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Our results are mostly new already for the case of

• General linear group GL(n,R), n ≥ 3.

But actually we have generalised many results — not all of them as yet!
— to the following settings:

• Chevalley groups G(Φ, R), rk(Φ) ≥ 2;

• Bak’s unitary groups GU(2n,R,Λ).

Similar, but more complicated, due to different root lengths, non-trivial
form parameters, involutions, etc.
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1 Notation for GL(n,R)

• R — and associative ring with 1;

• M(n,R) — the full matrix ring of degree n over R;

• GL(n,R) = M(n,R)∗ — general linear group of degree n over R,

GL(n,R) =
{
g ∈M(n,R) | ∃h ∈M(n,R), gh = e = hg};

• e — identity matrix, whereas eij, 1 ≤ i, j ≤ n, — standard matrix
unit;

• tij(c) = e + ceij, c ∈ R, 1 ≤ i 6= j ≤ n, — elementary transvection;

• I E R — a two-sided ideal of R;

• ρI : GL(n,R) −→ GL(n,R/I) — the reduction homomorphism
modulo I .
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•GL(n, I) = GL(n,R, I) = Ker(ρI) — the principal congruence subgroup
of level I :

GL(n,R, I) =
{
g = (gij) ∈ GL(n,R) | g ≡ e (mod I)

}
;

• E(n, I) — the [unrelative] elementary subgroup of level I :

E(n, I) =
〈
tij(a), a ∈ I, 1 ≤ i 6= j ≤ n

〉
.

• E(n,R) — the [absolute] elementary subgroup;

• E(n,R, I) — the relative elementary subgroup of level I is the normal
closure of E(n, I) in the absolute elementary subgroup E(n,R):

E(n,R, I) = E(n, I)E(n,R).
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2 Early history of mixed commutator subgroups in GL(n,R)

• Hyman Bass, 1964, started the study of

[GL(n,R, I),GL(n,R, J)], [GL(n,R, I), E(n,R, J)],

[E(n,R, I), E(n,R, J)]

• sr(R) — the stable rank of R, estimated in terms of any dimension.

Theorem. (Bass, 1964) Let I, J E R be two-sided ideals of R,
n ≥ max(sr(A) + 1, 3), then

[GL(n,R, I), E(n,R, J)] = [E(n,R, I), E(n,R, J)].

Theorem. (Mason—Stothers, 1974) Let I, J E R be two-sided ideals
of R, n ≥ max(sr(A) + 1, 3), then

[GL(n,R, I),GL(n,R, J)] = [E(n,R, I), E(n,R, J)].
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Question. Can one lift the dimension condition in the above results?

• R is almost commutative if it is module-finite over its centre
Cent(R).

• R is quasi-finite over a commutative ring A if

R = lim
−→

Ri, A = lim
−→

Ai, Ri module finite over Ai.

In the absolute case these are the standard commutator formulae.

Theorem. (Suslin, 1976, ..., Vaserstein, 1981, Borewicz—Vavilov, 1982,
..., Bak, 1991) Let R be quasi-finite, I E R be a two-sided ideal of R,
and n ≥ 3. Then

[GL(n,R), E(n,R, I)] = [E(n,R),GL(n,R, I)] = E(n,R, I).

Question. Can one remove commutativity conditions here?

Answer. NO, Gerasimov, 1989.
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Many further generalisations by a number of authors. However, the
absolute case is not our concern here.

3 The work of Hong You, Stepanov, Hazrat, and ourselves

Question. Does this generalise to the birelative case?

Theorem. (Hong You, 1992, Vavilov—Stepanov, 2008–2010, Hazrat—
Zhang, 2011) Let R be quasi-finite, I, J E R be two-sided ideals of R,
and n ≥ 3. Then

[GL(n,R, I), E(n,R, J)] = [E(n,R, I), E(n,R, J)].

We had three completely different proofs in various situations:

• Decomposition of unipotents,

• Relative versions of localisation:
yoga of conjugations and yoga of commutators,

• Level calculations.
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Actually, the level of these commutators is the symmetrised product:

I ◦ J = IJ + JI.

Namely, below we reproduce the key step in deriving the above from
the absolute case.

Theorem. Let R be any associative ring and I, J be two-sided ideals
of R, ad n ≥ 3. Then

E(n,R, IJ + JI) ≤
[E(n, I), E(n, J)] ≤ [E(n,R, I), E(n,R, J)] ≤

[E(n,R, I),GL(n,R, J)] ≤ [GL(n,R, I),GL(n,R, J)] ≤
GL(n,R, IJ + JI)
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However, these results are weaker than the classical ones.
In the spirit of Bass, Mason, Stothers, and Suslin, one could ask:

Question 1. Can one replace [GL(n,R, I), E(n,R, J)] here by
[GL(n,R, I),GL(n,R, J)]?

Answer. NO.

Question 2. Are the commutators equal to E(n,R, I ◦ J)?

Answer. NO.

The reason is non-stable K-theory = non-abelian K-theory.

Even for quasi-finite rings the quotient

K1(n,R, I) = GL(n,R, I)/E(n,R, I)

may be non-abelian of [arbitrarily] high nilpotency class.

Such counter-examples — and much fancier ones! — were known from
the work of Mason, Bak, and van der Kallen (1982–1991).
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4 Generation of [E(n,R, I), E(n,R, J)], 1st installment

In general, E(n,R, I) � E(n, I).

• The unrelative elementary group E(n, I) is generated by the ele-
mentary transvections tij(a), a ∈ I , of level I .

• To generate the relative elementary group E(n,R, I) one needs at
least the elementary conjugates

zij(a, c) = tji(c)tij(a) = tji(c)tij(a)tji(−c),

where a ∈ I , c ∈ R.

Theorem. (Vaserstein—Suslin, 1976) Let R be an associative ring, I
be a two-sided ideal of R, and n ≥ 3. Then the group E(n,R, I) is
generated by the elementary conjugates of level I :

E(n,R, I) =
〈
zij(a, c), 1 ≤ i 6= j ≤ n, a ∈ I, c ∈ R

〉
.
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Similar results were also established for:

• Chevalley groups — Hurley, Stein, Tits, Vaserstein,

• Bak’s unitary groups — Bak—Vavilov.

Question. What about the generation of mixed commutators

[E(n,R, I), E(n,R, J)]?

• To generate the relative elementary commutator subgroups
[E(n,R, I), E(n,R, J)] one needs at least the elementary commutators

yij(a, b) = [tij(a), tji(b)],

where a ∈ I , b ∈ J .
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The yoga of commutators and subsequent work of Stepanov and
ourselves on the commutator width depended on:

Theorem. (Hazrat—Zhang, 2011, and HVZ, 2016) Let R be a quasi-
finite ring, n ≥ 3, and let I , J be two-sided ideals of R. Then the mixed
commutator subgroup

[
E(n,R, I), E(n,R, J)

]
is generated as a group

by
• the elementary conjugates zij(ab, c) or zij(ba, c),
• the elementary commutators yij(a, b),
• the HZ-generators

[
tij(a), zij(b, c)

]
,

where in all cases a ∈ I , b ∈ J , c ∈ R.

Corollary 1. Assume as above, then

[E(n, I), E(n,R, J)] = [E(n,R, I), E(n, J)] = [E(n,R, I), E(n,R, J)].

Corollary 2. Assume as above, then

[E(n, I), E(n, J)] E E(n,R).
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5 Generation of [E(n,R, I), E(n,R, J)], 2nd installment

In October 2018, revising our work with Stepanov, in an attempt to
answer a question by Raimund Preusser, I noticed that together with
the above it implies:

Theorem. (Vavilov, 2018) Let I and J be two ideals of a commutative
ring R, n ≥ 3. Then

[E(n, I),GL(n, J)] = [E(n, I), E(n, J)].

Theorem. (Vavilov, 2018) Let I and J be two ideals of a commutative
ring R, n ≥ 3. Then

[E(n, I), E(n, J)] = [E(n,R, I), E(n,R, J)]

Zuhong immediately asked:

Question. Does this mean that HZ-generators are superfluous?
Could one then give a direct proof?
Could one relax or remove commutativity condition?
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The answers, November 2018—October 2019 are YES, YES, YES.
This is what I reported in September—October 2019 at the conferences
dedicated to the 60-th birthday of Ivan Panin, and the 70-the birthday
of Alexander Generalov.

Theorem. (Vavilov—Zhang, 2018–2019) Let R be any associative ring
with 1, let n ≥ 3, and let I, J be two-sided ideals of R. Then the mixed
commutator subgroup [E(n,R, I), E(n,R, J)] is generated by:

• the elementary conjugates zij(ab, c) and zij(ba, c),

• the elementary commutators yij(a, b),

where 1 ≤ i 6= j ≤ n, a ∈ I , b ∈ J , c ∈ R.

Hold on, hold on, that’s not the end of the story!
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6 Unrelativisation

But first some corollaries of what we already have.
The unrelative group E(n, I) is not normal in E(n,R), but the

commutator of two of these guys very much is! In fact:

Theorem. (Vavilov—Zhang, 2019) Let R be any associative ring with
1, let n ≥ 3, and let I, J be two-sided ideals of R. Then one has[

E(n, I), E(n, J)
]

=
[
E(n,R, I), E(n,R, J)

]
.

Theorem. (Vavilov—Zhang, 2019) Let R be a quasi-finite ring with 1,
let n ≥ 3, and let I, J be two-sided ideals of R. Then the following
commutator formula holds[

E(n,R, I),GL(n,R, J)
]

=
[
E(n, I), E(n, J)

]
.

Theorem. (Vavilov—Zhang, 2019) Let I be an ideal of a quasi-finite
ring R with 1, n ≥ 3. Then E(n, I) is normal in GL(n, I).

This last result is a broad generalisation of Mennicke and Nica.
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7 Generation of [E(n,R, I), E(n,R, J)], 3rd installment

In September 2019, as part of a joint work with Capdeboscq, Kuniavsky,
and Plotkin, we started to seriously study the arithmetic case — below!
In particular, the proofs in the works on the
• Congruence subgroup problem,
• Bounded generation by elementaries.

In October 2019 I noticed a congruence between yij(a, b) modulo
E(n,R, I ◦ J), Zuhong simplified and generalised it.

Theorem. (Vavilov—Zhang, 2019) Let R be any associative ring with
1, let n ≥ 3, and let I, J be two-sided ideals of R. Then the mixed
commutator subgroup [E(n,R, I), E(n,R, J)] is generated by:
• the elementary conjugates zij(ab, c) and zij(ba, c),
• the elementary commutators yij(a, b),

where 1 ≤ i 6= j ≤ n, a ∈ I , b ∈ J , c ∈ R. Moreover, for the second
type of generators, it suffices to fix one pair of indices (i, j) = (h, k).

15



8 Elementary commutators as symbols

The proof of the above result relies on:

Theorem. (Vavilov—Zhang, 2019) Let R be an associative ring with 1,
n ≥ 3, and let I, J be two-sided ideals of R. Then

[
E(n, I), E(n, J)

]
is central in E(n,R) modulo E(n,R, IJ + JI). In other words,[[

E(n, I), E(n, J)
]
, E(n,R)

]
= E(n,R, IJ + JI).

In fact, modulo E(n,R, IJ + JI) = E(n,R, I ◦ J) the elementary
commutators behave as symbols in classical algebraic K-theory, such
as Mennicke symbols, or Steinberg symbols.

The proofs of the theorems below imitate Mennicke, Bass, Milnor,
Serre, van der Kallen, Carter, Keller, Tavgen, Morris, Nica, ...

Hold on, hold on, that’s not the end of the story! Now we have
ultimate explanations!
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Theorem. (Vavilov—Zhang, 2019) Let R be an associative ring with
1, n ≥ 3, and let I, J be two-sided ideals of R. Then for any 1 ≤ i 6=
j ≤ n, a, a1, a2 ∈ I , b, b1, b2 ∈ J one has

yij(a1 + a2, b) ≡ yij(a1, b) · yij(a2, b) (mod E(n,R, I ◦ J)) ,

yij(a, b1 + b2) ≡ yij(a, b1) · yij(a, b2) (mod E(n,R, I ◦ J)) ,

yij(a, b)
−1 ≡ yij(−a, b) ≡ yij(a,−b) (mod E(n,R, I ◦ J)) ,

yij(ab1, b2) ≡ yij(a1, a2b) ≡ e (mod E(n,R, I ◦ J)) ,

yij(a1a2, b) ≡ yij(a, b1b2) ≡ e (mod E(n,R, I ◦ J)) .

And, most importantly:

Theorem. (Vavilov—Zhang, 2019) Let R be an associative ring with
1, n ≥ 3, and let I, J be two-sided ideals of R. Then for any 1 ≤ i 6=
j ≤ n, any 1 ≤ k 6= l ≤ n, and all a ∈ I , b ∈ J , c ∈ R, one has

yij(ac, b) ≡ ykl(a, cb) (mod E(n,R, I ◦ J)) .
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9 Generation of [E(n,R, I), E(n,R, J)], 4th installment

Morally, these computations go back to the verification of properties
of Mennicke symbols in the works of Mennicke himself — rolling over
elementary commutators, modulo E(n,R, I ◦ J).

Of course, Mennicke, Bass, Milnor, Serre,... stated this calculation in
terms of one ideal. What we now need, are their birelative versions.

But this can be used in the opposite direction, to get rid of the
elementary conjugates! This is what we noticed in March 2020.

Theorem. (Vavilov—Zhang, 2020) Let I and J be two ideals of an
associative ring R and let n ≥ 3. Then the mixed commutator subgroup
[E(n,R, I), E(n,R, J)] is generated by
• the elementary commutators [tij(a), thk(b)],

where 1 ≤ i 6= j ≤ n, 1 ≤ h 6= k ≤ n, a ∈ I and b ∈ J .

No elementary conjugates at all!
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10 Counter-examples

One may ask, whether double commutators [E(n, I), E(n, J)] are them-
selves always equal to E(n,R, I ◦ J)?

• It’s not the case, when I = J , there are counter-examples even for
such nice rings as Gaussian integers Z[i] — Mason—Stothers, 1974.

There are counter-examples even at the stable level , Geller—Weibel.
These counter-examples work already for GL(3, R) or GL(4, R)!

• Let R = Q[x, y], I = xR + yR. Then

z =

1− xy x2 0
−y2 1 + xy 0

0 0 1

 =

1 0 x
0 1 y
0 0 1

 ,

 1 0 0
0 1 0
−y x 1


∈ [E(3, I), E(3, I)].
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But Weibel proved that K1(R, I
2) = GL(R, I2)/E(R, I2) ∼= Q and

under this isomorphism the Mennicke symbol
[

x2

1− xy

]
goes to 2 ∈ Q.

This means that z /∈ E(R, I2) and thus z /∈ E(3, R, I2).

• Similarly, let R = Z[x], I = xR. Then clearly

y21(x, x) =

1− x2 x3 0
−x3 1 + x2 + x4 0

0 0 1

 ∈ [E(3, I), E(3, I)].

But the Mennicke symbol
[
x3

1− x2

]
is non-trivial, so that y21(x, x) /∈

E(R, I2) and thus y21(x, x) /∈ E(3, R, I2).
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11 Application 1: comaximal ideals, revisited

However, for comaximal ideals this is indeed the case.

Theorem. (Vavilov—Zhang, 2019) Let R be any associative ring with
1, let n ≥ 3, and let I and J be two-sided ideals of R. If I and J are
comaximal, I + J = R, then

[E(n, I), E(n, J)] = E(n,R, I ◦ J).

Before 2019, it was only known for commutative and then quasi-finite
rings, Vavilov—Stepanov, 2008, 2010.

In particular, it explains and generalises the absolute case in the works
of Bass, Suslin, Vaserstein, Borewicz—Vavilov,...
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12 Arithmetic case

Another peculiar case, when this holds.

Theorem. (Mason—Stothers, 1974) Let I and J be two comaximal
ideals of a Dedekind ring of arithmetic type R = OS, I + J = R and
n ≥ 3. Then [

GL(n,R, I),GL(n,R, J)
]

= E(n,R, IJ).

If I and J are not comaximal, there are counter-examples for Gaussian
integers R = Z[i] and Eisensteinian integers R = Z[ω].
Amazingly, in the arithmetic case these are essentially the only such

counter-examples!

Theorem. (Vavilov, 2019) Let I and J be two ideals of a Dedekind
ring of arithmetic type R = OS. Assume that the multiplicative group
R∗ is infinite and that n ≥ 3. Then[

GL(n,R, I),GL(n,R, J)
]

= E(n,R, IJ).
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13 Triple congruence

The true calculation behind all works starting with Mennicke, Bass—
Milnor—Serre, etc. is an identity of the Hall—Witt type. Essentially, the
three ideal lemma — can be stated as such!

Theorem. (Vavilov—Zhang, 2019) Let R be an associative ring with
1, n ≥ 3, and let A,B,C be two-sided ideals of R. Then for any three
distinct indices i, j, h such that 1 ≤ i, j, h ≤ n, and all a ∈ A, b ∈ B,
c ∈ C, one has

yij(ab, c)yjh(ca, b)yhi(bc, a) ≡ 1 (mod E(n,R,ABC + BCA + CAB)) .

Theorem. (Vavilov—Zhang, 2019) Let R be an associative ring with 1,
n ≥ 3, and let A,B,C be two-sided ideals of R. Then

[E(n,AB), E(n,C)] ≤ [E(n,BC), E(n,A)] · [E(n,CA), E(n,B)].
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14 Application 2: powers of one ideal

The following result explains all examples in the works of Mason—
Stothers, 1974, Mason 1974, 1981.

Theorem. (Vavilov—Zhang, 2019) Let I be an ideal of an associative
ring R, m ≥ 1. Then the generic lattice of elementary commutator
subgroups

H(r) = [E(n, Ir), E(n, Im−r)] ≥ E(n,R, Im), 0 ≤ r ≤ m,

of level Im is isomorphic to the lattice of divisors of m. In other words,
generically,

[E(n, Ir), E(n, Im−r)] ≤ [E(n, Is), E(n, Im−s)] ⇐⇒
gcd(s,m)| gcd(r,m).
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15 Application 3: partially relativised elementary groups

Namely, for two ideals I, J E R we denote by E(n, J, I) the smallest
subgroup containing E(n, I) and normalised by E(n, J):

E(n, J, I) = E(n, I)E(n,J) = [E(n, I), E(n, J)] · E(n, I).

Clearly,
E(n, I) ≤ E(n, J, I) ≤ E(n,R, I).

Now, from our generation results for the double commutators, we can
derive a very broad generalisation of Vaserstein—Suslin, Stein, Tits, ...

Theorem. (Vavilov—Zhang, 2019) Let R be an associative ring with
identity 1, n ≥ 3, and let I and J be two-sided ideals of R. Then the
partially relativised elementary subgroup E(n, J, I) is generated by
• the elementary conjugates zij(a, b),

for all 1 ≤ i 6= j ≤ n, a ∈ I , b ∈ J .
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16 Multiple commutators

Namely, let H1, . . . , Hm ≤ G be subgroups of G.
There are many ways to form higher commutators of these groups,

depending on where we put the brackets.
Thus, for three subgroups F,H,K ≤ G one can form two triple

commutator subgroups [[F,H ], K] and [F, [H,K]], and they are non-
associative!

In the sequel, we denote by JH1, H2, . . . , HmK any higher mixed
commutator subgroup of H1, . . . , Hm, with an arbitrary placement of
brackets.

Thus, for instance, JF,H,KK refers to any of the two arrangements
above.
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Actually, the primary attribute of such a bracket arrangement that
plays major role in our results is its cut point.

Namely, every higher commutator subgroup JH1, H2, . . . , HmK can
be uniquely written as a double commutator

JH1, H2, . . . , HmK =
[
JH1, . . . , HsK, JHs+1, . . . , HmK

]
,

for some s = 1, . . . ,m− 1.

This s is called the cut point of our multiple commutator.
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For non-commutative rings there is another aspect that affects the
final answer. Namely, in this case symmetrised product of ideals is not
associative. For instance, for three ideals A,B,C E R one has

(A ◦B) ◦ C = ABC + BAC + CAB + CBA,

whereas

A ◦ (B ◦ C) = ABC + ACB + BCA + CBA,

that in general do not coincide.
To account for this, in the sequel we write LI1 ◦ · · · ◦ ImM to denote

the symmetrised product of I1, . . . , Im with an arbitrary placement of
parenthesis. Thus, for instance, LA◦B◦CM may refer either to (A◦B)◦C,
or to A◦(B◦C), depending. In the sequel the initial bracketing of higher
commutators will be reflected in the parenthesizing of the corresponding
multiple symmetrised products.
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17 Application 4: multiple  double, revisited

Double commutators of elementary subgroups are not elementary sub-
groups themselves. But higher commutators are double.

Theorem. (Vavilov—Zhang, 2019) Let R be any associative ring with
1, let n ≥ 4, and let Ii E R, i = 1, . . . ,m, be two-sided ideals of R.
Consider an arbitrary arrangment of brackets [[. . .]] with the cut point
s. Then one has
q
E(n, I1), E(n, I2), . . . , E(n, Im)

y
=[

E
(
n, LI1 ◦ . . . ◦ IsM

)
, E
(
n, LIs+1 ◦ . . . ◦ ImM

)]
,

where the bracketing of symmetrised products on the right hand side
coincides with the bracketing of the commutators on the left hand side.

Corollary. Assume as above. Then one has
q
E(n, I1), E(n, I2), . . . , E(n, Im)

y
=q

E(n,R, I1), E(n,R, I2), . . . , E(n,R, Im)
y
.
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Easily follows by induction from the cases of triple and quadruple
commutators.

Theorem. (Vavilov—Zhang, 2019) Let R be an associative ring with 1,
n ≥ 3, and let A,B,C be two-sided ideals of R. Then[[

E(n,A), E(n,B)
]
, E(n,C)

]
=
[
E(n,A ◦B), E(n,C)

]
.

Theorem. (Vavilov—Zhang, 2019) Let R be an associative ring with 1,
n ≥ 4, and let A,B,C,D be two-sided ideals of R. Then[[
E(n,A), E(n,B)

]
,
[
E(n,C), E(n,D)

]]
=
[
E(n,A◦B), E(n,C◦D)

]
.

Problem. Weaken the condition here to n ≥ 3.
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18 Possible Application 5:
standard and general multiple commutator formulae

Problem. Can one replace in the above multiple commutator formulae
some/all elementary groups by the corresponding congruence subgroups?

That’d be a vast simultaneous generalisation of the standard com-
mutator formulae above and of the nilpotent filtrations forK1 and
the like by Bak, Hazrat, Vavilov, Basu, etc.

Standard multiple commutator formula

Theorem. (Hazrat—Zhang, 2013) Let A be a quasi-finite algebra with
1 over a commutative ring R, let n ≥ 3, and further let Ii E A, i =
1, . . . ,m, be two-sided ideals of A. Then one has

[E(n,A, I1),GL(n,A, I2), . . . ,GL(n,A, Im)] =

[E(n,A, I1), E(n,A, I2), . . . , E(n,A, Im].
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General multiple commutator formula

Theorem. (Stepanov 2016, Hazrat—Stepanov—Vavilov—Zhang, 2012–
2016) Let A be a quasi-finite algebra with 1 over a commutative ring
R of finite Bass—Serre dimension δ(R), let n ≥ 3, and further let
Ii E R, i = 1, . . . ,m, be two-sided ideals of A. Assume that m ≥
max(δ(R) + 3− n, 1). Then

[GL(n,A, I1),GL(n,A, I2), . . . ,GL(n,A, Im)] =

[E(n,A, I1), E(n,A, I2), . . . , E(n,A, Im].

Published only in the commutative case, with GL replaced by SL, in
the setting of algebraic groups, by Stepanov, via his universal locali-
sation.

The proof in the general case, via the multirelative localisation-
completion is still not published, due to immense technical difficulties
in handling the generators.
Now, eventually, we could simplify and finalise that!
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19 What happens for other groups?

For Chevalley groups assume
(*) In the cases Φ = C2,G2 assume thatR does not have residue fields

F2 of 2 elements and in the case Φ = Cl, l ≥ 2, assume additionally
that any c ∈ R is contained in the ideal c2R + 2cR.

Everything is commutative, but the additional complication are two
root lengths.

Theorem. (Vavilov—Zhang, 2019) Let Φ be a reduced irreducible root
system, rk(Φ) ≥ 2. Further, let R be a commutative ring, and I, J E R
be two ideals of R. For all a ∈ I , b ∈ J , c ∈ R, one has:
• yα(a, b) ≡ yβ(a, b) (mod E(Φ, R, IJ)) ,

for any roots α, β ∈ Φ of the same length.
• yα(a, b) ≡ yβ(a, b)p (mod E(Φ, R, IJ)) ,

if the root α ∈ Φ is short, whereas the root β ∈ Φ is long, while p = 2
for Φ = Bl,Cl,F4, and p = 3 for Φ = G2.
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Thus, the short root type elementary commutators are expressed in
terms of the long root type ones.

Theorem. (Vavilov—Zhang, 2019) Assume as above. Then for all a ∈ I ,
b ∈ J , c ∈ R, one has:
• yα(ac, b) ≡ yα(a, cb) (mod E(Φ, R, IJ)) ,

where either Φ 6= Cl, or α is short.
In the exceptional case when Φ = Cl and α is long only the following

weaker congruences hold:
• yα(ac2, b) ≡ yα(a, c2b) (mod E(Φ, R, IJ)) ,
• yα(ac, b)2 ≡ yα(a, cb)2 (mod E(Φ, R, IJ)) .

In the case of Bak’s unitary groups the same complication + form
parameter, meaning that we need both one long and one short root.

Otherwise, everything similar, but technically more complicated, es-
pecially the case C2 + some changes in the statements, like triple
congruences become longer, etc.
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20 Pending Application 6: subnormal subgroups

• Subgroups normalised by E(n,R, J).

• Subnormal subgroups of GL(n,R) — and other groups! — with the
best possible bounds

A joint project currenty under way, by Raimund Preusser, Zuhong
Zhang, and myself — reverse decomposition of unipotents.

21 What’s on?

• Three beautiful new ideas to fully solve the 50 years old problem.

Theorem. (van der Kallen, 1978, Lavrenov 2016, Sinchuk, 2017, Lav-
renov—Sinchuk 2018, Voronetsky, 2020, Lavrenov—Sinchuk—Voronet-
sky, 2020) Let Φ be a reduced irreducible root system, rk(Φ) ≥ 3, and
let R be a commutative ring.
Then K2(Φ, R) is central in the Steinberg group St(Φ, R).

For A2, C2, G2 there are counter-examples, Wendt, 2016.
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• In 2020 we have constructed generalisation of Steinberg symbols,
Dennis—Stein symbols, Keune symbols, Kolster symbols.

In terms of these general symbols we can generalise many results
of the classical algebraic K-theory, and in particular the Steinberg
theorem from fields and semi-local rings to Dedekind rings of arithmetic
type.

• In 2020 we have constructed a whole new hierarchies of the higher
stability conditions — vast generalisations of the usual Bass stable
rank, unitary stable rank, absolute stable rank, and the like, and stated
new stability theorems, simultaneously generalising all
◦ usual stability theorems (Bass—Vaserstein, Dennis—Vaserstein,

Suslin—Tulenbaev, etc.), and
◦ early stability theorems (Bass—Milnor–Serre, Suslin, Vaserstein,

van der Kallen, Kolster, ...)
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But that’s for the next talks!!!

THANK YOU!
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