of the reduced temperature (identical

� 10 1/10 15 1/15 150 1/150 1 0
B3=B

2
2 0.2791 0.3463 0.2119 0.3013 0.0279 0.1839 0 1/6
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to the dimensionless inverse pressure) defined as

t� ¼ ðP�
1ÞNI=ðPv1=kBTÞ, where ðP�

1ÞNI ¼ ðPv1=kBT1ÞNI is

the reduced coexistence pressure of component 1. The

limiting slopes can be determined by applying the

thermodynamic relationship [40]:

�ðqÞ
2,1 ¼

kB

��
ðNIÞ
1

 !

N
2,1 � 
I

2,1


ðrÞ2,1

" #
ðq 6¼ r; q, r ¼ I,NÞ,

ð30Þ

where


ðrÞ
2,1 ¼ exp lim

x
2
!0

ð��ðrÞ
2 � ln x2Þ � ��0

2

� �
ð31Þ

is the limiting activity coefficient of a solute in phase r of

a solvent. ��
ðNIÞ
1 is the transition entropy of a solvent,

x2 is the mole fraction of the solute and �0
2 and �ðrÞ

2 and

are, respectively, the chemical potentials of a solute in

the pure state and in the mixture under conditions

corresponding to N� I transition of component 1.
Expressions for 
ðrÞ

2,1 may be obtained from (20), (22)

by straightforward means:

ln 
ðrÞ
2,1 ¼ �1� ðP�

1ÞNI �
v2
v1

þ ln s1�2

þ ln
�ðrÞ1

v1 � ð1� �ðrÞ1 Þ

" #

þ
�ðrÞ1

1� �ðrÞ1

X3
i¼1

f
ðiÞ
�2a

ð1Þ
i þ

f2

f
ðiÞ
�2

b
ð1Þ
i

 !

þ
ð�ðrÞ1 Þ

2

ð1� �ðrÞ1 Þ
2

Y3
i¼1

a
ð1Þ
i

X3
i¼1

f2

f
ðiÞ
�2

1

a
ð1�Þ
i

� ��0
2, ð32Þ

where s1�2 is the fraction of solute particles with

orientation �, �ðrÞ1 is the reduced density of a solvent in

the phase r at coexistence and the quantities

a
ð1Þ
i �

P6
�¼1 s�1=f

ðiÞ
�1 and b

ð1Þ
i �

P6
�¼1 s�1f

ðiÞ
�1=f1 relate to

the pure solvent.
Taking into account equations (31), (32) and equa-

tion (22) in the form �2 ¼ ��2,ð� ¼ 1� 3Þ, and also

following the labelling convention shown in figure 1, one

can calculate the fractions s1�2 from the following set of

equations, which pertain, in general, to biaxial particles:

ln s112 þ w12 ¼ ln s122 þ w22,

ln s112 þ w12 ¼ ln s132 þ w32

2
X3
�¼1

s1�2 ¼ 1, ð33Þ

where

w�2 ¼
�ðrÞ1

1� �ðrÞ1

X3
i¼1

f
ðiÞ
�2a

ð1Þ
i þ

f2

f
ðiÞ
�2

b
ð1Þ
i

 !

þ
ð�ðrÞ1 Þ

2

ð1� �ðrÞ1 Þ
2

Y3
i¼1

a
ð1Þ
i

X3
i¼1

f2

f
ðiÞ
�2

1

a
ð1Þ
i

:

If the z axis is chosen as the director of the uniaxial
nematic fluid (see figure 1), then the fractions of rods

pointing in the x and y directions are the same.

The order parameters of short and long rods in the

mixtures are, respectively, S0
R1

¼ �1=2þ 3s011 and S1
R2

¼

�1=2þ 3s112: In the discotic nematic phase, the normals
to the square facets of the plates are predominantly

aligned along the director, so the order parameters of

the thick and thin platelets are S 0
P1

¼ �1=2þ 3s031 and

S1
P2

¼ �1=2þ 3s132: It is noteworthy that the values

of �ðrÞ
2,1 can be calculated using only data on the

transition properties of a pure liquid crystal solvent

and the geometrical features of both components. If one

permutes the indices corresponding to the components

in expressions (30) and (31), one obtains expressions for

the co-existence boundaries in the vicinity of a pure

second component.
The requirement for a hard core isotropic

fluid mixture to be stable with respect to de-mixing is

the positive definiteness of the Hessian matrix of the

Helmholtz energy density, F/V, as a function of the

partial densities 	v [17, 40, 41]:

M�� � �
@2ðF=VÞ

@	�@	�
¼ �

@��

@	�
, ð34Þ

where �� ¼ @F=@N�ð ÞN�6¼�,V
¼ @ðF=VÞ=@	�ð Þ	� is the che-

mical potential of component v. This condition reflects

the stability of a mixture both with respect to volume

and composition fluctuations and can also be regarded

as the condition of stability with respect to diffusion at
constant pressure [40–42]. Elements of the 2� 2 matrix

M̂ for an isotropic binary cuboid mixture can be

analytically computed by using the following expression

for Fconf=V, obtained from equations (25) and (27):

�
Fconf

V

� �
¼ �ð	1 þ 	2Þ 1þ ln 6þ lnð1� v1	1 � v2	2Þð Þ

þ 	1 ln 	1 þ 	2 ln 	2

þ
1

24

ð�1	1 þ �2	2ÞðP1	1 þ P2	2Þ

1� v1	1 � v2	2

þ
1

216

ð�1	1 þ �2	2Þ
3

ð1� v1	1 � v2	2Þ
2
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Here, the reduced energy is represented as a function of
elementary geometrical features of the particles. In this
case these are: the volume vv, the surface area
�� ¼ 2ð2L�D� þD2

�Þ and the sum of the edges lengths
P� ¼ 4ðL� þ 2D�Þ:
To locate a spinodal curve, it is necessary to solve the

equation:

det M̂ ¼ 0: ð36Þ

For mixtures of cuboidal particles of dimensions
Li�Di�Di the result is expressed as a function of
several variables, i.e. the packing fraction �, the volume
fraction of species 1 (’1), and the geometrical character-
istics �2, �¼�1/�2 and r¼D1/D2. The expression is
given in Appendix 3. Expression (A3.1), in the case of a
mixture of parallel cubes, reduces to equation (22) in
[17], which was derived by use of fundamental measure
theory. If there is a solution of equation (36), one finds
two values of the volume fraction, ’1, for a given value �
and these correspond to the spinodal boundaries.

3.3. Results

Before analysing our results for mixtures, we present
data for the order parameters and some thermodynamic
properties at the N� I transition for a one-component
fluid of rods with �1R¼ 15 and a one component fluid of
plates with �1P¼ 1/15. The plate values are given in
parentheses. The data are: S0

1 ¼ 0:83432 ð0:68783Þ,
ðP�

1ÞNI ¼ 0:21071 ð0:18702Þ, �N ¼ 0:10760 ð0:09132Þ,
�I ¼ 0:087140 ð0:078945Þ and ��NI ¼ 0:45977
ð0:32102Þ: Reduced values of the coexistence pressures
in a fluid of long rods with �2R¼ 150 and of thin plates
with �2P¼ 1/150 are 0.015914 and 0.014580, respec-
tively. In comparison with hard-particle models with
continuous orientations, the numerical values of the
N� I transition parameters of the Zwanzig model are
substantially smaller while the order parameters are
higher. Indeed, for freely rotating hard cylinders with
length-to-diameter ratio of 15 one has S¼ 0.78,
P�
NI ¼ 1:304, �N ¼ 0:217, �I ¼ 0:190, ��NI ¼ 0:854 [7].

The reason for this difference is the reduction of the
orientational entropy due to the restricted number of
allowed orientations ([34] and references therein). This
effect causes a decrease in the coexistence densities and
enhances the orientational order.
Now we proceed to the results relating to N� I phase

coexistence in the mixtures under investigation. A
common trend in both the R1�R2 and P1�P2 systems
is readily apparent from figure 4. At comparatively
small values of d (i.e. at small values of the volume
ratio, v1/v2), �

ðNÞ

2,1 < 0, so the addition of a thin rod or an

extremely thin plate results in the elevation of t*. Thus,

under these conditions mixing stabilizes the nematic

phase. For larger values of d (or larger values of v1/v2),

the reverse is true – �ðrÞ2,1 > 0, so mixing destabilises

the nematic phase. If the molecular volume of the
solvent (component 1) is similar to that of component 2

(v1/v25 3 both for R1�R2 and P1�P2 mixtures),

strong fractionation is observed. This is the situation

when the shorter rods and thicker platelets are

mostly concentrated in the isotropic phase. Similar

results have been reported for mixtures of freely rotating

rods [7].
Such an effect is explicitly shown in terms of the

distribution constants K1
2 ¼ limx2!0ðx

ðNÞ

2 =xðIÞ2 Þ (see inset
in figure 4). For a given value of d, however, the

stabilization of the nematic phase and the fractionation

between coexisting phases are both weaker for plates

than for rods. This may result from the fact that plates

are less ordered than rods at the N� I transition. Results

of the present study, if the values v1/v2 of constituent

particles are sufficiently small, seem also qualitatively

corroborating the data of Harnau and Dietrich

[20; (2002)]. They studied inhomogeneous and bulk
homogeneous hard-platelet and hard-rod colloidal fluids

in the limit of infinite anisometry of particles. It has been

shown that in binary bulk mixtures smaller particles

concentrate in the isotropic phase. The stability of

Figure 4. The limiting binodal stability boundaries �ðrÞ
2,1

versus d ¼ D1j=D2j j ¼ R,Pð Þ, the ratio of the cross-sectional
sides of the two components. The plots correspond to a dilute
solution of component 2 in a solvent of component 1. The
solid curves correspond to the isotropic phase while the dashed
curves correspond to the nematic. The molecular volumes and
aspect ratios are given by:v1R¼ v1P, v2R¼ v2P¼ 150; and
�1R ¼ ��1

1P ¼ 15; �2R ¼ ��1
2P ¼ 150: Inset. For the same

binary mixtures, we plot the distribution coefficient
of the additive (component 2) at infinite dilution, K1

2 ¼

limx2!0ðx
ðNÞ

2 =xðIÞ2 Þ, where x
ðrÞ
2 are mole fractions of component

2 in the coexisting phases (r¼ I,N).
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nematic phase and fractionation in composition is
manifested weaker in the mixture of vanishingly
thin platelet as compared with the corresponding
mixture of rods. In the case of thin rods, the results of
Harnau and Dietrich are in agreement with earlier
calculations [13].
The order parameters S1

R2
and S1

P2
of the dissolved

long rods and thin plates are presented in figure 5
as functions of the ratio v1/v2 (in terms of the ratio d).
At large values of v1/v2, component 1 corresponds to
particles with colloid dimensions. In such situations
one can see that the limiting values S1

R2
and S1

P2
in the

solution are significantly smaller than their values in
the pure fluids at the I–N transition. These values are
0.9060 and 0.8109, respectively. Owing to a huge
difference in molecular volumes a polymeric rod orders
quite weakly in the nematic matrix of the first
component, at least for low polymer concentrations.
Similar phenomena are observed in the mixtures of
freely rotating rods with aspect ratios 15 and 150 when
they have very large differences in volume [7].
As well as undergoing isotropic–nematic transitions,

hard-rod and hard-platelet blends may exhibit both I� I
and N�N de-mixing. These issues have been explored
in a large number of simulation and theoretical studies.
Although the results of these studies turn out to be
sensitive to the fine details of the model and the precise
nature of the theory used [43], they indicate that the
phase diagrams of binary mixtures of anisometric
particles are very sensitive to the choice of molecular
parameters, i.e. to the aspect ratios of particles and their
size ratios.

It should be noted that FMT studies on binary
mixtures of square platelets with restricted orientations
[19, 20] suggest the possibility of N�N demixing for
certain size and width ratios. No such N�N de-mixing,
however, has been reported in the corresponding rod
mixtures [44]. The question of this type phase split as it
makes appearance in the present variant of the
Zwanzig model in application to mixtures of rods
different in aspect ratios and volumes is being currently
investigated.

We now consider our results for I� I de-mixing in the
R1�R2 and P1�P2 systems. Figure 6 shows the
density-composition diagrams for de-mixing instabilities
for two binary rod mixtures (1R and 2R) and two binary
plate mixtures (1P and 2P). As before, the aspect ratios
of the rods are the inverses of those of the plates whilst
we have set v1/v2¼ 2700 for 1R and 1P and v1/v2¼ 6400
for 2R and 2P. Also shown is a spinodal curve for a
mixture of parallel cubes with v1/v2¼ 6400. The results
show that the regions of the phase diagram correspond-
ing to unstable states are strongly dependent upon the
shape of the particles of both components. Qualitatively
the difference is due to the fact that platelet mixtures are
stable with respect to de-mixing up to extremely high
densities, while rod-like mixtures with similar size ratios
may demix even at very low values of �.

In figure 7, we plot the consolute density against v1/v2
for a binary rod and a binary plate mixture (parameters
the same as those given in figure 4). Compared with the
rods, demixing in the platelet mixture only sets in at very

Figure 5. The order parameter of the second component at
infinite dilution versus the ratio of cross-sectional sides of the
components d. The solid line is for the R�R mixture and
the dashed line for the P�P mixture. The definition d and
the values of the molecular parameters are as in figure 4.

Figure 6. Spinodal densities corresponding to I� I demixing
for rods (R) and plates (P), for mixtures of rectangular hard
cuboids. The values of the molecular parameters are as in
figure 4. The mixtures are: v1/v2¼ 2700 (1): d¼ 30 (R) and
6.4633 (P); v1/v2¼ 6400 (2); d¼ 40 (R) and 8.6177 (P).
The dashed curve (3) corresponds to a mixture of parallel
cubes v1/v2¼ 6400 (d¼ 18.56635). Vertical lines show the
location of consulute points.
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high values of v1/v2 and at considerably higher overall
densities. Indeed for v1/v2¼ 1690, the consolute packing
fraction for plates is predicted to be approximately 0.95.
In reality, of course, one would expect a phase transition
to ordered states to occur long before this demixing
instability. For comparison we note that in the parallel
cube mixture, demixing occurs when the volume of the
large species is approximately 1000 times greater than
that of the smaller one [17].
Figure 8 plots I� I spinodals for a number of R1�R2

blends, using as variables t* and composition. The
positions of the I–I domains in cuboid mixtures viewed
show similarities to those found in mixtures of freely
rotating cylinders, calculated by a functional scaling
method (figures 1, 2(e) and 3(a) in [7]). Increasing the
diameter ratio of the species results in an expansion of
these domains. A noticeable feature is that the
compositions of the consolute points calculated here
coincide very closely those obtained for bi-disperse
mixtures of freely rotating cylinders, for similar geo-
metric parameters of the species [7]. Unlike the freely
rotating rods, however, I� I de-mixing in our model is
meta-stable with respect to a N� I transition for all of
the binary mixtures studied. Figure 9(a) may illustrate
the consequence of orientational discretization for a
system with colloidal component 150� 10� 10(dR¼ 10):
the reduced temperature of the I� I consolute point
ðt� ffi 0:11; see figure 8) is below the domain of N� I
coexistence. Similar observations apply to the whole of
the R1�R2 series with our chosen set of aspect ratios
(�2¼ 150, �1¼ 15) where the reduced temperature of the
N� I transition of the pure second component is given
by t� ¼ 13:2407� ðv2R=v1RÞ: It can be directly checked

that the temperatures of the consolute points shown
in figure 8 never surpass the upper boundary of the
N� I equilibrium domain.

The R1�R2 mixtures in the present model exhibit
certain features of the phase diagram which have much
in common with blends of freely rotating components
with the same dR. Figure 9(b), relating to a mixture with
dR¼ 4.5, illustrates this. Apart from the fact that I� I
de-mixing turns out to be meta-stable with respect to
nematic phase formation in both approaches, one comes
across a manifestation of an azeotrope in the N� I
coexistence domain, its composition being very close to
that given in [7]. The infinite dilution tangents of the
nematic and isotropic phase boundaries of figure 9(b)
are also virtually the same as in [7].

The results obtained are in line with general trends in
binary mixtures of hard convex bodies, observed in the
frame of the scaled particle approximation [43]: fluid–
fluid phase separation can result from substantial
asymmetries between the breadths of molecular species.
In the context of these studies it is significant that
recent theoretical methods based on the FMT in the
Zwanzig approximation and the modified Onsager
theory ([18]; (2004); [45], and references therein) show
that fluids of anisotropic particles tend to form different
bulk inhomogeneous phases (such as smectic, columnar
or solid) at moderate and high packing fractions.
Thus, the I� I and N� I separation may be metastable
with respect to apparition of regions where smectic
phases of different structure and composition coexist.

Figure 7. Densities at the consolute points for corresponding
rod and plate mixtures. The values of the molecular
parameters are as in figure 4.

Figure 8. Spinodal curves corresponding to I� I de-mixing in
binary rod mixtures R1�R2 with the dimensions of the second
component particles fixed at 150� 1� 1. The legend corre-
sponding to various dimensions of the first component
particles: solid line – 150� 10� 10; dashes – 75� 5� 5; dots
– (4.5� 15)� 4.52; dashes-dotted curve – 300� 20� 20; dash-
dot-dotted curve – 450� 30� 30.
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However, the model under consideration is not
suited to the description of spatially inhomogeneous
phases of biaxial particles, so, in this paper we address
the study of I� I de-mixing and N� I transitions and
comparison with the recent results obtained in work [7]
from the Onsager model in the Parsons–Lee
approximation.
Although our theory includes the effects of triplet

correlations, we now see whether we can qualitatively
understand our demixing results in terms of the large,
unfavourable excluded volume interactions between
unlike species [46].

The mixed excluded volume in the isotropic binary

HRP solution takes the form:

V
ðisoÞ
excl ¼

1

3
D1 þD2ð Þ

2
� L1 þ L2ð Þ

þ
2

3
D1 þD2ð Þ � D1 þ L2ð Þ � D2 þ L1ð Þ, ð37Þ

where the terms on the r.h.s. relate to contributions
coming from the parallel and orthogonal orientations of

two square cuboids of species 1 and 2, accordingly. The

formula applies both to the mixtures of rods and plates.

The calculated reduced orientation-averaged excluded

volumes in corresponding binary R1�R2 and P1�P2

mixtures, ~V
ðisoÞ
excl ¼ V

ðisoÞ
excl =Vcube, are given below

(Vcube ¼ ð�1=3
1 D1 þ �1=3

2 D2Þ
3 is the excluded volume of

an one-component fluid of cubes with molecular volume

arithmetic-averaged between the volumes of cuboids of

the binary mixture):

The molecular parameters for the mixtures are the same

as described above.
Inspection of the above data shows that the excluded

volumes in the R1�R2 blends are systematically greater

than in the P1�P2 mixtures. Demixing is thus favoured

in the rod mixture, in agreement with the results of our

full calculations (figures 6 and 7).
An estimate of critical platelet aspect ratios necessary

for depletion-induced de-mixing of homogeneous

nematic phases has been obtained recently in the study

[19] within the second virial approximation of the excess

free energy. Concrete estimates have been given for

completely ordered nematic phases. The criterion

obtained therein can be also applied in the analysis of

I–I de-mixing. Thus, to some extent simple estimates

based on equation (35) may complement the results of

the work [19].

4. Conclusions

This work and the preceding ones [29, 30] present

generalizations of the Flory–DiMarzio probabilistic

scheme of calculating excess Helmholtz energy in the

Figure 9. Equilibria involving isotropic and nematic phases
in two blends of rods with linear dimensions: (a) 150� 10� 10
and 150� 1� 1; (b) 67.5� 4.5� 4.5 and 150� 1� 1.

v1 dR ~V ðisoÞ
excl for rods ~V ðisoÞ

excl for plates

1875000 50 2,767 1,891

120000 20 4,780 3,093
50625 15 5,676 3,693
3240 6 8,627 6,417
405 3 9,643 8,681

234.375 2.5 9,564 9,119
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case of multi-component systems of hard biaxial
parallelepipeds with restricted sets of orientations. On
taking the limit of zero-lattice spacing, the EOS co-
incides with that obtained by a variety of different
theoretical approaches, making seemingly quite unre-
lated approximations. Examples are the complete star
approximation [36], the third level y-expansion [21] and
a fundamental-measure theory [18, 19] for homogeneous
phases. We also compared several predictions of our
aproach with previous studies on mixtures of freely
rotating particles [7]. Similar trends were observed,
again suggesting that this model is capable of capturing
the essential physics of the phase behaviour of binary
mixture of hard anisometric particles, at least for
translationally disordered phases.
A complete theoretical investigation into the phase

behaviour of fluids with mesogenic components would
require the study of the stabilities of translationally
ordered phases as well as the isotropic and nematic
phases considered here. In the case of systems
containing axially symmetric particles, fundamental
measure theory in the Zwanzig approximation has
been successfully used to treat smectic and columnar
phases [18, 20, 45], bulk properties and free interfaces
in fluids of charged plate-like colloids [47].
The presence of molecular bi-axiality would no doubt

generate still richer phase behavior with a complex
interplay of phase stabilities in mixtures. We believe that
the model presented here could be useful for studying
uniaxial and biaxial nematic stability in this kind of
systems. Another matter of interest for physico-chemical
application is to consider the attraction between bi-axial
particles by a suitable generalization of a square-well
model for uniaxial particles, in spirit to the study [32]
proposed recently.
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Appendix 1

Equation (15) has also been derived for hard parallel
cubes by noting that each virial coefficients, up to order
7, is approximately equal to the complete star
integral multiplied by the corresponding Ree–Hoover

weight [37]. Mitra and Allnatt [36] in a study of defects
in the crystal UO2þx used this approximation to
estimate the equation of state of a lattice gas of
rectangular parallelepipeds. This approximation yields
an equation of state which is necessarily exact up to the
third virial.

By retaining solely the contributions of complete-star
integrals, one is in a position to analytically calculate the
excess entropy of a multi-component lattice gas of hard
cuboids. For these systems, the Mayer-f function is a
product of three, one dimensional Mayer functions,
corresponding to the interaction of hard rods along the
x, y and z axes of the lattice. The complete star integrals
thus become a product of three hard rod star integrals,
where the hard rod star corresponds to a mixture of one
dimensional hard rods. In the one-dimensional case,
Mitra and Allnatt obtained an analytical expression for
the hard rod complete star integral of any order. This
enabled them to calculate the complete star for the hard
cuboids and hence allow an estimate of all the virial
coefficient. It proved possible to sum this series
analytically to give, in the notation of section 2:

�c

kBM
¼ �

X8
n¼1

gðnÞ 1� hðnÞ
	 


ln 1� hðnÞ
	 


þ hðnÞ
� �

þ
X6k
�¼1

N�

M

� �
ln

N�

Me

� �
: ðA1:1Þ

Here, k stands for a number of components, whilst the
rest of the quantities on the r.h.s. are:

gð1Þ ¼ �gð2Þ ¼ �gð3Þ ¼ �gð4Þ ¼ gð5Þ ¼ gð6Þ ¼ gð7Þ ¼ gð8Þ ¼ 1,

hðnÞ ¼
X6k
�¼1

f
ðnÞ
� N�

M

f
ð1Þ
� ¼ r�, f

ð4Þ
� ¼ r� 1�

1

r
ð3Þ
�

 !
,

f
ð2Þ
� ¼ r� 1�

1

r
ð1Þ
�

 !
, f

ð5Þ
� ¼ r� 1�

1

r
ð1Þ
�

 !
1�

1

r
ð2Þ
�

 !
,

f
ð3Þ
� ¼ r� 1�

1

r
ð2Þ
�

 !
, f

ð6Þ
� ¼ r� 1�

1

r
ð1Þ
�

 !
1�

1

r
ð3Þ
�

 !
,

f
ð7Þ
� ¼ r� 1�

1

r
ð2Þ
�

 !
1�

1

r
ð3Þ
�

 !
, f

ð8Þ
� ¼

Y3
i¼1

r
ðiÞ
� �1

� �
:

With some further algebra one may confirm the
equivalence of formulae (A1.1) and (15).
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Appendix 2

One may use equations (16) and (21) to calculate

virial coefficients as given by our approximate theory.

For the parallel cube fluid, we find that for the

lattice gas we have BðlattÞ
n ¼ w3 1� ð1� 1=wÞn½ �

3=n
while in the translationally continuous limit we

have Bn ¼ lim
w!1

BðlattÞ
n ¼ n2, where w3�v ¼ v is the

volume of a cube occupying w3 lattice cells. In

table A2, the first 5 virial coefficients (in units of a

particle volume) are compared with the exact values

given in [37].
As may be seen, both the lattice and the continuum

versions of the model are exact up to the third virial

coefficient. Reducing the mesh size causes all the

virial coefficients to decrease. This shows that the

presence of a lattice reduces the strength of steric

interactions. The radius of convergence of the lattice

virial series may be significantly different from that of

the continuum series. The behaviour ‘of the model

fluid’ observed at the high density in the ‘lattice gas

treatment’ may differ qualitatively, as well as quanti-

tatively, from that of its continuum analogue [37].

These effects must be borne in mind when using

lattice models to study ordered phases, such as the

smectic A phase.

Appendix 3

Straightforward though lengthy calculations of det M̂

can be readily carried out with any symbol

algebra system. Using equations (31, 32) one can

obtain:

	1	2 det M̂ ¼
64�2

ð1� �Þ4
F0

�2
þ
F1

�
þ F2

� �
, ðA3:1Þ

where

F0 ¼ 9r�2 � �2
2, F1 ¼ F10 þ ’1F11,

F2 ¼ F20 þ ’1F21 þ ’21F22,

F10 ¼ 12r�2 � �2 � ð1þ �2 þ �2
2Þ,

F11 ¼ 12r� � �2 � ð�� 1Þð� � �2
2 � 1Þ,

F20 ¼ r�2 � ð2þ 3�2
2 þ 4�3

2Þ,

F21 ¼ �ðt1�þ t2�
3Þ þ rð�t3�þ t4�

2 � t3�
2
2�

3Þ � r2t5

F22 ¼ ðt1�þ t2�
3Þ þ rð2þ t3�þ t6�

2 þ t7�
3Þ þ r2t5

t1 ¼ 2ð1þ 2�2Þ
2, t2 ¼ t1�

2
2=2,

t3 ¼ �8ð1þ �2 þ �2
2Þ, t4 ¼ �2ð2� 4�2 � �2

2Þ

t5 ¼ � � ð2þ �2
2Þð1þ 2� � �2Þ

2,

t6 ¼ �2ð�1þ 4�2 þ �2
2 þ 2�3

2Þ,

t7 ¼ �4�2
2ð2þ �2 þ 2�2

2Þ:

In the particular case of a mixture of parallel hard cubes
(�¼�2¼ 1), except for an irrelevant factor 576r,
expression (A3-1) reduces to the result obtained by
Cuesta in the frame of FMT [17]:

	1	2 det M̂ ¼
576r�2

ð1� �Þ4
1þ

4

�
þ

1

�2

�

� 3’1ð1� ’1Þ
ðr� 1Þ2

r

�
ðA3:2Þ
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