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ABSTRACT

The properties of interstellar grains, such as grain size distribution and grain porosity, are affected by interstellar processing, in
particular, coagulation and shattering, which take place in the dense and diffuse interstellar medium (ISM), respectively. In this
paper, we formulate and calculate the evolution of grain size distribution and grain porosity through shattering and coagulation.
For coagulation, we treat the grain evolution depending on the collision energy. Shattering is treated as a mechanism of forming
small compact fragments. The balance between these processes are determined by the dense-gas mass fraction [dense, which
determines the time fraction of coagulation relative to shattering. We find that the interplay between shattering supplying small
grains and coagulation forming porous grains from shattered grains is fundamentally important in creating and maintaining
porosity. The porosity rises to 0.7–0.9 (or the filling factor 0.3–0.1) around grain radii 0 ∼ 0.1 `m. We also find that, in the
case of [dense = 0.1 (very efficient shattering with weak coagulation) porosity significantly enhances coagulation, creating fluffy
submicron grains with filling factors lower than 0.1. The porosity enhances the extinction by 10–20 per cent at all wavelengths
for amorphous carbon and at ultraviolet wavelengths for silicate. The extinction curve shape of silicate becomes steeper if we
take porosity into account. We conclude that the interplay between shattering and coagulation is essential in creating porous
grains in the interstellar medium and that the resulting porosity can impact the grain size distributions and extinction curves.
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1 INTRODUCTION

Dust grains are important for various processes in the interstellar
medium (ISM) and in galaxies. Not only the total dust abundance
but also the distribution function of grain radius, referred to as the
grain size distribution, is important, since under a given dust abun-
dance, the total surface area and the cross-section of light absorption
and scattering (extinction) are governed by the grain size distribu-
tion. Since H2 forms on dust surfaces (e.g. Gould & Salpeter 1963;
Cazaux & Tielens 2004), the total surface area of dust grains affects
the H2 formation rate, which could influence the galaxy evolution
(e.g. Yamasawa et al. 2011; Chen et al. 2018). The extinction cross-
section as a function of wavelength, referred to as the extinction
curve, gives us a clue to the grain size distribution (e.g. Mathis et al.
1977, hereafter MRN). The extinction curve is strongly modified
by dust evolution (e.g. Asano et al. 2014). The evolution of grain
size distribution also affects the spectral energy distributions (SEDs)
of galaxies (e.g. Désert et al. 1990; Takeuchi et al. 2005). Thus, the
evolution of grain size distribution is of fundamental importance in
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understanding the chemical and radiative processes in the ISM and
in galaxies.

The evolution of dust in the ISM or in galaxies is governed by
various processes (e.g. Lisenfeld & Ferrara 1998; Draine 2009). The
major processes for the dust enrichment are stellar dust production
and dust growth in the ISM (e.g. Dwek 1998). Dust destruction
in supernova shocks (e.g. McKee 1989) is considered to dominate
the decrease of dust in the ISM. In the Milky Way environment,
since the metallicity is high enough, dust growth by the accretion
of gas-phase metals can be efficient enough to balance the dust de-
struction (e.g. Draine 1990; Dwek 1998; Hirashita 1999; Inoue 2011;
Mattsson et al. 2014). This accretion process, which is also verified
in some experiments (Rouillé et al. 2014, 2020), occurs in the dense
ISM. The grain size distribution, on the other hand, is strongly mod-
ified by coagulation in the dense ISM and shattering in the diffuse
ISM (e.g. O’Donnell & Mathis 1997; Hirashita & Yan 2009). Al-
though some of the above processes occur either in a certain phase
of the ISM, all dust processes eventually affect the mean properties
of interstellar dust through a quick (∼ 107 yr) exchange between var-
ious ISM phases (e.g. McKee 1989). The abundance ratio between
large and small grains is roughly determined by the balance between
coagulation and shattering (Hirashita & Aoyama 2019).
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If coagulation and shattering govern the functional shape of grain
size distribution as suggested by previous studies, these processes
could put a clear imprint on the grain properties. In particular, coag-
ulation could form inhomogeneous grains in terms of the composition
and the shape. Such a possibility is modelled by Mathis & Whiffen
(1989), who constructed a model of interstellar grains that are as-
sumed to be aggregates of multiple species containing vacuum. They
succeeded in obtaining a model that is consistent with the observed
Milky Way extinction curves. Although composite aggregates (com-
posed of multiple grain species) could be disrupted into single species
in the diffuse ISM (Li & Greenberg 1997; Hoang 2019), it is at
least expected that coagulation develops non-sphericity with vac-
uum, which could lead to porous (or fluffy) grains.

Indeed, fluffy large grains are observationally indicated by the
X-ray scattering halos surrounding point sources, such as X-ray bi-
naries (Woo et al. 1994) and Nova Cygni 1992 (Mathis et al. 1995).
Mathis et al. (1995) attempted to reproduce the X-ray halo strength of
Nova Cygni 1992 under the observed optical extinction towards that
object. Smith & Dwek (1998) reconsidered the treatment of grain
optical properties using the Mie solution, and concluded, contrary to
the above conclusion, that compact silicate and carbon grains are con-
sistent with the observation of the X-ray scattering halo around Nova
Cygni 1992. Draine & Tan (2003) also indicated that a compact-grain
model based on Weingartner & Draine (2001b) is consistent with the
dust towards Nova Cygni 1992 if a lower optical extinction is adopted.
Draine (2003) also discussed the X-ray halo of Cyg X-1 in addition
to that of Nova Cygni 1992 and supported the same compact-grain
model; however, they also mentioned the uncertainty arising from
the distribution of dust in the line of sight. Within the uncertainty,
grains with moderate porosities could still exist in the diffuse ISM

Considering porous grains was also motivated by the severe con-
straint on the available metals (especially carbon) historically. Mathis
(1996) investigated a possibility of reproducing the Milky Way ex-
tinction curve with fluffy grains. As a consequence, they ‘saved’ the
heavy elements the most (i.e. used the minimum amount of metals for
dust) by including 25–65 per cent of vacuum in the dust grains. Very
fluffy grains are excluded because their extinction (absorption + scat-
tering) per unit dust mass is too low. However, Dwek et al. (1997) ar-
gued that, if we take the fitting to the infrared dust emission SED into
account, Mathis (1996)’s model overproduces the optical–ultraviolet
(UV) extinction. Li (2005) showed, based on the argument on the
Kramers-Kronig relations, that the observed optical–UV extinction
is still underproduced with the Galactic metal abundance derived
from B stars. We should also keep in mind that recent dust models
with updated extinction-to-column density ratios (�+ /#H) and the
protosolar abundance with a correction for Galactic chemical evolu-
tion after the Sun formation indicate that the above severe metallicity
constraint may not be an issue any more (Draine & Hensley 2020;
Hensley & Draine 2020; Zuo et al. 2020).

Clarifying how porous the interstellar dust could be is in itself a
problem independent of the metal abundance constraint. Since the
above mentioned studies did not necessarily give a definite con-
straint on the grain porosity, it is still meaningful to investigate
the effect of porosity on the extinction curves in a general context.
Voshchinnikov et al. (2005, 2006) studied the dependence of extinc-
tion curve on the porosity. These studies give a basis on which we
constrain the allowed ranges of porosity through comparison with
observations. In reality, porosity could depend on the grain size, be-
cause the evolution of grain size distribution plays an important role
in determining the grain porosity. However, it is difficult to relate
grain size and porosity, since the physical link between these two
quantities is still missing. Because of this ‘missing link’, the poros-

ity still remains to be a free parameter. It is definitely necessary to
understand the interplay between grain size and porosity in the evo-
lution of interstellar dust, if we would like to obtain a meaningful
insight into the physical mechanisms of dust evolution through the
observationally constrained grain porosities.

The evolution of porous grains by coagulation has been modelled
and discussed in the field of protoplanetary discs. Ormel et al. (2007)
developed a Monte Carlo method for the evolution of grain size dis-
tribution by coagulation in protoplanetary discs taking the porosity
evolution into account. In each collision, depending on the collision
energy, they treated the difference between the hit-and-stick (stick-
ing without modifying the grain shapes) and compaction (decrease
of grain volume by compression) regimes. Okuzumi et al. (2009,
hereafter O09) formulated this problem by using the 2-dimensional
(2D) Smoluchowski equation that treats distribution function of two
variables, grain radius and porosity. Since directly solving the 2D
equation is computationally expensive, they only concentrated on
the mean porosity at each grain radius while they fully solved the
grain size distribution (see also Okuzumi et al. 2012, hereafter O12).
They finally obtained a set of moment equations for the grain vol-
ume: the zeroth order describes the grain size distribution and the
first order the ‘grain volume distribution’. A set of grain radius and
grain volume gives information on the grain porosity. The calculated
porosity is also useful to predict the radiative properties of dust grains
in protoplenetary discs (e.g. Kataoka et al. 2014; Tazaki et al. 2016).

The above methods to trace the evolution of porous grains are ap-
plied to the grain evolution in dense molecular clouds. Ormel et al.
(2009) applied the above mentioned Monte Carlo method (but in-
cluding also grain fragmentation) and showed that the filling factor
of grain could become as small as ∼ 0.1 (i.e. the fraction of vacuum
is ∼ 0.9). Since the optical properties of dust could be affected by
grain porosity, modelling of porosity is important in interpreting the
wavelength dependence of absorption and emission in dense molec-
ular clouds (Ormel et al. 2011; Lefèvre et al. 2020). However, these
works mainly consider dense (& 104 cm−3) environments, and the
relation to the grains actually contributing to the interstellar extinc-
tion is not clear. As mentioned above, shattering is also important
as a modifying mechanism of grain size distribution. The functional
shape of the grain size distribution could be determined by the bal-
ance between shattering and coagulation. This balance could also be
important to determine the porosities at various grain sizes.

The goal of this paper is to clarify the evolution of porous grains
in the ISM by considering both coagulation and shattering. We have
already formulated the evolution of grain size distribution using the
Smoluchowski equation in our previous works (e.g. Hirashita & Yan
2009; Asano et al. 2013; Hirashita & Aoyama 2019). For the poros-
ity evolution, we utilize the framework developed by O09 and O12 for
protoplanetary discs with some modifications mainly to include shat-
tering. Our model developed in this paper is aimed at being used to
calculate the dust evolution on galaxy scales in the future. Although
the Smoluchowski equation usually refers to the one describing co-
agulation, we broadly use this name also for an extended version for
shattering.

As a result of the modelling in this paper, we will be able to
predict the expected grain porosity as a function of grain radius in
the ISM. We emphasize that the previous models of grain porosity
introduced above mostly treated porosity as a free parameter to be
fitted to observed dust properties such as extinction curves. Thus, this
study will provide the first prediction on the grain-radius-dependent
porosity expected theoretically from coagulation and shattering. We
also calculate extinction curves to clarify the effect of predicted
porosity on an observable dust property. This paper is not aimed
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at complete modelling but focused on the construction of a basic
framework for clarifying how large the porosity could be in the
presence of coagulation and shattering.

This paper is organized as follows. In Section 2, we formulate the
evolution of grain size distribution and porosity. We show the results
in Section 3, and present the effects on extinction curves in Section 4.
We provide some extended discussions, especially focusing on the
effects of porosity in Section 5. We give the conclusion of this paper
in Section 6.

2 MODEL

First of all, we clarify some terms. The filling factor of a grain is
defined as the volume fraction occupied by the material composing
the grain. The rest (unity minus the filling factor) is referred to as
the porosity, which is the volume fraction of vacuum. A grain is
compact if the filling factor is unity (i.e. no porosity). In our previous
papers (e.g. Hirashita & Aoyama 2019) and others (e.g. Jones et al.
1994, 1996; Mattsson 2016), the evolution of grain size distribution
in the ISM is formulated for compact grains. Here, we extend the
formulation to include the evolution of grain porosity.

As mentioned in the Introduction, we concentrate on the colli-
sional processes for grain evolution, namely coagulation and shatter-
ing, since they are the main drivers for the evolution of both grain size
distribution and grain porosity. We neglect dust evolution processes
other than coagulation and shattering. This treatment assumes that
coagulation and/or shattering occur in a ‘closed box’ without any
supply from stellar dust production and from accretion of gas-phase
metals, and without any loss of dust by supernova shock destruction.
For simplicity, we consider a single dust species in solving the evo-
lution of grain size distribution and porosity to avoid the complexity
arising from compound species. That is, we concentrate on the effect
of porosity in a single dust species.

Coagulation and shattering occur in the different ISM phases
(dense and diffuse ISM phases, respectively). However, since the
exchange of these phases occurs on a short time-scale (∼ 107 yr;
McKee 1989), we consider the mixture of coagulation and shattering
in addition to treating each process separately. For the dense and
diffuse ISM phases, we consider representative phases that could
affect the major dust populations in the ISM and the physical con-
ditions are given in Section 2.5. The grain motions are assumed to
be driven by interstellar turbulence. We do not trace coagulation in a
star-forming cloud with densities & 104 cm−3, since, as mentioned in
the Introduction, the relation of the grains formed in such extreme en-
vironments to the general ISM grains is not clear. Moreover, we need
to consider physical processes such as ambipolar diffusion in con-
sidering the grain motion in star-forming clouds (e.g. Silsbee et al.
2020; Guillet et al. 2020). Therefore, we leave the detailed studies of
dense star-forming clouds for a future work.

Coagulation in the dense ISM could be complex since
accretion of gas-phase materials could occur at the same
time (Hirashita & Voshchinnikov 2014; Voshchinnikov & Hirashita
2014). Accretion could decrease the porosity because part of the
vacuum could be filled (Li & Lunine 2003, appendix B). As a re-
sult of accretion in an environment where UV radiation is shielded,
ice mantles could also develop on the grain surfaces. However, such
mantles are evaporated in the diffuse ISM so that aggregates attached
through the ice mantles could dissolve once they are injected into the
diffuse ISM. As mentioned later, whether or not ice mantles enhance
coagulation is still debated, and refractory surfaces could be more
sticky (Section 2.3.1). Therefore, it is hard to clarify with the cur-

rently available knowledge how ice mantles affect the observed grain
properties (e.g. extinction curves) in the ISM through coagulation.
Since we are interested in the general population of grains in the ISM
(especially, silicate and carbonaceous dust), we neglect the formation
of volatile mantles, and assume that the collisions between refractory
grains in the dense ISM lead to formation of refractory coagulated
grains. We also neglect the possible development of core-mantle
structures as a result of accretion, which could explain the Milky
Way dust properties (Li & Greenberg 1997; Jones et al. 2017). We
simply examine the effect of porosity on the extinction curves of basic
materials (silicate and carbonaceous dust in this paper; Section 2.4),
but do not aim at reproducing the observed Milky Way extinction
curve.

In this paper, we also neglect the electric charge of grains. The grain
collision cross-section could be enhanced or reduced depending on
the grain charge. The charge effect is not important for large grains
because they have high kinetic energy (i.e. the Coulomb force does
not alter the grain motion) as commented in Hirashita & Aoyama
(2019). The charge may be important for coagulation of small
grains, which are positively or negatively charged depending on
the physical condition of the ambient medium and radiation field
(Weingartner & Draine 2001a). For example, in a physical condition
appropriate for molecular clouds, small grains tend to be charged
negatively, while large grains positively (Yan et al. 2004). This situ-
ation could suppress the collisions between small grains but enhance
those between a small and a large grain. At the same time, the grain
charge is very sensitive to the assumed physical conditions in the
dense clouds (especially, the ionization degree and the UV radiation
field intensity, which is affected by the dust attenuation). Although it
is interesting to investigate the detailed dependence on these physi-
cal parameters, in this paper we choose to neglect the effect of grain
charge for the simplicity of our treatment.

2.1 Basic framework

The evolution of grain size distribution and grain porosity by coag-
ulation is formulated by O09 and O12. Although their main target
was dust evolution in protoplanetary discs, the generality of their
formulation allows us to apply it to interstellar dust. We also include
shattering in this paper. The evolution of grain size distribution and
grain porosity by coagulation and shattering is described by the dis-
tribution functions of grain mass (<) and grain volume (+)1 at time
C, and is governed by the 2D Smoluchowski equation. However, as
noted by O09, solving the 2D Smolchowski equation requires a huge
computational expense. Therefore, we concentrate on the moment
equations for+ , but we still solve the full distribution function for <.

To treat porous grains, it is convenient to introduce the follow-
ing two types of grain radius: characteristic radius (0ch) and mass-
equivalent radius (0<). The characteristic radius is related to the
volume as + = (4c/3)03

ch , while the mass-equivalent radius is re-

lated to the grain mass as < = (4c/3)03
<B, where B is the bulk

material density. For compact grains, < = B+ , so that 0ch = 0<. For
porous grains, 0ch > 0<. Using these two grain radii, the filling fac-
tor, q<, is expressed as q< ≡ (0</0ch)3 (≤ 1) (see also Ormel et al.
2009), while the porosity is 1−q<. Since it is necessary to specify B,
we simply adopt the same value as used in HM20 (B = 2.24 g cm−3

taken from graphite), but adopting B = 2–3.5 g cm−3 appropriate
for interstellar grains (e.g. Weingartner & Draine 2001b) does not

1 We use the upper case + for volumes and the lower case E for velocities
throughout this paper.
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change our conclusion significantly. We vary some parameters rel-
evant for porosity, which are more important in this paper (Section
2.5). Thus, we simply use the same parameters as in HM20 for the
material properties (specifically B and &★

D introduced later) that do
not directly affect the porosity evolution.

Before presenting the basic equations, we need to introduce some
quantities. We use the grain mass distribution instead of the grain
size distribution since there is ambiguity in the grain size for porous
grains. We denote the distribution function of < and + at time C as
5 (<, +, C). The grain mass distribution at time C, =̃(<, C) is defined
such that =̃(<, C) d< is the number density of grains whose mass
is between < and < + d<, and is related to the above distribution
function as

=̃(<, C) ≡
∫ ∞

0
5 (<, +, C) d+. (1)

We also introduce the first moment of 5 for + as

+̄ (<, C) ≡ 1
=̃(<, C)

∫ ∞

0
+ 5 (<, +, C) d+. (2)

This quantity (+̄) is the mean volume of grains with mass <.
We define the following two quantities, d(<, C) ≡ <=̃(<, C) and
k(<, C) ≡ +̄ (<, C)=̃(<, C), which represent the grain mass distri-
bution weighted for the grain mass and volume, respectively (the
latter can also be regarded as the volume distribution function). The
integration of d(<, C) for < is related to the dust-to-gas ratio, D, as

`H<H=HD =

∫ ∞

0
d(<, C) d<, (3)

where `H = 1.4 is the gas mass per hydrogen, <H is the hydrogen
atom mass, and =H is the hydrogen number density.

The Smolchowski equation contains the collision kernel, which is
the product of the collision cross-section and the relative speed of
colliding pair. The collision kernel for colliding grains with masses
<1 and <2 is denoted as  <1 ,<2 , which is evaluated in Section 2.2.

It is straightforward to derive the following general equations ap-
plicable for both coagulation and shattering based on equations (6)
and (7) of O09:

md(<, C)
mC

= −<d(<, C)
∫ ∞

0

 <,<1

<<1
d(<1, C)d<1

+
∫ ∞

0

∫ ∞

0

 <1 ,<2

<1<2
d(<1, C)d(<2, C)<\̄ (<; <1, <2)d<1d<2,

(4)

mk(<, C)
mC

= −+̄ (<, C)k(<, C)
∫ ∞

0

 <,<1

+̄ (<, C)+̄ (<1, C)
k(<1, C)d<1

+
∫ ∞

0

∫ ∞

0

 <1 ,<2

+̄ (<1)+̄ (<2)
k(<1, C)k(<2, C)(+1+2)<<1 ,<2

\̄ (<; <1, <2)d<1d<2,

(5)

where \̃ (<; <1, <2) describes the distribution function of grains
produced from <1 in the collision between grains with masses <1
and <2, and (+1+2)<<1 ,<2

is the volume of the newly produced grain
with mass< in the above collision. Since the expression is not exactly
the same as that used by O09 and O12, we explain the derivation of the
above equations in Appendix A. In particular, in our formulation, we
count the collisional products originating from<1 and<2 separately.
O09, in contrast, considered the collisional pair<1 and<2 only once.
This is why O09 has a factor 1/2 in front of the second term on the
right-hand side in equations (4) and (5).

We aim at solving equations (4) and (5) for d and k. Since d/< =

k/+̄ is always satisfied, +̄ is not an independent quantity. Thus, these

two equations are closed if we give  , +1+2 and \̄. In the following
subsections, we explain how to determine these three quantities.

In computing the grain size distribution, we discretize the entire
grain radius range (0 = 3 × 10−4–10 `m) into 128 grid points with
logarithmically equal spacing. We set dd (<, C) = 0 at the maximum
and minimum grain radii for the boundary conditions. We use the
algorithm described in appendix B of Hirashita & Aoyama (2019) to
solve the discretized equations.

2.2 Collision kernel

The collision kernel is determined by the product of the grain cross-
section and the relative velocity. The cross-section (f1,2) in the col-
lision of grains with masses <1 and <2, referred to as grain 1 and 2,
respectively, is estimated as f1,2 = c(0ch1 + 0ch2)2, where the char-
acteristic radii of grains 1 and 2 are 0ch1 and 0ch2, respectively (see
the beginning of Section 2.1 for the definition of the characteristic

radius; i.e. 0ch = 0<q
−1/3
< ).

The motion of dust grains is assumed to be induced by turbulence
(e.g. Kusaka et al. 1970; Voelk et al. 1980). We basically adopt the
same simple model, originally taken from Ormel et al. (2009), for
the grain velocity Egr as adopted in our previous papers:

Egr (<) = 1.1M3/2q1/3
<

(

0<

0.1 `m

)1/2 (

)gas

104 K

)1/4 (

=H

1 cm−3

)−1/4

×
(

B

3.5 g cm−3

)1/2
km s−1, (6)

where M is the Mach number of the largest-eddy velocity, and
)gas is the gas temperature. This is similar to equation (18) of
Hirashita & Aoyama (2019), but modified to include the filling fac-
tor q< (see appendix A of Ormel et al. 2009). The derivation of the
above equation does not strictly hold for highly supersonic regime,
but we practically use M here as an adjusting parameter for the grain
velocity. Under fixed ISM conditions and grain material properties,
the velocity is reduced to a function of <. Since the filling factor q<
changes as a function of time, Egr (<) also varies with time. In con-
sidering the collision rate between grains 1 and 2 with Egr (<1) = E1
and Egr (<2) = E2, we estimate the relative velocity E1,2 by

E1,2 =

√

E2
1 + E2

2 − 2E1E2`1,2 , (7)

where ` = cos \ (\ is an angle between the two grain velocities)
is randomly chosen between −1 and 1 in every calculation of the
collision kernel (Hirashita & Li 2013).

Using the above quantities, the collision kernel is estimated for the
collision between grains 1 and 2 as

 <1 ,<2 = f1,2E1,2 . (8)

Note that the collision kernel depends on the filling factor of the larger

grain as ∝ q−1/3
< . Thus, the grain–grain collision rate is enhanced if

the grains become more porous (fluffy).

2.3 Treatment of grains produced by collisions

The treatment of collisional products is the key for the evolution
of porosity. The porosity is strongly affected by the production of
vacuum volume in a grain after grain–grain sticking (coagulation)
and the compaction associated with compression in grain–grain colli-
sions. However, these processes are strongly nonlinear and dependent
on the actual grain shapes. Moreover, some assumptions in O09 and

MNRAS 000, 1–17 (2020)



Porosity of interstellar dust 5

O12 are not applicable to interstellar dust. In particular, their for-
mulation is based on single-sized (∼ 0.1 `m) monomers, since they
are interested in protoplanetary discs, where grains grow into much
larger sizes than interstellar grains. In the ISM, in contrast, we also
consider the evolution of grains much smaller than the ‘typical’ grain
size (∼ 0.1 `m). To make the problem more complicated, shattering
also occurs, producing a large number of small grains. Because of
the above difficulty and the difference from O09 and O12, we take
the following approach that simplifies the treatment of porosity evo-
lution but still preserves the essence of physical processes regarding
grain–grain sticking and compression.

2.3.1 Coagulation

For coagulation, two characteristic energies are important: impact
(kinetic) energy and the rolling energy. The impact energy (�imp) in
the collision between grains 1 and 2 is estimated as

�imp =
1
2
<1<2

<1 + <2
E2

1,2 . (9)

The rolling energy (�roll) is defined as the energy necessary for a
monomer to roll over 90 degrees on the surface of another monomer
(Dominik & Tielens 1997), and is given by (Wada et al. 2007)

�roll = 12c2W'1,2bcrit, (10)

where W is the surface energy per unit contact area, '1,2 is the re-
duced particle radius, and bcrit is the critical displacement of rolling.
The surface energy depends on the surface material: W = 25, 75,
and 100 erg cm−2 for silicate (originally from quartz), graphite,
and water ice, respectively (Dominik & Tielens 1997; Israelachvili
1992; Wada et al. 2007). The critical displacement bcrit lies broadly
in the range of ∼2–30 Å (Dominik & Tielens 1997; Heim et al.
1999; Wada et al. 2007). As shown by Kimura et al. (2015) and
Steinpilz et al. (2019), the surface energy of dry silica could be larger
than the above values. This implies that the above surface energy for
silicate is underestimated. Since W and bcrit are degenerate, we fix
W to an intermediate value (75 erg cm−2) and vary bcrit. We choose
a fiducial value bcrit = 10 Å unless otherwise stated but we later
examine a case where bcrit is varied.

The reduced radius, '1,2, is difficult to determine rigidly for inter-
stellar dust, since the typical monomer size is not obvious. Thus, we
simply assume that

1
'1,2

=
1
0<1

+ 1
0<2

. (11)

This equation gives a reasonable estimate for '1,2 for compact grains.
As shown later, small grains tend to be compact. Since the reduced
radius is dominated by the smaller grain, the above estimate could
be justified. Large (submicron/micron) grains are also affected by
compaction, so that the above reduced radius could be applied for
collisions between large grains. However, the above reduced mass
may be overestimated in collisions between porous grains. Grains
with intermediate radii (0 ∼ 0.01–0.1 `m) tend to be porous. Over-
estimation of '1,2 leads to less efficient compaction. On the other
hand, the uncertainty in '1,2 could be absorbed by the variation of
bcrit and =c (=c is introduced below). Thus, we vary bcrit and =c to
effectively investigate the uncertainties caused by collisions between
intermediate-sized grains.

We now estimate the volume of the coagulated grain. We do
not directly adopt O12’s formulation (their equation 15; see also
Suyama et al. 2012) because, as mentioned above, the monomer size
is not well determined for interstellar dust. Nevertheless, we apply the

following essential points (Dominik & Tielens 1997): (i) The phys-
ical outcome of the collision is characterized by the ratio between
�imp and �roll. (ii) If �imp ≪ �roll, the grains stick without modify-
ing their structures (hit-and-stick collisions). (iii) If �imp ∼ �roll, the
newly added void tends to be compressed because the contact points
of monomers are moved. (iii) If �imp & =c�roll, where =c is the
number of contact points, significant compaction occurs. Since we
do not trace each monomer, =c is uncertain. Moreover, not all contact
points are equally important in compaction. Thus, we treat =c as a
free parameter, and regard it as the number of major contacts whose
movement contributes to compaction significantly. Since =c always
appears in the form of product =c�roll, =c is degenerate with �roll
as mentioned above. Considering the above three points, (i)–(iii), we
estimate the volume (+0

1+2) of coagulated product in the collision
between grains with volumes +1 and +2 (assuming that +1 ≥ +2; if
+1 < +2, we exchange grains 1 and 2, so that the following formula-
tion holds) as

+0
1+2 = +1 + +2 ++void exp

[

−�imp/(31�roll)
]

+ (+2,comp − 2+2)
{

1 − exp
[

−�imp/(=c�roll)
] }

, (12)

where +void is the volume of the void newly created in the collision,
1 = 0.15 is an adjusting parameter (Wada et al. 2008), and+2,comp ≡
<2/B (the volume with perfect compaction). The void volume is
estimated as (O12)

+void = min

[

0.99 − 1.03 ln

(

2
+1/+2 + 1

)

, 6.94

]

+2. (13)

Equation (12) satisfies the above conditions (i)–(iii): +0
1+2 ≃ +1 +

+2 + +void for �imp ≪ �roll. The newly created volume (+void) is
compressed if �imp & �roll. If �imp becomes comparable to or higher
than =c�roll, the grain is compressed further (note that +2,comp −
2+2 ≤ 0). If �imp ≫ =c�roll, +

0
1+2 = (+1 − +2) + +2,comp (note

that +1 ≥ +2), which means that +2 becomes compact while +1 is
compressed by the equivalent volume to+2. According to Wada et al.
(2013), in a collision of grains with different sizes, the larger grain
is not entirely compressed. We assume that the compressed volume
in the larger grain is determined by the volume of the smaller grain.
In the above expression, +0

1+2 can be smaller than+1,comp ++2,comp,
where +1,comp = <1/B (the volume with perfect compaction). Thus,
we finally adopt the following expression for the coagulated volume,
+1+2:

+1+2 =

{

+0
1+2 if +0

1+2 > +1,comp ++2,comp,

(1 + n+ )(+1,comp + +2,comp) otherwise,

(14)

where n+ ≥ 0 is a parameter reflecting the fact that perfect com-
paction is difficult (Suyama et al. 2012; Wada et al. 2013). We use
this volume for (+1+2)<<1 ,<2

in equation (5).
The mass distribution of collisional products is described by (see

equation 26 of Hirashita & Aoyama 2019)

<\̄(<; <1, <2) = <1X[< − (<1 + <2)], (15)

where X(·) is Dirac’s delta function. As mentioned above and in
Appendix A, we separately treat the collision product originating
from <1 and that from <2 (i.e. we count the same collision twice).

2.3.2 Shattering

There has not been any formulation for the evolution of porosity
by shattering in the ISM. Shattering produces a lot of fragments,
and sometimes leaves a remnant if the original grain is much larger
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than the colliding partner. We expect that shattered fragments have
small porosities because weakly bound parts become unbound in
disruptive collisions. Thus, we assume that the collisional fragments
are compact. For the remnant, it is probable compaction occurs;
however, in our formulation, the remnant remains only if a grain
collides with a much smaller grain: in this case, it is not clear if the
entire remnant is efficiently pressed. Thus, we simply assume that
the shattered remnant has the same porosity as the original grain. We
examine separately a case where we take compaction of the remnants
into account.

The microscopic processes for shattering of porous grains in high-
velocity (& 1 km s−1) collisions are not well known. Moreover, in our
formulation, we have to treat collisions of both porous and compact
grains. Thus, we use our previous formulation in Hirashita & Aoyama
(2019), which is appropriate for compact grains. We also expect that
the resulting grain size distribution is not sensitive to detailed as-
sumptions on the fragment size distribution (Hirashita & Kobayashi
2013). We explain the treatment of shattered fragments in what fol-
lows.

We consider a collision of two dust grains with masses <1 and <2
(grains 1 and 2) based on Kobayashi & Tanaka (2010)’s model. The
ejected mass (<ej) from grain 1 is estimated as

<ej =
i

1 + i<1, (16)

with

i ≡
�imp

<1&
★
D

, (17)

where&★
D is the specific impact energy required to disrupt half of the

mass (<1/2). We adopt &★
D = 8.9 × 109 erg g−1 following HM20.

The ejected mass is distributed into fragments, for which we assume
a power-law size distribution with an index of Uf = 3.3 (Jones et al.
1996). This index is translated into that of \̄ as \̄ ∝ <−(Uf+2)/3.
The maximum and minimum masses of the fragments are assumed
to be <f,max = 0.02<ej and <f,min = 10−6<f,max, respectively
(Guillet et al. 2011). We adopt the following mass distribution func-
tion of collisional product from grain 1 in the collision with grain 2
as

<\̄ (<, <1, <2) =
(4 − Uf )<ej<

(−Uf+1)/3

3

[

<

4−Uf
3

f,max − <
4−Uf

3
f,min

]
Φ(<; <f,min, <f,max)

+ <X(< − <1 + <ej), (18)

where Φ(<; <f,min, <f,max) = 1 if <f,min ≤ < ≤ <f,max, and 0
otherwise. Grains which become smaller than the minimum grain
size (0< = 3 × 10−4 `m) are removed. For the volumes of shattered
products, we adopt

+1+2 =

{

+̄ (<1)/(1 + i) if < = <1 − <ej = <1/(1 + i),
</B otherwise.

(19)

The first case of this expression indicates that the porosity (or filling
factor) of the remnant is the same as that of the original grain.
The second case means that the fragments are compact (that is, the
volumes are simply estimated by the mass divided by the material
density). We use equation (19) for (+1+2)<<1 ,<2

in equation (5).

2.4 Calculation of extinction curves

To investigate the effects on observed dust properties, we also cal-
culate extinction curves. We examine two representative grain ma-
terials: silicate and carbonaceous species, and investigate how the

porosity evolution driven by coagulation and shattering affects the ex-
tinction properties of these materials. For silicate, we use the optical
constants of astronomical silicate adopted by Weingartner & Draine
(2001b). For carbonaceous dust, we adopt amorphous carbon (amC)
from ‘ACAR’ in Zubko et al. (1996). Graphite is another possible car-
bonaceous material, and we confirmed that it produces similar results
to amC except at wavelengths where the 2175 Å feature is prominent.
We also found that the wavelength where the feature peaks shifts with
the porosity, but such a shift is not observed in the Milky Way ex-
tinction curves. Thus, special care should be taken of the modelling
of the 2175 Å feature, e.g. by treating the 2175 Å carrier such as
graphite and PAHs (e.g. Li & Draine 2001) as a component sepa-
rated from porous grain species (Voshchinnikov et al. 2006), which
is out of the scope of this paper. Thus, we adopt amC in this paper,
noting that, as mentioned above, amC and graphite produce similar
results at wavelengths not affected by the 2175 Å feature.

The optical properties of dust is calculated using the effective
medium theory (EMT), which averages the dielectric permittivity
using a mixing rule. We adopt the Bruggeman mixing rule. This
mixing rule as well as the Garnett mixing rule gives reasonable
extinctions as long as the grains do not have substructures (e.g.
monomers) larger than the wavelength (Voshchinnikov et al. 2005).
As shown later, the porous grains are formed by coagulation of grains
smaller than ∼ 0.1 `m and we are interested in wavelengths longer
than 0.1 `m. Thus, the above condition is satisfied in this paper.
Even if we model the inhomogeneity using multi-layered spheres, the
difference in the extinction is expected to be less than ∼ 10 per cent
(Voshchinnikov et al. 2005; Shen et al. 2008). Using the Bruggeman
mixing rule, the averaged dielectric permittivity Ȳ is obtained from

(1 − q<) 1 − Ȳ
1 + 2Ȳ

+ q<
Y2 − Ȳ
Y2 + 2Ȳ

= 0, (20)

where Y2 is the dielectric permittivity of the material (note that the
first material is assumed to be vacuum so Y1 = 1).2 We assume
that each dust grain is a sphere with radius 0ch and refractive in-
dex <̄ =

√
Ȳ. The cross-section �ext,<, which is a function of <

under a given q< at each epoch, is calculated by the Mie theory
(Bohren & Huffman 1983).

The extinction at wavelength _ in units of magnitude (�_) can be
calculated using the grain size distribution as

�_ = (2.5 log10 e)!
∫ ∞

0
=̃(<)�ext,< d<, (21)

where ! is the path length. We present the extinction in the following
two ways: �_/#H and �_/�+ (the + band wavelength corresponds
to _−1

= 1.8 `m−1 and #H = =H! is the column density of hydrogen
nuclei). The first quantity indicates the extinction per hydrogen (thus,
it is proportional to the dust abundance), while the second is useful
to show the shape of extinction curve. In both quantities, the path
length ! is canceled out.

2.5 Parameter settings

Coagulation and shattering are governed by the same form of equa-
tion (equations 4 and 5). These two processes occur in different ISM
phases. We assume that coagulation occurs in the dense clouds of
which the physical conditions are described by =H = 103 cm−3

and )gas = 10 K (typical of molecular clouds); and that shat-
tering takes place in the diffuse ISM characterized by =H = 0.3

2 We adopt Gaussian-cgs units.
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cm−3 and )gas = 104 K. These values are similar to the ones
adopted for coagulation and shattering by Hirashita & Yan (2009).
The density affects the grain collision time-scale, which scales with

(=HEgr)−1 ∝ =−3/4
H (see equation 6); that is, the adopted duration for

shattering/coagulation is degenerate with the gas density. Therefore,
we fix the above physical conditions for the gas and examine the grain
size distributions at various times (i.e. for various durations of the
process), keeping in mind that the same value of =3/4

H C gives similar
results.

For the normalization of the grain velocities adjusted by M in
equation (6), we apply M = 3 for shattering and M = 1 for coagula-
tion (HM20). These values of M are adopted to obtain a similar level
of grain velocities to those calculated for magnetized turbulence by
Yan et al. (2004).

We not only treat shattering and coagulation separately, but also
examine some cases where these two processes occur at the same
time. The coexistence of shattering and coagulation is a reasonable
approximation for a volume of the ISM wide enough to sample
a statistically significant amount of both ISM phases and/or for a
time much longer than the mixing time-scale of the two ISM phases
(∼ 107 yr; e.g. McKee 1989). Since coagulation and shattering occur
in the media with different densities, it is convenient to define the
grain mass and volume distributions per hydrogen number density as
d̃ ≡ d/=H and k̃ ≡ k/=H, respectively. In this case, we calculate the
evolution of d̃ and k̃ by

md̃(<, C)
mC

�

�

�

�

tot
= [dense

md̃(<, C)
mC

�

�

�

�

coag
+ (1 − [dense)

md̃(<, C)
mC

�

�

�

�

shat
,

(22)

mk̃(<, C)
mC

�

�

�

�

tot
= [dense

mk̃(<, C)
mC

�

�

�

�

coag
+ (1 − [dense)

mk̃(<, C)
mC

�

�

�

�

shat
,

(23)

where [dense, which is treated as a free parameter, is the dense gas
fraction determining the weight of each process, the subscript ‘tot’
indicates the total changing rates of d̃ and k̃, and the subscripts ‘coag’
and ‘shat’ mean the changes caused by coagulation and shattering,
respectively. For the two terms on the right-hand side of the above
equations, we apply equations (4) and (5). The change by coagulation
and that by shattering are mixed with a ratio of [dense : (1 − [dense);
in other words, [dense determines the fraction of time dust spends
in the dense ISM. In calculating shattering and coagulation, we use
d and k, but when we sum up the contributions from coagulation
and shattering, we divide them by =H and obtain d̃ and k̃. Here we
implicitly neglect gas which hosts neither coagulation nor shattering.
Existence of such a gas component effectively lowers the efficiencies
of both shattering and coagulation (or makes the time-scales of these
two processes longer) equally and does not affect the relative roles
of these two processes.

2.5.1 Important parameters specific for coagulation

As mentioned in Section 2.3.1, because of the degeneracy between
W and Zcrit (equation 10), we fix W = 75 erg cm−2 and vary Zcrit = 2–
30 Å. We here adopt Zcrit = 10 Å as a fiducial value. Since the
grain–grain collision velocities are typically less than 50 m s−1 in
the dense ISM, we assume for coagulation that the grains always
stick when they collide (Wada et al. 2013).

The parameter that regulates the maximum compaction, n+ (equa-
tion 14) is also an unknown parameter. As shown later, this parameter
basically determines the filling factor of grains larger than submicron.
Although this parameter is uncertain, we argue later that n+ . 1.

If n+ is larger than 1, it imposes an artificial fluffiness for submi-
cron grains as we discuss in Section 3.1. We adopt n+ = 0.5 for the
fiducial value but examine the variation of n+ = 0–1 separately.

The number of contact points, =c, is also unknown since we do
not trace each monomer. We interpret this parameter as the number
of contacting points whose motion significantly reduces the porosity.
We assume =c = 30 unless otherwise stated. We also examine the
effect of =c by changing its value.

2.5.2 Important parameters specific for shattering

In the above, we assumed for shattering that the fragments are com-
pact while the remnant has the same filling factor as the original grain
(equation 19). However, compaction could occur for the remnants.
Here, for an experimental purpose, we consider a model in which the
comparable volume to the ejecta suffers compaction. Noting that the
ejecta have a fraction i/(1+ i) of the original grain, the compaction
of the volume corresponding to that fraction can be written as

+1+2 = max

[

1 − i
1 + i+ (<1) +

i

1 + i
<1

B
,

<1

(1 + i)B

]

if < = <1/(1 + i). (24)

The first case in the max function describes the replacement of the
volume [i/(1 + i)]+ (<1) (the original total volume of the ejecta)
with [i/(1 + i)]<1/B (the corresponding compact volume). How-
ever, this breaks down for large i, and +1+2 could even become
negative. Thus, we set the second case in the max function, which de-
scribes the fully compact remnant. By default, we use equation (19),
but when we include compaction of remnants, we use equation (24)
instead of the first condition in equation (19).

2.5.3 Initial condition

Coagulation and shattering basically conserve the total grain mass.
Strictly speaking, because we set the upper and lower boundaries
for the grain radii (0min = 3 Å and 0max = 10 `m, respectively;
Section 2.1) and remove all grains coagulated or shattered beyond
the boundaries, the total grain mass is not strictly conserved. Except
for this effect, our algorithm guarantees the conservation of the total
grain mass (see appendix B of Hirashita & Aoyama 2019). We adopt
a power-law grain size distribution similar to the MRN distribution:
=init (0<) ∝ 0

−?
< (? = 3.5) with the lower and upper bounds of

grain radii being 0min,ini = 0.001 `m and 0max,ini = 0.25 `m,
respectively.3 This initial grain size distribution is related to the
above grain mass distribution as =init (0<) d0< = =̃(<, C = 0) d<.
With the above power-law grain size distribution, we obtain, recalling
that d(<, C) = <=̃(<, C),

d(<, C = 0) = (4 − ?)`H<H=HD
3
[

<
(4−?)/3
max,ini − < (4−?)/3

min,ini

] < (−?+1)/3 (25)

for <min,ini < < < <max,ini, where <max,ini = 4c03
max,iniB/3 and

<min,ini = 4c03
min,iniB/3. We used equation (3) for normalization.

Thus, if we give D, we set the initial condition. We adopt D = 0.01

3 Note that 0min/max,ini and 0min/max are different with the latter chosen to
be similar to the constraint from MRN. We also confirmed that the results
below are insensitive to 0min,ini as long as 0min,ini . 0.01 `m. By the nature
of coagulation, grains with 0 < 0min,ini do not appear in the pure coagulation
cases below.
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as a typical dust-to-gas ratio in the Milly Way, but remind the reader
that the time-scales of coagulation and shattering scale with D−1.
The initial filling factor is assumed to be the same (unity unless
otherwise stated) for all grains because we do not know the filling
factor in advance.

Note that the initial condition here is not meant to represent the
initial grain size distribution in a galaxy. It is aimed at setting a ‘stan-
dard’ grain size distribution, based on which we investigate the effect
of coagulation and shattering. Therefore, the MRN grain size distri-
bution, which roughly reproduces the dust properties (e.g. extinction
curves) in the Milky Way is simply used as a starting point. This
initial condition also serves to understand how the extinction curves
should be modified by coagulation and shattering. This approach
is similar to the one taken by Hirashita & Yan (2009) for compact
grains.

3 RESULTS

We show the resulting grain size distributions, filling factors and
extinction curves in this section. We first examine coagulation and
shattering separately to clarify the effects of each process (these cases
are referred to pure coagulation and pure shattering). After that, we
clarify the combined effects arising from the ISM phase exchange by
including both processes simultaneously (Section 2.5).

In the following, the grain size distribution is always shown in
the form of 04

<=(0<)/=H (the variable C in = is omitted), where the
grain size distribution =(0<) is defined as =(0<) d0< = =̃(<) d<
[recall that < = (4c/3)03

< B]. Since d(<) d< = <=̃(<) d< ∝
03
<=(0<) d0< ∝ 04

<=(0<) d log 0<, 04
<=(0) is proportional to the

mass distribution function per log 0<. We further divide this quan-
tity by =H to cancel out the overall density difference between the
dense and diffuse ISM. We refer to 04

<=(0<)/=H also as the grain
size distribution whenever there is no risk of confusion.

3.1 Pure coagulation

We examine the evolution of grain size distribution and filling factor
by coagulation in the dense ISM (the pure coagulation case). We show
the results in Fig. 1. Coagulation continuously forms large grains, de-
pleting small grains. The bump in the grain size distribution at large
grain radii is prominent after coagulation takes place significantly.
The height of the bump is almost constant, reflecting the mass conser-
vation in coagulation. Micron-sized grains are formed on a time-scale
of 100 Myr, which is consistent with Hirashita & Voshchinnikov
(2014, see their figure 4a). Note that this time-scale scales with the

assumed density roughly as ∝ =
−3/4
H as mentioned in Section 2.5

(recall that we adopt =H = 103 cm−3 for the dense ISM).
We also show the filling factor q< in Fig. 1. We observe that the

filling factor steadily decreases up to C ∼ 100 Myr because coagu-
lation creates porosity. The decrease of filling factor is governed by
coagulation of small grains, which are, however, effectively depleted
by coagulation. As the abundance of small grains becomes lower,
the decrease of the filling factor is saturated. For large (0 & 0.1 `m)
grains, the porosity is determined by the assumption of maximum
compaction regulated by n+ in equation (14). The filling factor at
large grain radii roughly approaches q< ∼ 1/(1 + n+ ) ≃ 0.67 (re-
call that n+ = 0.5). In fact, the value is slightly larger than 0.67,
because of our treatment of equation (14): There are still cases where
+1,comp + +2,comp < +1+2 < (1 + n+ )(+1,comp + +2,comp). In this
case, grains whose filling factors are between 1/(1+ n+ ) and 1 form,

Figure 1. Evolution of grain size distribution (upper window) and filling factor
(lower window) for the pure coagulation case. The grain size distribution
is multiplied by 04

< and divided by =H, so that the resulting quantity is
proportional to the grain mass abundance per log 0< relative to the gas
mass. The solid, dotted, short-dashed, dot–dashed, triple-dot–dashed, and
long-dashed lines show the results at C = 0 (initial condition), 3, 10, 30, 100,
and 300 Myr, respectively. The time evolution of q< (filling factor) is also
shown in the same line species as in the upper window. Note that we use
the mass-equivalent grain radius 0< , while the characteristic grain radius is

obtained by 0ch = 0<q
−1/3
< .

contributing to raising the averaged q< above 1/(1 + n+ ) at large
grain radii.

We also examine the dependence on the parameters relevant for
coagulation. First, we present the effect of �roll, which regulates
compaction. As indicated in Section 2.3.1, �roll is determined by
the critical displacement bcrit in our model. In Fig. 2a, we show the
results for bcrit = 2, 10, and 30 Å (note that �roll is proportional to
bcrit). We only show the results at C = 100 Myr since the effect of bcrit
is qualitatively similar at all ages. We observe that the filling factor
at 0 ∼ 0.1 `m is affected by the change of bcrit (or �roll), with larger
bcrit showing smaller q<. This is because compaction is less efficient
in the case of larger bcrit. In contrast, the filling factor at 0 . 0.01 `m
is not affected by bcrit because compaction is not important in that
grain radius range. The filling factor also converges to the same
value determined roughly by 1/(1 + n+ ) at the largest grain radii as
mentioned above. The grain size distribution, on the other hand, is
insensitive to bcrit. Since the grain abundance is dominated by large
grains, small grains collide predominantly with large grains. In this
situation, the collisional cross-section is governed by large grains
which are almost compact. Thus, the difference in the porosity at
submicron radii does not affect the grain size distribution.

Grain compaction is also affected by the number of contacts =c
(equation 12). In Fig. 2b, we show the results for =c = 10, 30, and 100
at C = 100 Myr. Naturally, the effect of =c appears at grain radii where
compaction is important. As =c becomes larger, the filling factor is
kept lower against compaction, so that the increase of q< becomes
shallower at large 0<. The grain size distribution is insensitive also
to the change of =c.

We also examine the dependence on n+ , which regulates the max-
imum compaction. As we argued above, the filling factor roughly
converges to 1/(1 + n+ ) at large grain radii, where grain velocities
are high enough for significant compaction. As shown above, the
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Porosity of interstellar dust 9

Figure 2. Parameter dependence for the pure coagulation cases. We present
the grain size distributions (upper window) and the filling factors (lower
window) at C = 100 Myr. (a) Dependence on bcrit, which regulates �roll. The
solid, dotted, and dashed lines show the results for bcrit = 2, 10, and 30 Å,
respectively. (b) Dependence on =c, which regulates compaction. The solid,
dotted, and dashed lines show the results for=c = 10, 30, and 100, respectively.
(c) Dependence on n+ , which regulates the maximum compaction in high-
velocity collisions (relevant for large grains). The solid, dotted, and dashed
lines show the results for n+ = 0, 0.5, and 1, respectively. Other than the
varied parameter in each panel, we adopt the fiducial values (bcrit = 10 Å,
=c = 30, and n+ = 0.5).

Figure 3. Same as Fig. 1 but for the pure shattering model. We show the cases
where we (a) do not consider and (b) consider compaction for the shattered
remnants.

minimum value of q< is around 0.3–0.5. Thus, n+ should be smaller
than ∼ 1; otherwise, the filling factor at large grain radii decreases
below the minimum value, which means that we add artificial (or
contradictory) porosity to the grains in compaction. Thus, we ex-
amine n+ = 0, 0.5, and 1 at C = 100 Myr in Fig. 2c. We confirm
that the effect of n+ appears at large grain radii (0 & 0.2 `m). As
mentioned above, q< at large grain radii is roughly 1/(1 + n+ ). The
grain size distribution is affected by n+ since larger porosity makes

the collision kernel larger by a factor of q−1/3
< (Section 2.2), which

increases the grain–grain collision rate.

3.2 Pure shattering

We show the evolution of grain size distribution and filling factor
by shattering in the diffuse ISM. Since shattering does not create
new porosity in grains, we start with q< = 0.5 for all grains. (If we
choose q< = 1 as the initial condition, the filling factor is always
1.) We show the results in Fig. 3a. Shattering continuously converts
large grains to small grains, creating grains down to the minimum

MNRAS 000, 1–17 (2020)



10 H. Hirashita

grain radius 0 = 3 Å. After C ∼ 100 Myr, the grain abundance is
dominated by small grains. The filling factor increases, especially
at small grain radii, because shattered fragments are compact. Since
we assume that the remnants have the same filling factor as the
original grains, the filling factors of the largest grains, which are
dominated by shattered remnants, do not change. Recall that the
largest fragment size is (0.02)1/3 ≃ 0.27 times the original grain
size (Section 2.3.2). Since the maximum grain radius in the initial
condition is 0.25 `m, the largest grain radius where q< is raised by
fragments is 0 ≃ 0.27 × 0.25 `m ≃ 0.068 `m. Thus, the porosity is
only changed from its initial value at 0 < 0.068 `m. All the grains
with 0 < 0min,ini = 0.001 `m are newly formed by shattering; thus,
they always have q< = 1.

As explained in Section 2.5.2, the shattered remnants could suffer
compaction. In order to examine this effect, we also show the case
with compaction of remnants; that is, we adopt equation (24) instead
of the first condition in equation (19) for the remnant volume. In Fig.
3b, we show the evolution of grain size distribution and filling factor
with including remnant compaction. The grain size distributions are
little affected by the treatment of the remnant volume, while the
filling factor at large grain radii increases if we take compaction of
remnants into account. Because shattering never creates porosity,
the filling factors of all grains converge to unity on a time-scale of
depleting large grains by shattering (100–300 Myr).

3.3 Coagulation and shattering

If we consider the grain size distribution in a region large enough
to include both the dense and diffuse ISM (or if we consider time-
scales much longer than the phase-exchange time; Section 2.5), the
effect of coagulation and that of shattering coexist. In our one-zone
model, we could simulate this coexisting effect by simultaneously
treating coagulation and shattering at each time-step with a weight
of [dense : (1 − [dense) as formulated in equations (22) and (23).
We adopt [dense = 0.5 first as a fiducial value (that is, the grains
spend half of their times in the dense ISM). In Fig. 4a, we show the
evolution of grain size distribution and filling factor.

We observe in Fig. 4a that, if both coagulation and shattering
are present, the grain size distribution maintains a power-law-like
shape. It is also interesting to note that the slope is similar to
that of the MRN distribution. It has been shown that the slope of
grain size distribution converges to a value similar to the MRN dis-
tribution if efficient fragmentation and/or coagulation occur (e.g.
Dohnanyi 1969; Williams & Wetherill 1994; Tanaka et al. 1996;
Kobayashi & Tanaka 2010). Coagulation is slightly ‘stronger’ than
shattering, so that large (submicron) grains gradually increase. The
grain size distribution and filling factor reach an equilibrium around
C ∼ 100 Myr. The filling factor changes in a way similar to the pure
coagulation case (Fig. 1) but the decrease of the filling factor pro-
ceeds more if both coagulation and shattering are present because
small grains which coagulate to form porosity are continuously sup-
plied. The filling factor at large grain radii converges to ∼ 1/(1+ n+ )
as explained in Section 3.1.

To examine the balance between coagulation and shattering, we
also show the results for different values of [dense (0.1 and 0.9) in
Fig. 4. Naturally, a higher abundance of large grains is obtained for
larger [dense. For [dense = 0.9, the result is similar to that in the pure
coagulation case (Fig. 1), except that small grains continue to be pro-
duced by shattering. The case of [dense = 0.1 has the following two
interesting properties: (i) The evolution of grain size distribution is
not monotonic. Indeed, large grains are continuously converted into
small grains up to C ∼ 100 Myr but large grains increase (‘re-form’)

Figure 4. Same as in Fig. 1, but including both shattering and coagulation.
Panels (a), (b) and (c) show the results for [dense = 0.5 (fiducial), 0.1, and
0.9, respectively. Note the different scale of q< between this figure and Fig.
1.
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Figure 5. Same as Fig. 4b but with compaction of shattered remnants.

after that. (ii) The filling factor becomes very small at C > 100 Myr.
This is because the production of small grains by shattering contin-
uously activates coagulation, which creates porosity. The increased
porosity makes the geometrical cross-section larger, and enhances
coagulation. Moreover, since the velocities of porous grains are re-
duced, compaction does not occur as efficiently as in the pure co-
agulation case. Thus, efficient shattering together with coagulation
makes the interstellar dust highly porous and further activates co-
agulation. This interesting interplay is further discussed in Section
5.

The dependences on the parameters related to coagulation (bcrit,
=c and n+ ) are similar to those shown in Section 3.1 (Fig. 2). On the
other hand, compaction of shattered remnants (Section 2.5.2) could
decrease the porosity if [dense is low. In Fig. 5, we show the results
with compaction of shattered remnants for [dense = 0.1. This figure
should be compared with Fig. 4b. We observe that the filling factor
becomes higher at C ∼ 300 Myr at large grain radii, although the
results are almost unchanged at younger ages. Compaction of rem-
nants also makes coagulation at later epochs less efficient, producing
less large grains at C ∼ 300 Myr. However, the filling factor is still as
small as 0.1–0.2 at 0 ∼ 0.1 `m at C ∼ 300 Myr; thus, the conclusion
that efficient shattering together with coagulation helps to increase
porosity is robust.

4 EXTINCTION CURVES

Based on the grain size distributions and the filling factors presented
above, we calculate the extinction curves by the method in Section 2.4
for silicate and amC. As mentioned above, the extinction �_ is pre-
sented in two ways: �_/#H and �_/�+ . To clarify the effect of
porosity, we also calculate extinction curve by forcing the filling fac-
tor of all grains to be unity with 0< fixed. The extinction calculated
in this way (i.e. q< = 1) is denoted as �_,1. The effect of porosity is
presented by �_/�_,1.

4.1 Effect of coagulation

In Fig. 6, we present the extinction curves corresponding to the grain
size distributions and the filling factors for the pure coagulation case

Figure 6. Extinction curves for silicate and amC in the upper and lower panels,
respectively. The solid, dotted, short-dashed, dot–dashed, triple-dot–dashed,
and long-dashed lines (thick lines) show the extinction curves at C = 0 (initial
condition), 3, 10, 30, 100, and 300 Myr, respectively. The thin lines with the
same line species show �_,1 (extinction with q< = 1). Note that �_ = �_,1

at C = 0. In each panel, the upper, middle, and lower windows present the
extinction per hydrogen, the extinction normalized to the + -band value, and
the ratio of �_ to �_,1 (an indicator of the porosity effect), respectively.
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(Fig. 1). As expected from the evolution of grain size distribution,
the extinction curve becomes flatter as coagulation proceeds. Since
a large fraction of the grains become bigger than ∼ 0.1 `m after
coagulation, the extinction per hydrogen declines at wavelengths
shorter than ∼ 2c×0.1 `m for both materials. The effect of porosity,
which appears in the difference between �_ (thick lines) and �_,1
(thin lines) or in the ratio �_/�_,1 shown in the bottom window,
is clear. The extinction is 10–20 per cent higher in the porous case
than in the non-porous case in a large part of wavelengths for both
materials.

There are some differences between the two materials. For sili-
cate, porous grains have smaller extinction than compact ones in a
certain wavelength range (e.g. 1/_ ∼ 0.5–2 `m−1 at C = 10 Myr) and
this range shifts to longer wavelengths with age. Voshchinnikov et al.
(2006) and Shen et al. (2008) showed that the porosity could both
increase and decrease the extinction cross-section depending on
the wavelength. The wavelength range of suppressed extinction by
porosity is roughly consistent with their results. Voshchinnikov et al.
(2006) also showed that the wavelength range where the extinction
cross-section is decreased by porosity shifts to longer wavelengths
as the grains become larger. This is consistent with our result. At
C . 100 Myr, the normalized extinction curves (�_/�+ ) becomes
steeper by the porosity because the increase of extinction is more
enhanced in the UV than in the + band.

For amC, porosity always increases the extinction; that is, �_/�_,1
is always larger than 1. Thus, if we normalize the extinction to �+ ,
the porosity effect roughly cancels out, so that the extinction curve
shape is insensitive to the porosity (filling factor) for amC.

We also examined the parameter dependence (not shown) and
confirmed that the extinction curves are not sensitive to bcrit or n+
in the optical and UV with differences less than 5 per cent. However,
at 1/_ < 2 `m−1, the difference could be as large as 20 per cent,
since, at such long wavelengths, the porosity of large grains, which
is regulated by bcrit and n+ , is important. The changes driven by the
difference in those parameters are sub-dominant compared with the
difference between porous and non-porous grains shown in Fig. 6.

4.2 Inclusion of shattering

In the pure shattering case, the filling factor simply tends to increase;
thus, the resulting extinction curve approaches the one with com-
pact grains. More important is the interplay between shattering and
coagulation as shown above. Indeed, coagulation of newly created
small grains by shattering produces porous grains, contributing to the
increase of porosity in the interstellar dust. Here, we investigate the
effect of relative strength between shattering and coagulation; that is,
we compare the results for different dense gas fractions, [dense.

In Fig. 7, we compare the extinction curves calculated for the
models including both coagulation and shattering. The correspond-
ing grain size distributions are shown in Section 3.3 (Fig. 4). We
compare the results at the same age C = 100 Myr. We observe that
the steepness of extinction curve is very sensitive to [dense. This is a
natural consequence of the different grain size distributions for vari-
ous [dense. We also plot the extinction curves with q< = 1 (with the
same distribution of 0<), that is, �_,1. Comparing �_ with �_,1,
we observe for silicate that the porosity increases the extinction at
short and long wavelengths, but that it rather decreases the extinc-
tion at intermediate wavelengths as already noted in the previous
subsection. The wavelength range where the porosity decreases the
extinction shifts to shorter wavelengths for smaller [dense, which is
consistent with the above mentioned tendency that porosity of smaller
grains reduces the extinction at shorter wavelengths. For amC, the

Figure 7. Comparison among the extinction curves in the models including
both coagulation and shattering. The relative strengths of these two processes
are regulated by the dense gas fraction [dense. We show the same quantities as
in Fig. 6 at C = 100 Myr. The solid, dotted, and dashed lines show the results
for [dense = 0.1, 0.5, and 0.9, respectively. The thick and thin lines present
the cases using the calculated filling factors (Fig. 4) and those with q< = 1
(the filling factor is forced to be unity; i.e. �_,1). The upper and lower panels
are for silicate and amC, respectively.
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porosity always increases the extinction, but the largest porosity (i.e.
[dense = 0.1) does not necessarily mean the largest opacity enhance-
ment (�_/�_,1) in the UV. At long wavelengths, larger porosity
indicates larger extinction.

Overall, the effect of porosity on the extinction curve is less than
20 per cent as far as the UV–optical extinction curves are concerned,
but this could mean that we ‘save’ up to 20 per cent of metals to
realize an observed extinction if we take porosity into account. The
difference is not large, though, because the increase of grain volume
and the ‘dilution’ of permittivity have opposite effects on the extinc-
tion (Li 2005). For further constraint on the porosity evolution, we
need a comprehensive analysis of observed dust properties including
the infrared SED (Dwek et al. 1997). Polarization may also help to
further constrain the models. Since such a detailed comparison also
needs further modelling of the mixture of various dust species and
of the interstellar radiation field, we leave it for a future work.

5 DISCUSSION

5.1 Effects of porosity on the evolution of grain size distribution

The porosity increases the effective sizes of grains, enhancing the
grain–grain collision rate. If only coagulation occurs, however, the
porosity, which is large at 0 . 0.1 `m, does not have a large in-
fluence on the grain size distribution, since grains quickly coagulate
to achieve 0 & 0.1 `m, and are affected by compaction. Note that,
if we individually observe clouds denser than =H ∼ 103 cm−3, we
could find very fluffy grains as will be shown by L. Pagani et al.
(in preparation) (see also Hirashita & Li 2013; Wong et al. 2016).
The major part of interstellar grains are smaller than 1 `m (e.g.
Weingartner & Draine 2001b), so that the grains in such dense clouds
are not likely to contribute directly to the interstellar dust population.

Coagulation can be balanced by shattering. For [cold = 0.5, the
grain size distribution and the filling factor both converge to equilib-
rium distributions at C ∼ 100 Myr, while coagulation continuously
increases the grain radii for [cold = 0.9 (Section 3.3; Fig. 4). Thus,
cases with high [cold produce similar results to the pure coagulation
case. For the case of [cold = 0.5, we performed a calculation by
forcing q< to be always unity (not shown) and found that the grain
size distribution changes little by the different treatment of q< (i.e.
compared with the results shown in Fig. 4a). This is because the
evolution of grain size distribution is regulated by the formation of
large grains (recall that the grain abundance is dominated by large
grains), which have small porosity because of compaction.

Porosity plays a critical role in the case of small [dense = 0.1.
As discussed in Section 3.3 (Fig. 5), the grain size distribution is
first dominated by shattering, which decreases the abundance of
large grains, while coagulation gradually recovers the large-grain
abundance at later stages (typically after C ∼ 100 Myr). We argued
above that coagulation is activated at C ∼ 100 Myr because the
increased porosity enhances the grain cross-sections (the grain–grain
collision rate). For demonstration, we compare two calculations in
Fig. 8: one is the same as above for [dense = 0.1 (Fig. 4b), and the
other is a calculation with the same setting but with q< = 1 (i.e.
without porosity). Since the difference is not prominent on a short
time-scale, we focus on the evolution after C = 100 Myr. If we fix
q< = 1, grains at 0 & 0.1 `m are simply depleted by shattering
as expected from weak coagulation in [dense = 0.1. In contrast, if
we take the evolution of q< into account, grains at 0 & 0.1 `m
are re-formed at C & 200 Myr, reaching roughly an equilibrium at
C ∼ 400 Myr. The filling factor reaches the smallest value (q< ∼ 0.1)

Figure 8. Long-term evolution of grain size distribution and filling factor
with both coagulation and shattering under [dense = 0.1. Panels (a) and (b)
show the results with including the evolution of filling factor (i.e. the same
model as in Fig. 4b) and with fixing q< = 1, respectively. We present the
results at C = 0, 100, 200, 300, 400, and 500 Myr (at C < 100 Myr, the two
results have little difference) by the solid, dotted, short-dashed, dot–dashed,
triple-dot–dashed, and long-dashed lines, respectively.

at 0 ∼ 0.1 `m. There are two effects that promote coagulation at later
stages: (i) The increase of grain cross-sections by porosity enhances
the grain–grain collision rate because the collision kernel scales

with the porosity as ∝ q
−1/3
< (Section 2.2). (ii) The decreased grain

velocity (∝ q
1/3
< ; equation 6) makes compaction in coagulation at

large grain radii less effective, so that the filling factor is kept small
even at 0 ∼ 0.1 `m. These two effects are persistent qualitatively
even if we consider the compaction of shattered remnants (see Fig.
5).

Recall that our treatment of the two-phase ISM is based on the
parameter [dense, which sets the fraction of time dust spends in the
dense phase. Thus, the above results imply that the dust evolution
in a condition where both coagulation and shattering coexist (in a
wide area of the ISM and/or on a time-scale longer than the phase
exchange time-scale∼ 107 yr; Section 2.5) could be strongly affected
by porosity. In other words, dust evolution models which do not
include porosity evolution could predict a very different evolution
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of the grain size distribution from those which correctly take the
porosity evolution into account.

For a long-term evolution of dust in the ISM, dust enrichment
by stellar ejecta, dust growth by the accretion of gas-phase metals,
and dust destruction by supernova shocks are also important (e.g.
Dwek 1998). Thus, it is interesting to additionally model the porosity
evolution in these processes. This paper provides a first important
step for the understanding of porosity evolution since coagulation
and shattering are mechanisms of efficiently modifying the grain
size distribution. Indeed, Hirashita & Aoyama (2019) emphasized
the importance of these two processes in realizing MRN-like grain
size distributions (see also Aoyama et al. 2020).

5.2 Effects of porosity on extinction curves

As shown in Section 4, porosity affects the UV–optical extinction
curves by 10–20 per cent. As noted by Voshchinnikov et al. (2006),
porosity does not necessarily increase the extinction (see also Jones
1988; Li 2005). At long-optical and near infrared wavelengths, the
opacity of silicate can decrease owing to the porosity. The wavelength
range where this decrease occurs shifts towards shorter wavelengths
as the typical grain radius becomes smaller in e.g. a shattering-
dominated condition. The extinction of amC is enhanced by 10–20
per cent at all wavelengths. The above results indicate that we could
save 10–20 per cent of dust to explain the opacity, especially at long
(far-infrared) and short (UV) wavelengths.

The effects of porosity on extinction curves are further pronounced
given that the evolution of grain size distribution is affected by the
filling factor. As shown above, porosity has the largest effect on the
grain size distribution if strong shattering and weak coagulation are
both present such as in the case of [dense = 0.1. Thus, the extinction
curve is affected by porosity not only through the optical properties
but also through the modification of grain size distribution. To present
this effect, we show in Fig. 9 the extinction curves corresponding to
the cases shown in Fig. 8. On such a long time-scale as shown in Fig.
8, the loss of dust through the lower grain radius boundary by shat-
tering (recall that we remove the grains which become smaller than
0 = 3 Å) leads to a decrease of �_/#H just because of the boundary
condition. Thus, we only show �_/�+ , which is free from the effect
of dust mass loss (i.e. we could purely observe the effect of grain
size distribution). For the case without porosity evolution (q< = 1),
the extinction curve continues to be steepened because shattering
continues to convert large grains to small grains. If the porosity evo-
lution is included, the extinction curve is flattened with age because
large grains are ‘recreated’ by enhanced coagulation at later times.
Both species show steeper extinction curves than the initial state for
the case with porosity evolution although the grain size distributions
are similar to the initial condition (Fig. 8). This is because the grain
opacity does not increase in the+ band, where the extinction curve is
normalized, while porosity enhances the UV extinction by 30–40 per
cent. Jones (1988) and Voshchinnikov et al. (2006) also showed that
porosity does not change the optical extinction much but increase
the UV and infrared opacities. This effect makes the UV extinction
curve normalized to the +-band value steep.

The case shown in Figs. 8 and 9 indicates that porosity evolution
can have a dramatic impact on the shape of extinction curves. Even if
the grain size distribution becomes the one similar to the initial grain
size distribution at later stages of evolution, the small porosity makes
the extinction curves significantly steeper than the initial one. In
particular, the grains contributing to the optical extinction have radii
0 ∼ _/(2c) ∼ 0.1 `m, where the porosity is the largest. Therefore,
if we consider the creation of porosity through the interplay between

Figure 9. Evolution of extinction curve for the model with [dense = 0.1
shown in Fig. 8. Upper and lower panels present the results for silicate and
amC, respectively. The correspondence between the line species and the age
is the same as in Fig. 8. The thick and thin lines show the results with the
evolution of porosity (Fig. 8a) and with forcing q< to be always unity (Fig.
8b). Note that q< = 1 at C = 0 for both cases.

coagulation and shattering, the evolution of extinction curve could
be qualitatively very different. Moreover, the porosity depends on the
grain radius; this dependence also creates ‘higher-order’ wavelength
dependence of extinction curve. As shown above, the wavelength
range where the extinction is reduced by porosity shifts to longer
wavelengths if porosity is developed in larger grains.

As shown in Section 3.3 (Fig. 5), if we consider compaction of
shattered remnants, the filling factor increases a little at C & 300 Myr.
We also calculated the evolution of extinction curve with remnant
compaction (now shown). Since coagulation is less efficient in this
case, the extinction curves are steeper than those shown in Fig. 9. If
we only see the extinction curve shape in the UV–optical, a larger
filling factor and a lower abundance of large grains are degenerate.

6 CONCLUSION

We formulate and calculate the evolution of grain size distribution
and filling factor (porosity) through coagulation and shattering in the
ISM. We adopt the 2D Smoluchowski equation to solve the distribu-
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tion functions of grain size and filling factor. To save the computa-
tional time, we only treat the mean filling factor for each grain radius
based on O09 and O12. For coagulation, the transition from the hit-
and-stick to compaction regime are characterized and modelled by
comparing the impact energy with the rolling energy. Shattering is
treated as a formation mechanism of small compact fragments. For
shattered remnants, we basically assume the same porosity as the
original grain but we also examine the case where the volume equal
to the colliding particle suffers perfect compaction. We assume that
coagulation and shattering are hosted by the dense and diffuse ISM,
respectively.

For the pure coagulation case (without shattering), the porosity
develops around 0 ∼ 0.01–0.1 `m, where a low filling factor of
q< ∼ 0.3 is achieved. However, when the porosity becomes signifi-
cantly large, the major part of grains have already been coagulated to
0 > 0.1 `m, where compaction occurs. Therefore, the porosity little
affects the evolution of grain size distribution if only coagulation
is present. For the pure shattering case, we confirm that shattering
tends to make the filling factors asymptotically approach q< = 1
at 0 . 0.01 `m, although those at 0 & 0.03 `m depend on the
treatment of compaction for shattered remnants.

Next, we examine the case where coagulation and shattering are
both present. This corresponds to a situation where we consider a
wide enough area in the ISM which contains both the dense and
diffuse ISM, or where the time-scale of interest is much longer than
the exchange time of the ISM phases. We find that the filling factor
drops even below 0.1 around 0 ∼ 0.1 `m. The porosity evolution
is sensitive to the relative efficiency of coagulation to shattering,
which is regulated by the dense gas fraction, [dense. The filling factor
tends to be small if shattering is stronger (e.g. [dense = 0.1). This
is because shattering continues to efficiently provide small grains,
which are subsequently coagulated to form porous grains. Thus,
the interplay between shattering and coagulation is fundamentally
important as an origin of the porosity in the interstellar grains. For
the case with [dense = 0.1, coagulation is activated in later stages
(after porosity develops) because the high porosity enhances the grain
cross-sections. Compaction is not efficient in this case since the grain
velocity is diminished by the increased porosity. Thus, large grains
are kept porous in this case.

We also calculate the evolution of extinction curve using the EMT.
Porosity formed as a result of coagulation enhances the UV and in-
frared extinction by ∼10–20 per cent. As noted in previous studies,
the extinction of porous silicate grains is suppressed in the optical,
and the wavelength range where the extinction is suppressed shifts
towards shorter wavelengths if small grains are more abundant (or
shattering is more efficient). The extinction is enhanced at all wave-
lengths for amC in most of the cases. A case with strong shattering
([dense = 0.1) shows a recreation of large grains at later stages as
mentioned above. In this case, although the grain size distribution
itself is similar to the MRN distribution, the extinction curve shape
stays steep if we normalize the extinction to the+ band value. This is
because porosity makes the grains relatively ‘transparent’ in the op-
tical, while the extinction is enhanced in the UV. Thus, the steepness
of extinction curve is also affected by the porosity evolution.

Although the predicted features in the extinction curves could be
compared with observations, our model developed in this paper is
still premature for detailed comparison. There are two necessary ex-
tensions of our modelling. First, we could include other processes
which also play an important role in the evolution of grain size dis-
tribution; that is, dust production by stellar ejecta, dust destruction
by supernova shocks, and dust growth by the accretion of gas-phase
metals. Secondly, since the filling factor and the grain size distri-

bution could be degenerate in the resulting extinction curve shape,
it is desirable to predict other independent properties such as in-
frared emission SED and polarization. We emphasize that the basic
framework developed in this paper provides a basis on which we will
extend our predictions.
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APPENDIX A: DERIVATION OF THE BASIC EQUATIONS

We derive equations (4) and (5) based on O09. We start from the
2D Smoluchowski equation generalized to treat shattering as well as
coagulation:

m 5 (O, C)
mC

= − 5 (O, C)
∫

 (O; O′) 5 (O′, C) d2
O
′

+
∬

 (O1; O2) 5 (O1, C) 5 (O2, C)\ (O; O1, O2) d2
O1 d2

O2, (A1)

where 5 is the distribution function of O ≡ (<, +) (grain mass and
volume, respectively) at time C,  (O1, O2) is the collisional kernel
(product of the collisional cross-section and the relative velocity of
the two colliding grains), \ (O; O1, O2) is the distribution function of
the produced grains by the collision, and the integration is executed
for all the relevant range of O, which is usually [0, ∞] × [0, ∞]. We
distinguish the two colliding grains with subscipts 1 and 2, referred to
as grain 1 and 2, respectively [i.e. O1 = (<1, +1) and O2 = (<2, +2)].
The normalization of \ is determined by
∫

<\ (O; O1, O2) d2
O = <1. (A2)

We note that when we consider the collision of grain 1 with grain
2, we only consider the redistribution of <1 (i.e. we separately treat
the collision of grain 2 with grain 1). This is why only <1 enters the
normalization. Because of this, we do not have a factor of 1/2 (which
appears in O09’s expression) before the second term of the right-
hand side in equation (A1). The two expressions are mathematically
equivalent.

Now we take the zeroth moment of equation (A1) for+ , that is, we
integrate it for + . We adopt the following form for \ for simplicity
and for analytical convenience:

\ (O; O1, O2) = \̄ (<; <1, <2) X[+ −+1+2 (<; O1, O2)], (A3)

where \̄ describes the mass distribution function of the grains formed
after the collision between grains with O1 and O2, X is Dirac’s delta
function, and +1+2 describes the volume of the grain formed from
the collision between grains 1 and 2 (and the produced grain has a
mass of <). This expression assumes that \̄ is independent of the
volume (or porosity) of the original grains and that the volume of
the collisional product is determined by O1 and O2 and is a function
of <. By integrating both sides of equation (A1) for + , we obtain
the equation for the zeroth moment, =̃(<, C), defined in equation (1).
We also take the first moment of equation (A1); that is, we multiply
both sides of equation (A1) by + and integrate them for + to obtain
the equation for +̄ defined by equation (2). The resulting moment
equations are written as (see also O09)

m=̃(<, C)
mC

= −=̃(<, C)
∫

 ̄ (<; <1)=̃(<1, C) d<1

+
∬

 ̄ (<1; <2)=̃(<1, C)=̃(<2, C)\̄ (<; <1, <2) d<1 d<2, (A4)

MNRAS 000, 1–17 (2020)

http://dx.doi.org/10.5047/eps.2011.02.013
http://adsabs.harvard.edu/abs/2011EP%26S...63.1027I
http://dx.doi.org/10.1093/mnras/234.2.209
https://ui.adsabs.harvard.edu/abs/1988MNRAS.234..209J
http://dx.doi.org/10.1086/174689
http://adsabs.harvard.edu/abs/1994ApJ...433..797J
http://dx.doi.org/10.1086/177823
http://adsabs.harvard.edu/abs/1996ApJ...469..740J
http://dx.doi.org/10.1051/0004-6361/201630225
http://adsabs.harvard.edu/abs/2017A%26A...602A..46J
http://dx.doi.org/10.1051/0004-6361/201323199
https://ui.adsabs.harvard.edu/abs/2014A&A...568A..42K
http://dx.doi.org/10.1088/0004-637X/812/1/67
https://ui.adsabs.harvard.edu/abs/2015ApJ...812...67K
http://dx.doi.org/10.1016/j.icarus.2009.10.004
http://adsabs.harvard.edu/abs/2010Icar..206..735K
http://dx.doi.org/10.1143/PTP.44.1580
https://ui.adsabs.harvard.edu/abs/1970PThPh..44.1580K
http://dx.doi.org/10.1086/428038
https://ui.adsabs.harvard.edu/abs/2005ApJ...622..965L
http://dx.doi.org/10.1086/323147
http://adsabs.harvard.edu/abs/2001ApJ...554..778L
https://ui.adsabs.harvard.edu/abs/1997A&A...323..566L
http://dx.doi.org/10.1086/374865
https://ui.adsabs.harvard.edu/abs/2003ApJ...590..368L
http://dx.doi.org/10.1086/305354
http://adsabs.harvard.edu/abs/1998ApJ...496..145L
http://dx.doi.org/10.1086/178094
https://ui.adsabs.harvard.edu/abs/1996ApJ...472..643M
http://dx.doi.org/10.1086/167538
https://ui.adsabs.harvard.edu/abs/1989ApJ...341..808M
http://dx.doi.org/10.1086/155591
http://adsabs.harvard.edu/abs/1977ApJ...217..425M
http://dx.doi.org/10.1086/176057
https://ui.adsabs.harvard.edu/abs/1995ApJ...449..320M
http://dx.doi.org/10.1016/j.pss.2016.05.002
http://adsabs.harvard.edu/abs/2016P%26SS..133..107M
http://dx.doi.org/10.1093/mnras/stu370
https://ui.adsabs.harvard.edu/abs/2014MNRAS.440.1562M
http://dx.doi.org/10.1086/303903
https://ui.adsabs.harvard.edu/abs/1997ApJ...479..806O
http://dx.doi.org/10.1088/0004-637X/707/2/1247
http://adsabs.harvard.edu/abs/2009ApJ...707.1247O
http://dx.doi.org/10.1088/0004-637X/752/2/106
http://adsabs.harvard.edu/abs/2012ApJ...752..106O
http://dx.doi.org/10.1051/0004-6361:20065949
http://adsabs.harvard.edu/abs/2007A%26A...461..215O
http://dx.doi.org/10.1051/0004-6361/200811158
http://adsabs.harvard.edu/abs/2009A%26A...502..845O
http://dx.doi.org/10.1051/0004-6361/201117058
https://ui.adsabs.harvard.edu/abs/2011A&A...532A..43O
http://adsabs.harvard.edu/abs/2015arXiv150200388R
http://dx.doi.org/10.3847/1538-4357/ab7a11
https://ui.adsabs.harvard.edu/abs/2020ApJ...892...96R
http://dx.doi.org/10.1086/592765
https://ui.adsabs.harvard.edu/abs/2008ApJ...689..260S
http://dx.doi.org/10.1051/0004-6361/202038063
https://ui.adsabs.harvard.edu/abs/2020A&A...641A..39S
http://dx.doi.org/10.1086/306018
https://ui.adsabs.harvard.edu/abs/1998ApJ...503..831S
http://dx.doi.org/10.3847/1538-4357/ab07bb
https://ui.adsabs.harvard.edu/abs/2019ApJ...874...60S
http://dx.doi.org/10.1088/0004-637X/753/2/115
http://adsabs.harvard.edu/abs/2012ApJ...753..115S
http://dx.doi.org/10.1111/j.1365-2966.2005.09337.x
http://adsabs.harvard.edu/abs/2005MNRAS.362..592T
http://dx.doi.org/10.1006/icar.1996.0170
https://ui.adsabs.harvard.edu/abs/1996Icar..123..450T
http://dx.doi.org/10.3847/0004-637X/823/2/70
https://ui.adsabs.harvard.edu/abs/2016ApJ...823...70T
https://ui.adsabs.harvard.edu/abs/1980A&A....85..316V
http://dx.doi.org/10.1093/mnras/stu1720
http://adsabs.harvard.edu/abs/2014MNRAS.445..301V
http://dx.doi.org/10.1051/0004-6361:200400081
http://adsabs.harvard.edu/abs/2005A%26A...429..371V
http://dx.doi.org/10.1051/0004-6361:20053371
https://ui.adsabs.harvard.edu/abs/2006A&A...445..167V
http://dx.doi.org/10.1086/514332
https://ui.adsabs.harvard.edu/abs/2007ApJ...661..320W
http://dx.doi.org/10.1086/529511
https://ui.adsabs.harvard.edu/abs/2008ApJ...677.1296W
http://dx.doi.org/10.1051/0004-6361/201322259
http://adsabs.harvard.edu/abs/2013A%26A...559A..62W
http://dx.doi.org/10.1086/320852
http://adsabs.harvard.edu/abs/2001ApJS..134..263W
http://dx.doi.org/10.1086/318651
http://adsabs.harvard.edu/abs/2001ApJ...548..296W
http://dx.doi.org/10.1006/icar.1994.1010
https://ui.adsabs.harvard.edu/abs/1994Icar..107..117W
http://dx.doi.org/10.1093/pasj/psw066
http://adsabs.harvard.edu/abs/2016PASJ...68...67W
http://dx.doi.org/10.1086/187620
https://ui.adsabs.harvard.edu/abs/1994ApJ...436L...5W
http://dx.doi.org/10.1088/0004-637X/735/1/44
http://adsabs.harvard.edu/abs/2011ApJ...735...44Y
http://dx.doi.org/10.1086/425111
http://adsabs.harvard.edu/abs/2004ApJ...616..895Y
http://dx.doi.org/10.1093/mnras/282.4.1321
http://adsabs.harvard.edu/abs/1996MNRAS.282.1321Z
https://ui.adsabs.harvard.edu/abs/2020arXiv201109440Z


Porosity of interstellar dust 17

m+̄ (<, C)=̃(<, C)
mC

= −=̃(<, C)
∫

+ (<; <1)=̃(<1, C) d<1

+
∬

+1+2 (<1; <2)=̃(<1, C)=̃(<2, C)\̄ (<; <1, <2) d<1 d<2,

(A5)

where

 ̄ (<1; <2) ≡
∬

 (<1, +1; <2, +2)
5 (<1, +1)
=̃(<1)

5 (<2, +2)
=̃(<2)

d+1d+2,

(A6)

+ (<; <1) ≡
∬

+ (<, + ; <1, +1)
5 (<, +)
=̃(<)

5 (<1, +1)
=̃(<1)

d+d+1,

(A7)

+1+2 (<;<1, <2) ≡
∬

+1+2 (<; <1, +1, <2, +2) (<1, +1; <2, +2)

× 5 (<1, +1)
=̃(<1)

5 (<2, +2)
=̃(<2)

d+1d+2. (A8)

The integration is performed for [0, ∞]× [0, ∞]. The moment equa-
tions, in general, are not closed since a higher-order moment always
appears. To close this hierarchy, we adopt the same assumption as
O09; that is, the volume is replaced with the mean value at each
<. Under this assumption, the distribution function is written as
5 (<, +) = =̃(<) X[+ − +̄ (<)]. O09 refer to this approximation as
the volume-averaging approximation, and confirmed that it gives a
consistent result with the full solution of the 2D Smoluchowski equa-
tion for their coagulation problem. Although there is no guarantee
that this approximation is valid for shattering, the increasing filling
factor at small grain radii (Section 3.2) is at least qualitatively con-
sistent with the evolution expected from the production of compact
fragments by shattering.

Adopting the above volume-averaging approximation, we obtain

 ̄ (<1; <2) =  [<1, +̄ (<1); <2, +̄ (<2)], (A9)

+ (<; <1) = +̄ (<) ̄ (<; <1), (A10)

+1+2 (<; <1, <2) = +1+2 [<; <1, +̄ (<1), <2, +̄ (<2)] ̄ (<1; <2).
(A11)

We apply these relations to equations (A4) and (A5),
reorganize the notations as  ̄ (<1; <2) =  <1 ,<2 ,
+1+2 [<; <1, +̄ (<1), <2, +̄ (<2)] = (+1+2)<<1 ,<2

. and mul-
tiply both sides in equation (A4) by <. Finally, introducing
d(<, C) ≡ <=̃(<, C) and k(<, C) ≡ +̄ (<, C)=̃(<, C), we obtain
equations (4) and (5).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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