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Аннотация
Нигде в математике прогресс, связанный с возникновением компьютеров, не
является столь зримым, как в аддитивной теории чисел. В этой части будет
рассказано о роли компьютеров в исследованиях поведения древнейшей функции,
суммы делителей, свойства которой пифагорейцы начали систематически изучать
больше 2500 лет назад. Описание траекторий этой функции — совершенные числа,
дружественные числа, общительные числа, and the like — составляет содержание
некольких поставленных два–три тысячелетия назад задач, которые не решены до
сих пор. Теорема Эвклида—Эйлера сводит описание четных совершенных чисел к
простым числамМерсенна. После 1914 года ни одно новое простое число Мерсенна
не было открыто вручную, с 1952 года все они открыты при помощи компьютеров.
При помощи компьютеров сегодня каждый день строится в сотни и тысячи раз
больше новых пар дружественных чисел, чем было до этого открыто вручную за
несколько тысячелетий. В конце статьи обсуждается гипотеза Каталана—Диксона.
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1. ВВЕДЕНИЕ
Настоящая статья является непосредственным продолжением [3, 4]. В этой части я

продолжу обсуждать роль компьютеров в исследованиях по теории чисел, на примере
двух следующих классических тем.

• Проверка простоты и факторизация больших чисел, а именно, чисел Мерсенна
Mp = 2p −1, где p простое.

• Задачи о суммах делителей: известные с глубокой древности задачи о совершенных
и дружественных числах, их обобщения и варианты.
*Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта N.19-29-14141

изучение взаимосвязи концептуальных математических понятий, их цифровых представлений и смыслов,
как основы трансформации школьного математического образования.
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Как и в исследованиях по проблеме Варинга [4], в этих темах “особенно отчетливо
видно, как трудно дается каждое реальное продвижение, и можно непосредственно
сравнить результаты усилий разных поколений”. Появление компьютеров изменило
здесь все. Вот две конкретных и чрезвычайно наглядых иллюстрации этого.

• За примерно 2500 лет вручную было открыто 12 простых Мерсенна, последнее
из них в 1914 году, в самом большом из них 39 десятичных цифр. В 1952–2018 годах с
помощью компьютеров было открыто еще 39 простых Мерсенна, в самом большом из
них, известном сегодня, 24862048 цифр. Почти все самые большие известные сегодня
простые числа — все в первой десятке! — это либо числа Мерсенна, либо их старшие
делители.

• За всю многотысячелетнюю историю задачи о дружественных парах по состоянию
на 1971/72 годы было найдено всего 1108 таких пар, и все, кто их открыл, известны
поименно [205–207]. С тех пор с помощью компьютеров были открыты > 1.2 · 109 таких
пар1.

В то же время, именно появление компьютеров заставило нас осознать физические
пределы наших вычислительных возможностей. Так, например, мы не в состоянии
ответить на вопрос о простоте чиселМерсенна с большимипоказателями, подразумевав-
шийся Мерсенном и явно сформулированный Каталаном, см. § 4. Мы понимаем, что
появление новых алгоритмов и новой техники отодвинет сегодняшнюю границу,
но теперь мы отчетливо видим и то место, дальше которого мы никогда не сможем
продвинуться грубой силой, без каких-то совершенно новых математических идей.

Все цитируют начало фразы, которую Эйнштейн сказал Веблену в 1921 году: "Gott
würfelt nicht. . . " и "Raffiniert ist der Herr Gott doch, aber boshaft ist Er nicht." И редко кто
цитирует ее окончание: "Ich habe noch einmal darüber nachgedacht. Vielleicht ist Er doch
boshaft." Или, как по-простому выразил ту же мысль Стивен Хокинг: “God not only plays
dice. He also sometimes throws the dice where they cannot be seen.” Это дистеистическое
наблюдение постоянно приходит в голову при знакомстве с результатами аддитивной
теории чисел. Обидно не то, что нам бросают кости2, обидно, что бросают кости туда,
где мы их не можем увидеть. Если гипотезы Каталана—Мерсенна и Каталана—Диксона
неверны, то мы имеем все шансы об этом никогда не узнать. Но тогда напрашивается
вопрос, что именно могло бы значить утверждение, что эти гипотезы неверны? Для кого
именно они неверны?

С другой стороны, появление компьютеров в очередной раз полностью изменило
представление о полезном и бесполезном, в частности, о том, что такое прикладная
математика. Как я уже упоминал в [4], в течение столетий теория чисел выступала
как чистая игра ума, как эталон бесполезности. Именно это, впрочем, и делало теорию
чисел “королевой математики” в глазах Эйлера, Гаусса, Харди, и многих других: “Die
Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der
Mathematik”.

Примерно в то же время, когда пифагорейцы формулировали свои гипотезы о
совершенных и дружественных числах, на другом конце ойкумены было сказано: “Все
знают о пользе полезного, но никто не знает о пользе бесполезного”. На самом деле,
не только в длительной, но даже и в средней перспективе нет ничего полезнее
1Я сознательно не указываю точное значение: сегодня открывают сотнитысяч новых таких пар каждый

день, так что точное количество известных пар наверняка изменится просто за период редакционной
подготовки настоящей статьи.2Йан Стюарт [327] поставил вопрос иначе, “do dice play God”?
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“бесполезного” знания. Задача о факторизации чисел Мерсенна внезапно стала
важнейшей прикладной задачей, на которой тестировались все новые процессоры.
Именно в процессе подобных теоретико-числовых тестов3 были обнаружены ошибки в
делении чисел с плавающей запятой на первых Пентиумах.

Вот, что, например, пишет по этому поводу Кейт Девлин: “But why does a large super-
computer manufacturer like Cray Research invest so much money in what, from its perspec-
tive, is surely little more than a game? The answer is that the computation required to search
for large Mersenne primes is a heavy one, stretching over days or weeks, and so it provides an
excellent way to test the efficiency and accuracy of a new computer system. The question that
interests Cray is, Does their latest computer perform the way it is supposed to? Computer chip
manufacturer Intel also uses a Mersenne prime-hunting program to test every Pentium chip
before it ships it” [97].

Как и предыдущая статья серии [4], этот текст имеет не научный и не исторический,
а именнометодологический иметодический характер. Цель ее троякая:

•Проиллюстрировать на простом, доступном и интересном материале как невероят-
ный масштаб изменений в математике, вызванных распространением компьютеров,
так и возникшие при этом новые ограничения. ГРАНИЦА МЕЖДУ ОСУЩЕСТВИМЫМ И
НЕОСУЩЕСТВИМЫМ НИКУДА НЕ ИСЧЕЗЛА, она просто несколько сдвинулась.

• Прорекламировать широчайшие возможности использования этого материала (и
различных его вариантов и обобщений!) в преподавании математики и информатики
на всех уровнях и проиллюстрировать эти возможности подборками задач.

• Еще раз привлечь внимание к двум замечательным задачам, сформулированным
Эженом Каталаном в 1876 и 1878 годах, по продвижениям в решении которых мы могли
бы измерять наш прогресс в вычислительной математике.

В частности, я включил сюда подборку задач, основаных на курсе “Математика и
Компьютер”, который мы с Володей Халиным разработали в 2004–2006 годах, и который
Саша Юрков полностью обновил в 2018–2020 годах, см. [8] по поводу описания всего
проекта. Первая часть, относящаяся к числам Мерсенна, выросла из [6], § 6.4, а вторая,
относящаяся к суммам делителей, из [6], §§ 8.1–8.4 и [7], § 4.3. Однако первая часть почти
полностью написана заново, а вторая значительно обновлена и расширена.

В части, посвященной числам Мерсенна, гораздо больше исторического и современ-
ного фактического материала. С другой стороны, часть, посвященная задачам про
суммы делителей носит чисто практический характер и, кроме последнего параграфа,
состоит главным образом из обработки задач, которые мы с Володей Халиным
фактически предлагали студентам. Код в Mathematica в основном просто воспроизведен
оттуда, иногда с чуть измененными по сравнению с [6, 7] параметрами.

Количество текстов непосредственно относящихся к этим и близким направлениям
теории чисел измеряется многими тысячами и даже главные из них невозможно
отразить в рамках журнальной статьи4. Поэтому, кроме книг, обзоров и текстов общего
характера, я включаю в библиографию только несколько ключевых классических
текстов и рандомные статьи, которые мы использовали для составления задач. Послед-
ние 2–3 десятилетия текущее состояние меняется так быстро, что прогресс можно
отслеживать только по специализированным сайтам, которые будут упомянуты
непосредственно в соответствующих местах текста.
3В действительности Томас Найсли обнаружил в 1994 году FDIV bug в процессе вычисления константы

Бруна, суммы обратных величин к простым близнецам.4Это совсем небанально сделать даже в формате компендиума [311, 312].
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Имеется огромное количество текстов общего характера по теории чисел, самого
различного уровня, в которых обсуждаются простые Мерсенна и суммы делителей.
Фактически при составлении этих задач в [6] мы пользовались книгами Эрика Баха и
Джеффри Шаллита [17], Анри Коэна [79], Ричарда Крэндалла и Карла Померанса [89]5,
Ричарда Гая [140], Владыслава Наркевича [239], Пауло Рибенбойма [289] и Вацлава
Серпиньского [320]6.

Известная с библейских времен поговорка утверждает, что “нет ничего нового
под Солнцем, но есть много старых вещей, которых мы не знаем.” В частности, при
работе над [6] мы не учитывали большое количество интересных текстов, в том числе
и таких, где специально рассматриваются факторизации чисел специального вида,
например, брошюру Карлоса Морейро и Николау Салданья [237] и книгу Хью Уилльямса
[359], специально посвященные тесту Люка и его вариантам. Номинально книга
Альберта Бейлера [24] относится к рекреативной математике, но фактически это весьма
содержательный текст, содержащий ссылки на оригинальные работы.

К счастью, в том, что касается истории всех рассматриваемых здесь вопросов
до начала 1920-х годов есть циклоп[ед]ический по охвату текст Леонарда Диксона
[101], где упомянуты, хотя и в телеграфном стиле, все классические тексты. Книга
Харольда Эдвардса [12] содержит очень интересную историческую реконструкцию того,
как Ферма, Мерсенн и их современники искали простые делители чисел Мерсенна.
Полными и надежными источниками о том, что было известно о числах Мерсенна в
1920-е и 1930-е годы служат статьи Деррика Лемера и Ральфа Арчибальда [15, 213, 218].
В брошюре Гая Хэуорта [167] информация с той же полнотой доведена до начала
1990-х, после чего это стало уже физически невозможно. В статьях Хью Уилльямса и
Джеффри Шаллита [360] и Сэмюэла Уогстаффа [351] детально описываются методы,
использовавшиеся для факторизации чисел специального вида до 1947 года и в
компьютерную эпоху, соответственно.

Разумеется, с тех пор появилось огромное количество новых текстов. Среди более
новых книг, где приводятся интересные утверждения и формулируются новые гипотезы
в этом направлении, упомяну книги Эндрю Гранвилля [134], Сэмюэла Уогстаффа [352]7 и
Джона Уоткинса [356].

Вот еще несколько замечательных научно популярных текстов, которые можно
использовать для приобщения к математике детей, широких народных масс и
любознательных пенсионеров8: Мартин Гарднер [127], Джон Конвей и Ричард Гай
[83], Кейт Девлин [97], Йан Стюарт [326] и Маркус дю Сотой [313], последние три
содержат популярные, но аккуратные и подробные обзоры использования компьютеров
в задачах факторизации. Книга Констанс Рид [284] предсказуемым образом9 содержит
5Не удержусь от того, чтобы процитировать следующий живописный фрагмент из рецензии Роберта

Юричевича на эту книгу: “It seems that we will only begin to seriously understand the sequence of prime numbers
when we are freely able to work with prime numbers which are at least 1 million digits in length. It would certainly
be fantastic to discover a trick in order to do arithmetic with such huge fundamental building numbers without the
aid of a computing machine. It would also be nice to be able to fly without the aid of a flying machine. Plainly, the
computer is an indispensible tool to the research mathematician studying the sequence of prime numbers, as well as
to the mathematician applying prime number theory in industry.” — “Кабымне такие перья, да такие крылья,. . . ”6Фактически, как для [89] и [140], мы, к сожалению, пользовались предыдущимизданием. Второе издание
существенно расширено и обновлено именно в части, относящейся к факторизации чисел Мерсенна и роли
в этом компьютеров.7"Multiply 2071723×5363222357 by hand. Feel the joy.”8“There is much pleasure to be gained from useless knowledge.”9Констанс Рид сестра Джулии Робинсон.
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описание открытия новых простых Мерсенна Рафаэлем Робинсоном.
Непрерывный текст Рибенбойма [286–289] — а здесь он процитирован далеко не

с самого начала! — служил заменой интернета в докомпьютерную эпоху, особенно
с учетом авторских обновлений в русских, французских, немецких и португальских
переводах. Отдельно отмечу последний немецкий перевод [290], где с момента выхода
английского издания многое добавилось. Книги Рибенбойма элементарные, но все же
относятся не к научно-популярному жанру, а к математическому просвещению. В них
приводятся простые, но настоящие доказательства большого количества фактов.

2. РУКОТВОРНЫЕ ПРОСТЫЕ ЧИСЛА МЕРСЕННА
В этоми следующемпараграфемыобсудим важнейшийкласс простых, возникающий

во многих вопросах теории чисел, алгебры и комбинаторики.
2.1. Простые Мерсенна

Если m — собственный делитель n, то xn − 1 делится на xm − 1. Поэтому если
Mn = 2n − 1 простое, то n простое. Числа вида Mp = 2p − 1, где p простое, называются
числами Мерсенна. Почти все самые большие известные простые числа являются
простыми числами Мерсенна.

• Простота первых трех из чисел
M2 = 3, M3 = 7, M5 = 31, M7 = 127

известна с глубокой древности, простота четвертого из них явно упоминалась не позже
III века до Н.Э. В середине XV века была установлена также простота числа

M13 = 8191.

Поэтому большинство ранних авторов были уверены, что верно и обратное, т.е. если p
простое, то Mp тоже простое.

• Это заблуждение было развеяно в 1536 году Худальрикусом Региусом, который
заметил, что M11−1 = 2047 = 23 ·89, как мы скоро увидим, эта факторизация не случайна,
23 = 2 ·11+1.

• В 1588 году Пьетро Катальди10, проверил, что
M17 = 131071, M19 = 524287

простые, при этом он заявил, что M23,M29,M31 и M37 тоже простые.
• В 1640 году Пьер де Ферма проверил, что в действительности M23 и M37 составные.

Позже Леонард Эйлер заметил, что и M29 тоже составное, а в 1772 году показал, что
M31 = 2147483647

10Формально книга Trattato dè Numeri Perfetti [57], содержащая эти результаты, опубликована в 1603
году. Но, первая ее фраза такова: “Nel trattato dè numeri perfetti, che giàsino dell’anno 1588 composi,. . . ”.
На странице 40 воспроизведена таблица всех простых чисел p < 750. Поскольку 7272 = 528529 > M19,даже не особенно вчитываясь в текст понятно, как именно действовал Катальди. Он пробовал в качестве
возможных делителей M13, M17, M19 все простые, не превосходящие целую часть их квадратных корней
— “sua prossima radice quadra”. Сомнительно, чтобы Катальди довел такого рода прямые вычисления до
28972 = 8392609 > M23.

6 © КОМПЬЮТЕРНЫЕ ИНСТРУМЕНТЫ В ОБРАЗОВАНИИ. №-, 2020 г.
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простое. При этом оба они пользовались сравнениями для делителей чисел Mp , которые
мы напоминаем в § 4.

• Во всех обычных текстах по теории чисел говорится, что в связи с проблемой
четных совершенных чисел Марин Мерсенн в 1644 году утверждал в предисловии к
своей книге Cogitata Physica-Mathematica [230], что числа

Mp , p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257

просты, а все остальные числа Mp для p ≤ 257 составные. Как позже выяснилось,
этот список верен до p = 31, но дальше содержал ошибки. Однако эти ошибки были
исправлены только в конце XIX и начале XX веков.

Так примерно это излагается и в нашем задачнике [6]. Однако с тех пор я прочел
первоисточники и в следующем пункте скорректирую эту популярную картинку. В
действительности Мерсенн утверждал лишь, что до M31 нет других новых простых
Мерсенна. А числа M67, M127 и M257 возникли в процессе попытки сформулировать
гораздо более трудную и интересную гипотезу.

2.2. Что на самом деле утверждал Мерсенн
В издании 1644 года [230] я не нашел ничего про числа Мерсенна, кроме пункта

XIX введения, где говорится про совершенные числа. А именно, Мерсенн отмечает,
что из 28 чисел, которые указаны в трактате Пьетро Бонго как совершенные, в
действительности 20 совершенными не являются: “solos octo perfectos habeat videlicet
6, 28, 496, 8128, 23550336, 8589869056, 137438691328, 2305843008139952128”. Так в тексте.
Очевидно, опечатка. Пятое число должно быть 33550336, все остальные, включая
2305843008139952128, совершенность которого была доказана Эйлером, верны.

ДалееМерсенн утверждает следующее: “Porro numeri perfecti adeo rari sunt, vt vndecim
dumtaxat potuerint hactenus inueniri: hoc est, alii tres à Bongianis differentes: neque enim vllus
est alius perfectus ab illis octo, nisi superes exponentem numerum 62, progressionis duplae ab
1 incipientis.” А именно, что совершенные числа настолько редки, что со времени Бонго
удалось открыть всего три новых, причем ни одного из них меньшего чем. . .— и вот
тут происходит нечто совершенно загадочное. Если читать 62 так же, как 68, 128 и 258 в
дальнейшем тексте, то речь здесь идет именно о числе 260M61.

Однако продолжение не оставляет возможности такого толкования: “Nonus enim
perfectus est potestas exponentis 68 minus 1. Decimus, potestas exponentis 128 minus 1.
Vndecimus denique, potestas 258 minus 1, hoc est potestas 257, vnitate decurtata, multiplicata
per potestatem 256”. Здесь прямо утверждается, что 266M67, 2126M127 и 2256M257 еще три
совершенных числа, девятое, десятое и одинадцатое — в порядке обнаружения, а не в
порядке величины. Я не вижу здесь утверждения, что других совершенных чисел нет.

До конца пункта XIX Мерсенн продолжает рассуждать на эту тему. В качестве вызова
он предлагает найти еще 11 совершенных чисел, но заявляет, что это будет чрезвычайно
трудно, поскольку существуют огромные интервалы степеней, где простых Мерсенна
вообще нет. При этом он делает удивительные конкретные предсказания, в частности,
предполагает отсутствие простых Мерсенна Mp в интервале 1050000 < p < 2090000. Как
мы вскоре увидим, даже с использованием суперкомпьютеров вычисления с числами
такого размера стали нам доступны только начиная с середины 1990-х годов.
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И действительно, после этого он утверждает, что предъявить бесконечное11
количество совершенных чисел будет чрезвычайно трудно. Это связано с тем, что
даже для нескольких чисел, у которых всего-то 15–20 знаков(!!) чтобы проверить,
являются они простыми или составными, может потребоваться столетие вычислений12.

В научно-популярных книгах высказывается мнение, что он просто воспроизвел этот
список из писем Ферма и Френикля, сделав при переписывании опечатку, 67 вместо 61.
С другой стороны, сам список и точность догадки относительно числа M127 совершенно
удивительны и требуют объяснения. Обе эти точки зрения присутствуют в следующем
фрагменте из Диксоновской “Истории”: “In a letter to Tannerу13 Lucas stated that Mersenne
(1644, 1647) implied that a necessary and sufficient condition that 2p − 1 be a prime is that p
be a prime of one of the forms 22n +1, 22n ±3, 22n+1 −1. Tannery expressed his belief that the
theorem was empirical and due to Frenicle, rather than to Fermat14 . . . ”, [101].

Воспроизведу тот фрагмент текста 1647 года [231], на который здесь ссылаются
Люка и Диксон. Мерсенн явно выписывает все цифры числа M67, в количестве 21
штуки, что делает заявление об “опечатке” абсурдным. Очевидно, что он пытается здесь
формулировать ОБЩЕЕ ПРАВИЛО простоты чисел Мерсенна. При этом он не отмечает
отдельно случай M257, и не говорит ничего про конкретный интервал.

Вот что в точности говорится: “Sequens Regula numeris primis agnoscendis admodum
vtilis videlicet numerum binarii analogicum vnitate decurtatum, cuius exponens primus,
ternario, vel minore numero ab aliquo binarii analogi, cuius exponens sit par, est numerus
primus. Verbi gratiâ, 7 est exponens 128, nam 7 differt ternario à 4 binarii analogo, cuius
exponens est par, ideoque 127, est primus. Præterea si 64, ternarius addatur, surget primus 67,
adque adeo 67, potestas plus 1, erit numerus, qui sequitur, primus 147573952589676412927:
quorum hæc est proprietas, vt in sui medium ducti numeros perfectos generent: quod intellige
de solis numeris primis, qui sunt vnitate minores numero binarii analogo, eapropter non
conuenit hæc proprietas numero primo 5, sed numeris 3, 7, 31, 127, 8191, 131071, 524287,
2147483647, & omnibus alius eiusmodi generis”, [231], страница 182.

В конце отрывка снова воспроизводится список первых восьми чисел Мерсенна,
относительно которых он не имел сомнения. Предшествующий текст может быть
истолкован в таком духе, как пишет Люка, что простота Mp определяется близостью p к
степени двойки. В дальнейшем многие, в частности, Ральф Арчибальд, Стиллман Дрейк,
Малколм Хейуорт [15, 103, 169], предлагали свои интерпретации, но, как мне кажется,
никому не удалось объяснить список Мерсенна таким образом, чтобы включить
M13 и исключить при этом M61. Поэтому отсутствие упоминания M61 действительно
представляет собой загадку и я начинаю верить, что увидев рядом в тексте M61 и M67перво[о]печатники сочли это повтором и выбросили M61 при редактировании текста.

11В соответствии с обычаем того времени он говорит “любое предписанное количество”.12Оба эти фрагмента текста полностью воспроизведены на латыни в статье Уолтера Уильяма Роуз Болла
[310], где их, конечно, несколько легче читать, чем в оригинальном издании XVII века. Последняя фраза
этого пункта в оригинале выглядит так: “agnoscere num dati numeri 15, aut 20 caracteribus constantes, sint primi
necne, cùm nequidem saeculum integrum huic examini, quocumquemodo hactenus cognito, sufficiat.” Отсюда Роуз
Болл выводит следующее заключение: “From the last clause it would appear that he did not know how the result
was demonstrated”.13Из общих соображений очевидно, что имеется в виду Поль Таннери, который примерно в это время
занимался подготовкой изданий трудов Ферма и Декарта, а не его брат Жюль Таннери.14“. . . valeurs qu’il tenait, supposent certains, de Fermat lui-même”, [274].
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2.3. Критерий Люка—Лемера
Простоту первых чисел Мерсенна легко установить пробными делениями —

используя для сокращения перебора сравнения для делителей, как это делали Ферма
и Эйлер, см. § 4. В то же время, проверка подобными прямыми методами простоты
следующих чисел из списка Мерсенна, вот хотя бы M67, представляла по тем временам
уже довольно серьезную вычислительную задачу.

Поэтому следующие простые Мерсенна были открыты только в конце XIX века. Как
уже упоминалось, почти все самые большие известные сегодня простые числа являются
числами Мерсенна. Это связано с тем, что проверять простоту числа Mp значительно
проще, чем простоту других чисел того же порядка.

А именно, для чисел Мерсенна имеется следующий критерий простоты, открытый
в 1876 году Эдуаром Люка [224] и упрощенный в 1930 году Дерриком Лемером15 [210,
214]. Чтобы сформулировать этот критерий, определим прежде всего числа Люка Ln .Положим L1 = 4 и зададим следующие числа рекуррентно посредством Ln+1 = L2

n −2.
Так вот, критерий Люка—Лемера утверждает, что для того, чтобы выяснить,

является ли число Мерсенна Mp простым, необходимо выполнить всего одно деление,
а именно, Mp в том и только том случае простое, когда оно делит Lp−1, см. книгу Хью
Вилльямса [359] по поводу истории этой идеи и ее развития. Простые доказательства
приведены в статьях [54, 189, 309, 358].

До 1876 года простота чиселМерсенна доказывалась строго в порядке их возрастания.
А именно, обозначим n-е простое число Мерсенна через M(n). Тогда изложенная в
предыдущем пункте история может быть резюмирована как

M(1) = M2 = 3, M(2) = M3 = 7, M(3) = M5 = 31, M(4) = M7 = 127,

M(5) = M13 = 8191, M(6) = M17 = 131071, M(7) = M19 = 524287,

M(8) = M31 = 2147483647.

Однако, начиная с Люка простые числаМерсенна открывались не обязательно в порядке
возрастания номера.

• В 1876 году пользуясь своим критерием Эдуар Люка доказал, что число M67составное (по этому поводу см. § 4) и подтвердил, что число M127 простое:
M(12) = M127 = 170141183460469231731687303715884105727,

девятое в порядке открытия, но двенадцатое по величине.
Рекордное на то время число M127 у которого 39 цифр, оставалось самым большим

известным простым числом на протяжении 75 лет! Мы расскажем об этом чуть больше
в § 4.

Открытие трех предшествующих простых чисел Мерсенна M(9), M(10) и M(11),
опровергающих то, что обычно называется гипотезой Мерсенна, потребовало еще 38
лет. Интересно, что все они были открыты любителями!
15Дерриком Генри Лемером (1905–1991), мужем Эммы Марковны Лемер (1906–2007), которого не следует

путать с его отцом ДеррикомНортоном Лемером (1867–1938), тоже профессором Университета Калифорнии
в Беркли, который тоже занимался ровно такого же рода теорией чисел. Впрочем их систематически
смешивают и основные базы данных: в MatSciNet работы Д. Н. Лемера не определяются, а в ZBMath
приписываются Д. Г. Лемеру. Поэтому единственный способ состоит в том, чтобы смотреть сами тексты
статей. Упомянутые далее обобщения совершенных чисел, это Д. Н. Лемер. Но в данном случае речь идет
именно о работах Д. Г. Лемера, составивших содержание его Ph. D. в 1930 году.
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• Девятое число Мерсенна
M(9) = M61 = 2305843009213693951

открыл в 1883 году Иван Михеевич Первушин16,17,18.
• Деcятое и одинадцатое числа Мерсенна

M(10) = M89 = 618970019642690137449562111,

M(11) = M107 = 162259276829213363391578010288127

открыл Ральф Эрнест Пауэрс в 1911 году [278, 279] и в 1914 году [280, 281], соответственно.
Число M107 было последним числом Мерсенна, открытым вручную. Впрочем, в своих

вычислениях сам Пауэрс пользовался арифмометром! Следующие два простых числа
Мерсенна M521 и M607 были открыты уже с использованием компьютера, ровно за день
до его смерти19.

Сам Лемер в 1927–1932 годах завершил проверку первоначального предположения
Мерсенна, доказав, что M257 составное. В дальнейшем выяснилось, что ни одного нового
простого числа вида Mp , p ≤ 257, нет, а следующие простые Мерсенна уже гораздо
больше и вряд ли могли быть когда-либо обнаружены без компьютера.
2.4. Задачи для студентов экономистов

Впрочем, сегодня на бытовом компьютере можно повторить не только все
эти результаты, но и ранние компьютерные вычисления за несколько секунд.
Воспроизведем несколько задач из [6], которые мы с Володей Халиным фактически
предлагали студентам направлений “информационные системы в экономике” и
“экономическая кибернетика”.
Задача. Найдите первые 17 простых чисел Мерсенна и исправьте все ошибки в списке
Мерсенна.
Ответ.Можно, например, так:
16Сельский священник Иван Первушин был старшим из 17 детей в семье, что с детства вызвало у него

интерес к простым числам. Впрочем, Википедия утверждает, что в семье его родителей было всего 16 детей,
что, конечно, объясняло бы его интерес к степеням двойки. До открытия простого Мерсенна M61 в 1877
году он нашел простой делитель у числа Ферма F12, а в 1878 году у числа Ферма F23. До него найти новые
делители у чисел Ферма получалось только у Эйлера и Клаузена, и одновременно с ним — у Люка.17Я не смог найти оригинальную публикацию Первушина, а только упоминание его результата в
Бюллетене Петербургской Академии. Вот живописный фрагмент из доклада Имшенецкого и Буняковского:
“Tout en laissant à la charge de l’auteur la responsabilité pour l’exactitude du résultat qu’il a obtenu au bout de ses
longs et fatigants calculs, — nous devons constater, pour sauvegarder son droit de priorité, que 1o Le manuscrit du
père P e r v o u c h i n e contenant sa communication de l’année 1883, est déposé aux Archives de notre Académie; ce
document est accompagné de quelques tables, calculées par l’auteur, et destinées a faciliter la vérification du résultat
qu’il a obtenu.”, [178].18“Кроме того была еше статья (С a t а l а n) по этому вопросу, но с этой статьей я, к сожалению, был лишен
возможности познакомиться, так как я этого журнала не мог в Москве нигде достать.”, [11].19Воспроизведу некролог Пауэрса, написанный Лемером для AMS, в котором упоминаются оба эти
обстоятельства: “This amateur mathematician died on Jan. 31, 1952, at Puente, California. He would have been
77 years old on April 27. Mr. Powers was more responsible than any other man for the demonstration of the failure
of Mersenne’s conjecture. He proved that 289−1 and 2107−1were primes, and that several other Mersenne numbers
were composite by long and laborious deskmachine calculations. He was not aware of the discovery, the night before
his death, of two new Mersenne primes (MTAC, v. 6, p. 61). Mr. Powers was born in Fountain, Colorado, and spent
most of his life in Denver”.
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Select[Table[2ˆPrime[n]-1,{n,1,400}],PrimeQ]
Топорно, но для столь маленьких чисел это не имеет никакого значения. Напомним,
что функция Select[list,crit] осуществляет выбор элементов из списка list,
удовлетворяющих критерию crit. В данном случае из списка первых 400 чисел
вида 2p − 1, где p простое, выбираются числа, удовлетворяющие критерию PrimeQ,
осуществляющему проверку на простоту.

Кроме всех чисел открытых вручную при этом получатся и первые пять новых
простых чисел Мерсенна открытых в Рафаэлем Робинсоном в 1952 году уже с помощью
компьютера, в том числе те два открытых в январе, которые упоминает Лемер. У них
157 цифр

M(13) = M521 = 68 64797 66013 06097 14981 90079 90813 93217 26943 53001 43305 40939

44634 59185 54318 33976 56052 12255 96406 61454 55497 72963

11391 48085 80371 21987 99971 66438 12574 02829 11150 57151

и, соответственно, 183 цифры:
M(14) = M607 = 531 13799 28167 67098 68958 82065 52468 62732 95931 17727 03192

31994 44138 20040 35598 60852 24273 91625 02265 22928 56688 89329 48624 65010

15346 57933 76527 07239 40951 99787 66587 35194 38312 70835 39321 90317 28127

Ясно, что простоту этих чисел было бы крайне затруднительно проверить вручную.
В следующих трех числах M(15) = M1279, M(16) = M2203 и M(17) = M2281, открытых
Робинсоном в июне–октябре 1952 года, уже 386, 664 и 687 цифр, соответственно, и я не
буду воспроизводить их здесь. Мы вернемся к их обсуждению в следующем параграфе.
Задача. Напишите программу для вычисления чисел Люка.
Ответ. Поскольку рекуррентная программа очевидна, ограничимся перечислением
нескольких первых Ln :

L2 = 14, L3 = 194, L4 = 37634, L5 = 1416317954,

L6 = 2005956546822746114,

L7 = 4023861667741036022825635656102100994.

Числа Люка довольно быстро растут, уже у L100 больше, чем 1027 цифр.
Задача. Напишите тест простоты чисел Мерсенна, основанный на критерии Люка—
Лемера и сравните скорость его работы с PrimeQ.

3. НЕРУКОТВОРНЫЕ ПРОСТЫЕ ЧИСЛА МЕРСЕННА
Между 1914 и 1952 годами не было открыто ни одного нового простого Мерсенна, а

все, которые были открыты после этого, были открыты с использованием компьютеров.
3.1. Новые простые числа Мерсенна: 1952–1996

История открытия простых чисел Мерсенна от начала компьютерной эпохи до
проекта GIMPS детально изложена в первой главе книги Кейта Девлина “Золотой
?? 11



Н. А. Вавилов

век математики”, [97]. Первые попытки найти новые простые Мерсенна при помощи
компьютеров, впрочем безуспешные, предприняли Максвелл Ньюман 1949 году и Алан
Тьюринг в 1951 году. Большинство из тех, кто отрывал числа Мерсенна в те годы, были
в игре, они профессионально занимались либо теорией чисел, либо компьютерными
вычислениями.

• Как уже упомянуто в предыдущем параграфе, 30 января 1952 года Рафаэль
Робинсон20 открыл на компьютере SWAC (= Standards Western Automatic Computer)
Национального Бюро Стандартов в Лос Анжелесе следующие два простых Мерсенна, а
позже в том же году еще три:

M(13) = M521 157 цифр 30.01.1952
M(14) = M607 183 цифр 30.01.1952
M(15) = M1,279 386 цифр 25.06.1952
M(16) = M2,203 664 цифр 07.10.1952
M(17) = M2,281 687 цифр 09.10.1952

Это были самые большие простые числа известные в то время. На самом деле Робинсон
проверил на простоту все числа Мерсенна Mp для p ≤ 2297. Для числа M2,281 собственно
вычисление (после написания и отладки программы) заняло на SWAC около часа. Для
сравнения, Макдивитт [225] прикидывает, что от человека вооруженного карманным
калькулятором, вычисление подобного объема потребовало бы около 50 нормальных
рабочих лет. Смешно даже думать, что какое-то из больших чисел Мерсенна могло бы
когда-либо быть открыто человеком — unless. . .

Открытие после 75-летнего перерыва больших простых чисел было, несомненно,
сенсацией. В историческом контексте это событие обсуждают Лемер [215, 216], Хорас
Улер [346–348], Тёгер Банг [18] и Ханс Ризель [302] Основные идеи и некоторые детали
вычислений представлены в чрезвычайно интересной статье самого Робинсона [307].

• В 1957 году Ханс Ризель21 нашел на первом шведском ламповом компьютере ВESK
(= Binär Elektronisk Sekvens Kalkylator), на котором он работал с 1953 года, следующее
простое Мерсенна, [303, 304]:

M(18) = M3,217 969 цифр 08.09.1957
• В 1961 году Александр Гурвиц на IBM 7090 в UCLA открыл следующие два прос-

тых Мерсенна [174]. По тем временам это был вполне серьезный компьютер, уже на
транзисторах, который создавался специально для научных вычислений и стоил
2–3M USD. Тем не менее, проведение теста Люка—Лемера для M(20) потребовало на
нем 50 минут машинного времени — сегодня, конечно, любое карманное устройство
справляется с этим за секунды.

M(19) = M4,253 1,281 цифр 03.11.1961
M(20) = M4,423 1,332 цифр 03.11.1961

В статье Селфриджа и Гурвица [316] можно найти описание встретившихся при этом
проблем. Понятно, что само умножение многозначных чисел в то время было проблемой
20Тот самый Рафаэль Робинсон, знаменитый логик, муж Джулии Робинсон.21Тот самый Ханс Ризель, который известен своими работами по факторизации чисел вида k ·2n ±1: тест

Люка—Лемера—Ризеля, числа Ризеля, решето Ризеля и т.д.
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ипотребовало разработкиновых алгоритмов, основанныхна FFT. Но былии совершенно
неожиданные для наших сегодняшних понятий проблемы, например, возникновение
машинных сбоев и расхождений в ответах между разными компьютерами!

• В 1963 году Дональд Джиллис на ILLIAC II открыл еще три числа Мерсенна [128]:
M(21) = M9,689 2,917 цифр 11.05.1963
M(22) = M9,941 2,993 цифр 16.05.1963
M(23) = M11,213 3,376 цифр 02.06.1963

В действительности Дональд Джиллис был одним из разработчиков ILLIAC II и поиск
чисел Мерсенна был частью тестирования только что собранной в университете
Иллинойса, Урбана—Шампань, системы, которое продолжалось примерно три недели.
Машинные сбои продолжали свирепствовать, Джиллис нашел ошибки в таблицах
Гурвица, позже Такерман найдет ошибки в таблицах Джиллиса [338],. . .

• Только в 1971 году Брайант Такерман на IBM 360/91 нашел 24-е число Мерсенна
[337]:

M(24) = M19,937 6,002 цифр 04.03.1971
Такерман по образованию тополог, но за пять лет работы в IAS с Джоном фон Нейманом
переучился на Computer Science и к моменту открытия M(24) много лет работал в
исследовательском отделе IBM. Параллельно с ним поисками M(24) занимались Майкл
Спесинер и Ричард Шреппель в MIT. Они придумали более быстрый алгоритм для
умножения больших чисел (он описан во втором томе Кнута), но лучший алгоритм
проиграл лучшему оборудованию: “don’t force it, take a larger hammer”. Следующие два
десятилетия были соревнованием больших машин.

• В 1978 году Ландон Курт Нолл и Лора Никель на CDC Cyber 174 нашли 25-е число
Мерсенна, а вскоре в феврале 1979 года Нолл нашел и 26-е, [244]:

M(25) = M21,701 6,533 цифр 30.10.1978
M(26) = M23,209 6,987 цифр 09.02.1979

Это событие попало во все газеты, так как Нолл22 и Никель в то время были 18-летними
школьниками. К моменту открытия M(25) они три года работали над этим проектом и
получили 350 часов машинного времени на Сyber 174 в кампусе Университета Кали-
форнии в Ист Бэй (Хейуорд)23.

• В 1979 году Харри Нельсон и Дэвид Словинский на Cray 1 нашли 27-е число
Мерсенна, [323], а через три с половиной года, все еще на Cray 1, Словинский нашел
еще одно такое число:

M(27) = M44,497 13,395 цифр 08.04.1979
M(28) = M86,243 25,962 цифр 25.09.1982

Харри Нельсон был одним из ключевых разработчиков низкоуровневых операционных
систем для суперкомпьютеров. При установке Cray-1 в Ливерморской Национальной
22Нолл продолжил заниматься факторизацией и дальше, на его странице http://www.isthe.com/chongo

/index.html можно найти интересные ссылки, посвященные этому делу.23Представьте себе, сколько стоил месяц работы такой машины в то время — у меня есть гипотезы о том,
как школьники могли получить к ней доступ, но я стесняюсь их высказывать.
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Лаборатории он привлек программиста Cray Research Inc. Дэвида Словинского для
разработки рутин приемочного тестирования. В качестве субстрата для такой рутины
Словинский выбрал поиск больших простых Мерсенна. При этом возникла масса
технических моментов, типа быстрого умножения многозначных чисел, для этого
был имплементирован алгоритм Шенхаге—Штрассена 1971 года и т.д. В дальнейшем
эти рутины использовались при тестировании всех суперкомпьютеров Cray и сам
Словинский, частично совместно с Полем Кейджем, открыл, кроме M(27) и M(28),
еще пять новых простых Мерсенна, что является мировым рекордом. Основанные
на этих идеях программы под другие платформы, написанные Ричардом Крэндаллом
и Джорджем Вольтманом, привели к открытию всех остальных известных сегодня
простых Мерсенна. Мир уже никогда не станет прежним.

• Следующее число сильно выпадает из хронологии, его открыли Уолтер Колквитт и
Люк Уэлш только в 1988 году на суперкомпьютере NEC SX-2 в ИсследовательскомЦентре
Хьюстона, [82]:

M(29) = M110,503 33,265 цифр 28.01.1988
К этому моменту были уже известны гораздо большие числа M(30), M(31), открытые
Словинским при тестировании новых моделей Cray.

• Дэвид Словинский на Cray X-MP и на Cray X-MP/24, соответственно:
M(30) = M132,049 39,751 цифр 19.09.1983
M(31) = M216,091 65,050 цифр 01.09.1985

Ну и, наконец, последний аккорд, одна машина, одно число, с периодичностью два года.
• Три последних простых Мерсенна найденных на больших машинах были открыты

в 1992–1996 Дэвидом Словинским и Полем Кейджем на Cray-2, Cray C90, Cray T94:
M(32) = M756,839 227,832 цифр 19.02.1992
M(33) = M859,433 258,716 цифр 04.01.1994
M(34) = M1,257,787 378,632 цифр 03.09.1996

При открытии M(32) использовался буквально Maple! Но в этот момент динозавров
вытеснили млекопитающие.
3.2. Great Internet Mersenne Prime Search: 1996 onwards

В январе 1996 года Джордж Вольтман организовал проект распределенных
вычислений GIMPS24 = “Great Internet Mersenne Prime Search”, см. [364–366]. Душой этого
проекта является написанная Вольтманом программа Prime95, тестирующая числа на
простоту25. Кроме самых быстрых на сегодня алгоритмов умножения больших чисел и
24См. официальный сайт https://www.mersenne.org/, название проекта произносится “гимпс”.25Я не знаю, имелось ли это в виду изначально, но Prime95 стало любимым средством для тестирования

стабильности систем: “Prime95 has been a popular choice for stress/torture testing a CPU since its introduction,
especially with overclockers and system builders. Since the software makes heavy use of the processor’s integer and
floating point instructions, it feeds the processor a consistent and verifiable workload to test the stability of the CPU
and the L1/L2/L3 processor cache. Additionally, it uses all of the cores of a multi-CPU/multi-core system to ensure a
high-load stress test environment”.
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собственно критерия Люка—Лемера, в ней имплементированы пробное деление, тесты
псевдопростоты, алгоритм Ленстры, алгоритм Полларда и куча других вещей.

В проекте принимает участие примерно 250 тысяч человек и около 2.5 миллионов
компьютеров, с используемой для целей проекта суммарной производительностью
около 1.5 экзафлопсов26, которые получают текущую версию программы Prime95
(в настоящее время версию 30.3), необходимые инструкции и интервал простых
экспонент p , в котором они ищут простые числа Мерсенна Mp , либо верифицируют
предыдущие вычисления. Все последние новые простые Мерсенна начиная с ноября
1996 года в количестве 17 штук были открыты именно в рамках проекта GIMPS.

Вот резюме с их официального сайта https://www.mersenne.org/primes/ с
краткими комментариями.
M(35) = M1,398,269 420,921 13.11.1996 Joel Armengaud 90MHz Pentium
M(36) = M2,976,221 895,932 24.08.1997 Gordon Spence 100MHz Pentium
M(37) = M3,021,377 909,526 27.01.1998 Roland Clarkson 200MHz Pentium
M(38) = M6,972,593 2,098,960 01.06.1999 Nayan Hajratwala 350MHz Pentium 2

IBM Aptiva
Чтобы лучше понимать величину этих чисел, напомню, что на странице книжки

стандартного формата около 2000 знаков. Это значит, что просто для десятичной
записи числа M(38) нужна книжка толщиной 1000 страниц. Тем не менее, мы можем
проверить простоту этого числа и делать о нем другие осмысленные высказывания. При
этом дальнейшие числа еще гораздо гораздо больше — ведь количество десятичных
знаков растет как логарифм числа, а не как само это число.

После этого наступил Y2K и простое Мерсенна M(39) стоит несколько особняком.
Кстати, оно единственное из всех открыто на PC с процессором AMD.

M(39) = M13,466,917 4,053,946 14.11.2001 Michael Cameron 800MHz Athlon
Thunderbird

Следующие пять простых Мерсенна если рассматривать количество цифр как
функцию от времени их открытия почти идеально ложатся на прямую:

M(40) = M20,996,011 6,320,430 17.11.2003 Michael Shafer 2GHz Dell
Dimension

M(41) = M24,036,583 7,235,733 15.05.2004 Josh Findley 2.4GHz Pentium 4
M(42) = M25,964,951 7,816,230 18.02.2005 Martin Nowak 2.4GHz Pentium 4
M(43) = M30,402,457 9,152,052 15.12.2005 Curtis Cooper 2GHz Pentium 4

Steven Boone
M(44) = M32,582,657 9,808,358 04.09.2006 Curtis Cooper 3GHz Pentium 4

Steven Boone
При этом простое Мерсенна M(43) последнее, о котором мы с Володей Халиным

знали во время работы над [6], следующее число M(44) туда уже не попало. Между
тем, это чрезвычайно интересное число. Купер и Бун стали первыми участниками
26Экзафлопс = квинтиллион = миллион миллионов миллионов операций с плавающей точкой в секунду.
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GIMPS, которые открыли больше одного нового простого Мерсенна. Для вычислений
они использовали кластер из примерно 850 компьютеров.

После этого произошла очередная историческая аномалия, простое Мерсенна M(47)
было обнаружено раньше, чем два предыдущих:
M(45) = M37,156,667 11,185,272 06.09.2008 Hans-Michael 2.83GHz Core2Duo

Elvenich
M(46) = M42,643,801 12,837,064 04.06.2009 Odd M. Stridmo 3GHz Core2
M(47) = M43,112,609 12,978,189 23.08.2008 Edson Smith Dell OptiPlex 745

Последние четыре простых Мерсенна открыты в 2013–2018 годах, но их номера пока
не подтверждены, так как не все меньшие числа Мерсенна проверены на простоту.
Поэтому их номера могут измениться.
M(48∗) = M57,885,161 17,425,170 25.01.2013 Curtis Cooper Intel Core2Duo

E8400 @3.00GHz
M(49∗) = M74,207,281 22,338,618 07.01.2016 Curtis Cooper Intel i7-4790

@3.60GHz
M(50∗) = M77,232,917 23,249,425 26.12.2017 Jon Pace Intel i5-6600

@3.30GHz
M(51∗) = M82,589,933 24,862,048 07.12.2018 Patrick Laroche Intel i5-4590T

@2.0GHz
Забавно, что все это было сделано на самых демократичных бытовых компьютерах,

иногда со слегка разогнанным процессором.

4. ФАКТОРИЗАЦИИ ЧИСЕЛ МЕРСЕННА
Обратимся теперь к разложению на простые множители тех чисел Мерсенна,

которые не являются простыми. Для чисел такого размера установление того, что
они не являются простыми, совершенно не означает возможности предъявить хотя
бы один простой делитель. Более того, даже знание одного или нескольких простых
делителей какого-то числа совершенно не означает возможность разложить это число
на множители. Мне совершенно неясно, что могла бы означать основная теорема
арифметики в чисто финитном мире. Легко представить себе ситуацию, когда мы
можем записать само число и проверить, что оно не проходит какой-то тест простоты,
но при у этого числа нет никаких простых делителей, так как их невозможно никаким
образом выразить СРЕДСТВАМИ ИСПОЛЬЗУЕМОГО НАМИ ЯЗЫКА.
4.1. Факторизации чисел Мерсенна

История ранних факторизаций чисел Мерсенна очень детально изложена у Диксона
[101] и Арчибальда [15], где можно найти ссылки на оригинальные работы.

В связи с тем упражнением, которое мы предлагаем проделать в следующем пункте,
интересно, что еще в 1935 году — т.е. уже после основных работ Деррика Лемера на
эту тему! — не было известно, являются ли числа M157, M167, M193, M199, M227, M229
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простыми или составными. Про числа M101, M103, M109, M137, M139, M149, M241, M257было известно, что все они составные, но при этом для них не было известно ни одного
простого делителя! Только в 1944–1947 годах Хорас Улер при помощи теста Люка—
Лемера установил, что все остававшиеся до этого нерассмотренными числа составные,
не предъявляя, впрочем, их разложения на множители.

Поэтому для выработки чувства исторической перспективы я коротко воспроизведу
историюфакторизаций чиселМерсенна Mp , p ≤ 257, выполненных вручную до 1947 года.
Эти результаты не были систематически проверены, исправлены и доведены до конца
до середины 1960-х годов, уже на компьютере.

• Первое принципиальное продвижение принадлежит де Ферма, который заметил
сравнения для степеней (“малая теорема Ферма”) и руководствуясь этим нашел в 1640
году младшие простые делители чисел M23 и M37, равные 47 и 223, соответственно.

• В дальнейшем к этой задаче многократно возвращался Эйлер. Так в 1732 году
развивая идею Ферма он установил, что числа M29, M43, M73 составные и нашел
их младшие простые делители, равные 233, 431 439, соответственно, для этого ему
пришлось каждый раз произвести всего два деления!

• В том же году он проверил, что числа M83, M131, M179, M191, M239, M251 тоже все
составные и предъявил их младшие простые делители 167, 263, 359, 383, 479, 503.

• Потом он возвращался к этой задаче еще два раза с интервалом девять лет. Так, в
1741 году он нашел младший простой делитель M47, равный 2351.

После 1750 года наступило затишье, и поиски факторизаций больших чисел
Мерсенна возобновились только в 1856 году работами Ройшле и Плана и продолжались
в таком духе еще 90+ лет. Укажем только авторов и даты открытия младших простых
множители для чисел Мерсенна Mp , p ≤ 247.

• M79,M113 и M233, Карл Густав Ройшле, 1856.
• M41, Джованни Антонио Амедео Плана, 1856.
• M53 и M59, Фортюн Ландри, 1867 и 1878.
• M97, M151, M211, M223, А. Ле Лассер, 1883.
• M197, Аллан Каннингем, 1895.
• M67, Френк Нельсон Коул27 [81], 1903 — к этому моменту из работ Люка 1876 и

Фокемберга 1894 уже было известно, что M67 составное, но они не предъявили ни одного
простого делителя.

• M163,M71, Аллан Каннингем, 1908 и 1909.
• M181, Херберт Вудалл, 1911.
• M173, Аллан Каннингем, 1912.
Какмы уже упоминали, в 1876 году Люка объявил, что число M67 является составным.

В 1894 году Фокемберг объявил это снова, а потом еще раз два или три [115, 116]. После
этого Пауэрс, Каннингем, Лемер, Улер, Баркер [19, 91–93, 208, 209, 211, 212, 215, 282, 283,
340–345, 362, 363] к 1947 постепенно доказали, что все остальные числа Mp , p ≤ 257,
составные. Таким образом, даже решение узко понимаемой задачи Мерсенна без
полного разложения этих чисел на множители заняло РОВНО ТРИСТА ЛЕТ.
27С этим разложением связан известный исторический анекдот про лекцию Коула на митинге

АмериканскогоМатематического Общества 31 октября 1903 года, во время которой он не произнес ни одного
слова, а просто перемножил на доске 193707721 на 761838257287. Позже он упоминал, что для того, чтобы
найти эти делители, ему потребовались "three years of Sundays."

?? 17



Н. А. Вавилов

Потом те же авторы, а также Бикмор, Андре Жерардан, Морис Борисович Крайчик,
Поль Пуле [28, 29, 199, 200] и другие строили новые простые делители, исправляли
ошибки в предыдущих текстах и т.д. В общем, все это превратилось в маленькую
индустрию, которая занимала всех этих достойных людей несколько десятков лет28. Для
разнообразия, в следующем пункте мы предлагаем повторить все эти вычисления за
несколько минут.

В действительности, даже Робинсон в 1952 году перепроверил только простоту
чисел Мерсенна, но не занимался их фактическим разложениям на множители. Такие
вычисления были проведены только к началу 1960-х годов. Насколько я понимаю,
окончательный ответ получен только к середине 1960-х годов. В работах Робинсона,
Лемера, Бриллхарта, Джонсона, Карста, Кравица, Ризеля, Селфриджа, Эрмана, Уогстафа
[48–53, 105, 190–193, 201, 305, 308, 317, 350] факторизации были продолжены до p < 20000.
В то время это было совсем непростым делом. Так, первая факторизация числа M101потребовала 10 часов машинного времени [50]. Но это, конечно, уже совершенно другая
история, к которой я собираюсь вернуться в статье, посвященной факторизациям чисел
специального вида. Ясно, что в дальнейшем проверка простоты чисел Мерсенна шла
сплошняком — хотя и не всегда с первого прохода — а факторизации шли следом, но
часто с довольно большим отставанием.
4.2. Критерий Ферма—Эйлера

Поиск простых делителей чисел Mp по сравнению с другими числами того же
размера резко упрощается следующим критерием Ферма—Эйлера. Пусть p и q —
нечетные простые. Тогда если p|Mq , то

p ≡ 1 (mod q), p ≡±1 (mod 8).

Задача. Разложите на множители все остальные числа Мерсенна до M257

Ответ. Поскольку все эти числа не слишком велики, можно обойтись внутренней
функцией FactorInteger. Вот факторизации всех составных чисел Мерсенна до M67.Кроме уже известного нам M11 = 2047 = 23 ·89 факторизация остальных чисел вручную
занятие не для слабых духом.

M23 = 8388607 = 47 ·178481,

M29 = 536870911 = 233 ·1103 ·2089,

M37 = 137438953471 = 223 ·616318177,

M41 = 2199023255551 = 13367 ·164511353,

M43 = 8796093022207 = 431 ·9719 ·2099863,

M47 = 140737488355327 = 2351 ·4513 ·13264529,

M53 = 9007199254740991 = 6361 ·69431 ·20394401,

M59 = 576460752303423487 = 179951 ·3203431780337,

M67 = 147573952589676412927 = 193707721 ·761838257287.

Взглянув на факторизацию M67 сразу ясно, что сделать это докомпьютерную эпоху без
какой-то серьезнойматематики было быпросто невозможно. Во временаМерсенна даже
28Это даже не обсуждая вопрос, какие из исторических вычислений проверялись или повторялись,

сколько там было ошибок и пр. — “And that leaves five —Well, six actually. But the idea is the important thing!”
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хотя бы проверить простоту этих множителей уже было изрядным упражнением. Так
что если Мерсенн и ошибся с простотой M67, то совсем ненамного.

Вот еще порция факторизаций. Видно, что паттерны разные, но у всех чисел
Мерсенна есть хотя бы один достаточно большой множитель.

M71 = 228479 ·48544121 ·212885833,

M73 = 439 ·2298041 ·9361973132609,

M79 = 2687 ·202029703 ·1113491139767,

M83 = 167 ·57912614113275649087721,

M97 = 11447 ·13842607235828485645766393,

M101 = 7432339208719 ·341117531003194129,

M103 = 2550183799 ·3976656429941438590393,

M109 = 745988807 ·870035986098720987332873,

M113 = 3391 ·23279 ·65993 ·1868569 ·1066818132868207,

Вот еще одна чрезвычайно интересная серия. У числа M131 есть огромный простой
множитель, но следующие три в каком-то смысле еще интереснее, у них нет маленьких
простых множителей! Напомню, что это именно те числа, про которые было известно,
что они составные, но для которых долго не удавалось предъявить ни одного простого
делителя. В дальнейшем этот паттерн становится доминирующим, с чем и связана
трудность факторизации чисел Мерсенна общегражданскими алгоритмами.

M131 = 263 ·10350794431055162386718619237468234569,

M137 = 32032215596496435569 ·5439042183600204290159,

M139 = 5625767248687 ·123876132205208335762278423601,

M149 = 86656268566282183151 ·8235109336690846723986161,

M151 = 18121 ·55871 ·165799 ·2332951 ·7289088383388253664437433,

M157 = 852133201 ·60726444167 ·1654058017289 ·2134387368610417,

M163 = 150287 ·704161 ·110211473 ·27669118297 ·36230454570129675721,

M167 = 2349023 ·79638304766856507377778616296087448490695649,

M173 = 730753 ·1505447 ·70084436712553223 ·155285743288572277679887,

Ближе к концу списка Мерсенна прямая факторизация становится довольно
затратным делом и я не буду воспроизводить ее результаты целиком. Так, в применении
к числу M257 = 2257−1 исполнение команды FactorInteger занимает ужасающие 253.604
секунды29:

M257 = 535006138814359 ·1155685395246619182673033·
374550598501810936581776630096313181393

Разумеется, трудность здесь состоит в том, что все простые множители большие,
по общегражданским стандартам, в самом маленьком из них все равно 15 цифр.
Можно только поразиться дерзновению Мерсенна, который заявлял, что это число
простое — для него оно простым и было! Для человека, не владеющего теорией чисел
29Mathematica 11.3 на HP EliteBook 830GS с процессором Intel Core i7-8550U 1.99GHz.
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или не вооруженного компьютером, никаких шансов найти эти множители нет.
Конечно, с нашей сегодняшней точки зрения это значит, что простые множители чисел
специального вида нужно искать при помощи алгоритмов, созданных специально для
факторизации чисел этого вида!
Задача. А теперь напишите программу поиска делителей Mp , использующую критерий
Ферма—Эйлера, которая работает быстрее, чем FactorInteger.

Бросается в глаза наличие у некоторых Mp совсем маленьких простых делителей,
скажем 23|M11, 47|M23, 167|M83 и 263|M131. Оказывается, это не случайность. А именно,
критерий Эйлера—Лагранжа утверждает, что если p ≡ 3 (mod 4), то q = 2p +1 в том и
только том случае является простым, когда q|Mp .
Задача. Найдите все p < 1000 такие, что q = 2p +1 делит Mp .

Напомним, что в связи с теоремой Ферма Софи Жермен ввела следующий класс
простых. Число p назывется простым Жермен, если p и 2p + 1 оба просты. Таким
образом, критерий Эйлера—Лагранжа утверждает, что числа Мерсенна, показатели
которых являются простыми Жермен дающими остаток 3 при делении на 4, не являются
простыми.
4.3. Prime records

Только в 1951 году рекорд Люка был побит30. и удалось найти простое число большее,
чем M127. Причем это не было числоМерсенна! А именно, пользуясь арифмометром Эме
Феррье нашел простое число

(2148 +1)/17 = 20988936657440586486151264256610222593863921,

у которого 44 цифры и которое не является числом Мерсенна.
Кстати, делить на 17Феррье учился довольно упорно. До этого он посвятил этому делу

целую книгу [117] и в результате в 1949 году нашел
(292 +1)/17 = 291280009243618888211558641,

Таким образом, Феррье побил и еще один рекорд, который продержался еще дольше,
а именно рекорд простого числа, не являющегося числом Мерсенна. Предыдущее такое
число было найдено Фортюном Ландри в 1867 году:

M59/179951 = 3203431780337.

см. https://primes.utm.edu/notes/FirstIn1951.html,
Как правило, самые большие известные простые числа являются числами Мерсенна.

Как правило, но не всегда. Это могут быть старшие делители чисел Мерсенна или Ферма
или какие-то другие числа подобного специального вида, сравнимые с ±1 по модулю
большой степени 2.

Так 6 августа 1989 года группа товарищей, известная как Amdahl 6, состоявшая
из Джона Брауна, Ландона Курта Нолла, Бодо Паради, Джина Смита, Джоэля Смита и
Серджио Дзарантонелло доказала простоту следующего числа

391581 ·2216193 −1, 65087 цифр.
30Впрочем, некоторые считают, что первое безукоризненное доказательство простоты M127 было дано

только в 1894 году Фокембергом, но даже и в этом случае рекорд простоял 57 лет! Я не высказываю никаких
суждений по этому поводу, но у многих авторов еще большие сомнения относительно вычислений самого
Фокемберга, см., например, [167].
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На момент открытия это было самое большое известное простое число.
Из 10 самых больших известных сегодня простых чисел девять являются простыми

Мерсенна. Единственное число другого вида, 9-е по рангу, это открытый в 2016 году
старший делитель равный

10223 ·231172165 +1, 9383761 цифр.
Остальные соревнования проходят в совершенно другой весовой категории.

Например, в самой большой известной сегодня паре близнецов
p = 2996863034895 ·21290000 −1, p +2 = 2996863034895 ·21290000 +1

всего по 388342 цифры и среди всех простых эти числа находятся ближе к середине
десятой тысячи.

Если еще 3–4 десятилетия назад эти рекорды можно было публиковать в статьях
[247, 248, 369–371], то сегодня в них миллионы цифр и учет им ведется только на
специализированных сайтах.
4.4. Гипотезы о числах Мерсенна

Вне всякого сомнения мы знаем, что ответ на три следующих вопроса утвердитель-
ный31. Мы только совершенно не знаем, как это доказывать. В классификации Дьедонне
[102] эти проблемы фигурируют как неприступные.
Проблема. Бесконечно ли количество простых Мерсенна Mp?
Проблема. Бесконечно ли количество составных чисел Мерсенна Mp?

По отношению к двоичной системе числа Мерсенна являются в точности репъюни-
тами (= repeated unit), т.е. числами, все цифры которых равны 1. В самом деле,

2p −1 = 2p−1 +2p−2 + . . .+2+1,

так что числа Мерсенна имеют вид 11,111,11111,1111111, . . . Репъюнитам в различных
базах посвящена довольно значительная литература, см. [10].

Репъюниты являются частным случаем палиндромических чисел, которые чита-
ются одинаково из начала в конец и из конца в начало. Другим известным примером
палиндромов являются числа Ферма 11,101,10001,100000001, . . .

Чтобыпроиллюстрировать, насколько сложна проблема о бесконечности количества
простых чиселМерсенна, отметим, что не решена даже следующая гораздо более простая
классическая задача, которую мы не будем здесь даже обсуждать, как и различные более
общие гипотезы Шинцеля и Серпиньского, см. [140].
Проблема. Бесконечно ли количество простых палиндромов в двоичной системе?

Вот еще одна классическая задача.
Проблема. Верно ли, что все числа Мерсенна Mp бесквадратные?

Если не требовать здесь простоты p , то это, очевидно, неверно. В самом деле, уже
M6 = 26 − 1 = 63 = 32 · 7. Можно было бы думать, что это связано с тем, что показатель
четен, но и это не так:

M21 = 221 −1 = 2097151 = 72 ·127 ·337.

31Единственный известный мне источник, где всерьез высказывется мнение, что число простых
Мерсенна конечно, это статья Василия Антоновича Голубева [131].
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С другой стороны, если q2|Mp , для некоторых простых p и q , то q должно быть
простым Вифериха, т.е. q2 должно делить 2q−1 − 1. Такие числа впервые рассмотрел
Артур Виферих в 1909 году в связи с теоремой Ферма. Более чем за век удалось найти
всего два таких числа, а именно 1093 и 3511, но ни одно из них не может быть делителем
чисел Мерсенна, см. [322, 355].

Относительно следующей гипотезы я бы уже не был так уверен. Одно из истолкова-
ний исходной гипотезы Мерсенна состоит в том, что он делал предсказание, для
каких показателей числа Мерсенна просты. То, что post factum эта гипотеза оказалась
неверна, ближе к концу списка, не делает ее менее великой, для того времени. Бейтман,
Селфридж и Уогстафф [20] предложили следующее исправление первоначальной гипо-
тезы Мерсенна. Однако сегодня мы можем подозревать, что и здесь дело идет просто о
ранних совпадениях, [137–139]. По поводу простоты чисел вида (2p +1)/3 см. [319].
Новая гипотеза Мерсенна. Пусть p — нечетное натуральное число. Тогда если
выполняются два из следующих условий, то выполняется и третье:

• p = 2k ±1 или p = 4k ±3,
• Mp = 2p −1 простое,
• (2p +1)/3 простое.
Текст Мерсенна 1647 года я первоначально прочел именно как ГИПОТЕЗУ О

БЕСКОНЕЧНОСТИ КОЛИЧЕСТВА ПРОСТЫХ ЧИСЕЛ МЕРСЕННА, точнее, как явную конструкцию
бесконечной серии простых Мерсенна. Совсем явно это было сформулировано Эженом
Каталаном уже в конце XIX века.

Определим двойное число Мерсенна как число Мерсенна, показатель которого сам
является числом Мерсенна для какого-то простого p ,

MMp = 22p−1 −1.

Определим теперь числа Каталана—Мерсенна рекурсивно как двойные числа
Мерсенна, начинающиеся с 3: p1 = 3, pn+1 = Mpn , см. . Как мы знаем, первые четыре
числа Каталана—Мерсенна

p1 = 22 −1 = 3, p2 = 222−1 −1 = 7, p3 = 2222−1−1 −1 = 127, p4 = 22222−1−1−1 −1 = M127,

простые. Узнав о доказательстве Люка простоты M127 Эжен Каталан тут же в 1876 году
прямо на полях работы Люка высказал следующую гипотезу32.
Гипотеза Каталана—Мерсенна. Все числа Каталана—Мерсенна pn просты.

Однако уже число p5 = MM127 настолько велико, что если оно не является простым,
то мы имеем шансы никогда этого не узнать. Однако еще смешнее было бы, если бы оно
внезапно оказалось простым, потому что еще за пару итераций мы окажемся в области
чисел, для которых у нас может вообще не быть возможности каким-либо образом
выразить их простые делители.
32На самом деле, это позднейшая реинтерпретация. Сам Каталан гораздо осторожнее: “Si l’on admet ces
deux propositions, et si l’on observe que 22 − 1, 23 − 1, 27 − 1 sont aussi des nombres premiers, on a ce théorème
empirique: Jusqu’à une certaine limite, si 2n −1 est un nombre premier p , 2p −1 est un nombre premier p ′, 2p ′ −1
est un nombre premier p", etc. Cette proposition a quelque analogie avec le théorème suivant, énoncé par Fermat,
et dont Euler a montré l’inexactitude: Si n est une puissance de 2, 2n +1 est un nombre premier.” Сравнивая эту
гипотезу с гипотезой Ферма о простоте чисел Ферма он прямо намекает, что она может быть неверна уже
на следующем шаге, см. [114, 132].
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Перейдем теперь к асимптотическим результатам. Морально результаты работ Эр-
деша, Кисса, Померанса, Ленстры, Энгберга, Поллака, Ригера и других [106, 108, 111, 238,
240, 270, 291] о делителях чисел Мерсенна означают, что:

• простых Мерсенна очень мало,
• простые делители у больших составных чисел Мерсенна как правило тоже очень

большие.
Это объяcняет, почему простыеМерсенна так трудно искать и почему их еще труднее

раскладывать на множители. На основе этих результатов, а также эвристических и
статистических соображений, Ленстра, Померанс и Уогстафф высказали следующую
количественную гипотезу.
Гипотеза Ленстры—Померанса—Уогстаффа. Асимптотически количество чисел Мер-
сенна меньших, чем x равно

eγ · log2 log2(x),

где γ— константа Эйлера—Маскерони.
Иными словами, утверждается, что количество простых чисел Мерсенна бесконечно,

но встречаются они крайне редко — количество чисел Мерсенна с экспонентой p мень-
шей y асимптотически равно eγ · log2(y). Впрочем, некоторые специалисты считают, что
в действительности простых Мерсенна гораздо больше.

Самая правдоподобная гипотеза о числахМерсенна была сформулирована в 1978 году
Дэвидом Словинским [323].
Гипотеза Словинского. В любой момент будет больше открытых гипотез о числах
Мерсенна, чем известных простых Мерсенна.

5. СУММЫ ДЕЛИТЕЛЕЙ
На этой оптимистической ноте перейдем теперь ко второй основной теме, суммам

делителей.
Пусть каноническое разложение числа n имеет вид n = pk1

1 . . . pks
s . Тогда количество

делителей n равно
d(n) = (k1 +1) . . . (ks +1),

а сумма делителей n задается формулой

σ(n) = ∑
i≤k1,...,is≤ks

p i1
1 . . . p is

s = pk1+1
1 −1

p1 −1
. . .

pks+1
s −1

ps −1

(сумма геометрической прогрессии).
Задача. Задайте функции d(n) и σ(n) на основе внутренней функции FactorInteger и
сравните скорость их работы с Length[Divisors[n]] и DivisorSigma[1,n].

Из формулы для d(n) вытекает, что
• d(n) зависит не от самого n, а от его арифметической структуры, иными словами,

от того, с какими степенями в n входят различные простые;
• значение d(n) может быть абсолютно любым.

Задача. Для любого простого числа q найдите наименьшее число, имеющее ровно q
делителей.
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Ответ. Небольшой компьютерный эксперимент убедит Вас в том, что это 2q−1.
Вообще, любое примарное число pm−1 имеет ровно m делителей, но в случае, когда m
раскладывается на множители, как правило, удается построить много меньшее, чем
2m−1 число с тем же количеством делителей.
Задача. Составьте таблицу, в которой для каждого числа m ≤ 100 указано наименьшее
число, имеющее ровно m делителей.
Задача. Вот начало этой таблицы:

1 2 3 4 5 6 7 8 9 10
1 2 4 6 16 12 64 24 36 48

Задача. Задайте функцию, сопоставляющую каждому натуральному m наименьшее
натуральное n имеющее ровно m делителей.
Задача. Убедитесь, что для любого натурального числа n > 1 найдется такое m, что
d m(n) = 2. Сколь велико может быть это m?
Ответ. Поэкспериментировав с функцией d , легко убедиться, что для любого n > 2
имеем d(n) < n, поэтому применение d может оборваться только на значении 2. С
другой стороны, мы только что заметили, что d(2n−1) = n, поэтому если от n можно
дойти до 2 за m шагов, то от 2n−1 требуется уже m +1 шаг.

Обратимся теперь к функции σ. Ясно, что σ возрастающая функция, σ(n) > n для всех
n > 1, причем σ(n) = n +1 только в случае, когда n = p простое.
Задача. Убедитесь, что если n составное, то σ(n) > n + p

n.
Задача. Любое ли m может быть значением функции σ?
Задача. Найдите все решения уравнения σ(n) =σ(n +1) при n ≤ 100000.

Лео Мозер привел примеры, показывающие, что в отличие от арифметической
функции n 7→ nϕ(n), функция n 7→ nσ(n) не инъективна, иными словами, равенство

mσ(m) = nσ(n)

возможно и при m , n. А именно, при m = 12, n = 14 обе части здесь равны 336. Ясно,
что умножая обе части этого равенства на любое число k взаимно простое с 2, 3 и 7,
мы получим новую тройку чисел m = 12k , n = 14k удовлетворяющую этому условию.
Поэтому интересно искать примитивные пары, для которых (m/k,n/k) не являются
решениями этого уравнения ни при каком k > 1.

В действительности пример Мозера является первым из примеров следующего типа:
m = 2p−1Mq , n = 2q−1Mp , где Mp и Mq различные простые числа Мерсенна.
Задача. Постройте еще несколько сотен примитивных решений уравнения mσ(m) =
nσ(n).
Задача. Задайте функцию, сопоставляющую паре (m,n) сумму их общих делителей.

Во многих задачах возникают различные варианты функции σ, например, функция
сопоставляющая n сумму его собственных делителей, традиционно она обозначалась σ̂,
но из типографских соображений мы будем обозначать ее s. Следующая функция σ∗

естественно возникает в задаче о количестве представлений натурального числа как
суммы четырех квадратов.
Задача. Задайте функциюσ∗, которая сопоставляет каждому натуральному числу сумму
тех его делителей, которые не делятся на 4.
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Задача. Пусть p1, . . . , ps суть все различные простые делители числа n, а
m = n

p1 . . . ps

Для нескольких десятков n вычислите сумму ψ(n) делителей числа n, являющихся
кратными числа m, и угадайте формулу для этой суммы в общем случае.
Ответ. Искомая формула лишь знаком отличается от формулы для функции Эйлера:

ψ(n) = n

(
1+ 1

p1

)
. . .

(
1+ 1

ps

)
.

6. СОВЕРШЕННЫЕ ЧИСЛА
Совершенные числа, это неподвижные точки функции, сопоставляющей натураль-

ному числу сумму его собственных делителей.

6.1. Четные совершенные числа
Числа Мерсенна играют абсолютно исключительную роль в одной из старейших

нерешенных проблем математики, относящейся к четным совершенным числам.
Число n называется совершенным, если оно равно сумме своих собственных делителей.
Иными словами, σ(n) = 2n. В терминах функции s(n) =σ(n)−n это условие записывается
еще естественнее, s(n) = n.
Задача. Найдите совершенные числа ≤ 107.
Ответ.Можно просто полным перебором с использованием DivisorSigma. Вот они:

6 = 2 ·3 = 1+2+3,

28 = 22 ·7 = 1+2+4+7+14,

496 = 24 ·31 = 1+2+4+6+16+31+62+124+248,

8128 = 26 ·127 = 1+2+4+8+16+32+64+127+254+508+1016+2032+4064,

33550336 = 212 ·8191 = 1+2+4+8+16+32+64+128+256+512+1024+2048+
4096+8191+16382+32764+65528+131056+262112+

524224+1048448+2096896+4193792+8387584+16775168.

Три первых были известны уже в VI веке до Н.Э., а четвертое нашел Никомах из
Герасы около 100 года Н.Э. В книге Блаженного Августина “De Civita Dei” содержится
поразительное рассуждение, что число 6 совершенное не потому, что Б-г создал Мир за
6 дней, а наоборот, Б-г потому создал мир за 6 дней, что число 6 совершенное33,34.
33“Haec autem propter senarii numeri perfectionem eodem die sexiens repetito sex diebus perfecta narrantur,
non quia Deo fuerit necessaria mora temporum, quasi qui non potuerit creare omnia simul, quae deinceps congruis
motibus peragerent tempora; sed quia per senarium numerum est operum significata perfectio. Numerus quippe
senarius primus completur suis partibus, id est sexta sui parte et tertia et dimidia, quae sunt unum et duo et tria,
quae in summam ducta sex fiunt”, XI–XXX.34Увидев эти числа в таком контексте любой специалист по исключительной нумерологии не может не
вздрогнуть. Ведь на самом деле 56 = 2 ·28 — это размерность наименьшего представления E7, а 248 = 496/2
— это размерность наименьшего представления E8.
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Уже в “Элементах” Эвклида содержалось наблюдение (Книга IX, теорема 36), что если
2p −1 простое, то 2p−1(2p −1) совершенное. Эйлер показал, что все четные совершенные
числа имеют такой вид. Точнее, имеет место следующая теорема Эвклида—Эйлера:
множество четных совершенных чисел совпадает с множеством чисел вида 2p−1Mp , где
Mp — простое число Мерсенна.
Задача. А теперь найдите еще 46 совершенных чисел.

Теорема Эвклида—Эйлера сводит вопрос о бесконечности множества четных
совершенных чисел к вопросу о бесконечности множества простых чисел Мерсенна.
Таким образом теперь мы можем переформулировать вопрос Мерсенна так, как он был
исходно сформулирован более, чем за два тысячелетия до него.
Проблема. Бесконечно ли количество четных совершенных чисел?
6.2. Нечетные совершенные числа

До сих пор неизвестен и ответ на следующую задачу. Вероятно, эта задача была
известна еще древним, но в любом случае она была явно сформулирована Жаком
Лефевром не позднее 1496 года. Эти две задачи, видимо, являются, вместе с проблемой
о бесконечности количества дружественных пар, самыми старыми нерешенными
проблемами в математике,
Проблема. Существуют ли нечетные совершенные числа.

Не пытайтесь искать нечетные совершенные числа вручную. Еще Бенджамин
Пёрс35 доказал, что у нечетного совершенного числа не меньше 4 различных простых
делителей. В 1888 году Джеймс Джозеф Сильвестр36 вначале повторил этот результат, а
потом [334] улучшил его до 5. В 1925 году Израиль Соломонович Градштейн37 [11] довел
количество различных делителей до 6, в 1974 году Карл Померанс [266] до 7, в 1980 году
Питер Хагис [151] до 8, и в 2007 году Пэйс Нильсен [241] до 9, см. по этому поводу [129].

Кроме того, известномного других условийи ограниченийна нечетные совершенные
числа, которые шаг за шагом усиливались на протяжении многих десятилетий. Я не
буду приводить по ним такого же типа исторический обзор, а просто перечислю
некоторые из работ, где получены такие ограничения: [27, 43–46, 59, 68, 84, 95, 98, 119,
135, 148, 150–153, 160, 162–164, 166, 168, 170, 172, 179, 183, 184, 194, 195, 197, 202, 227–
229, 241, 255, 306, 324, 328, 335, 338, 357, 361, 367]. Сейчас я резюмирую, следуя обзору
Хенрика те Риле [300], лучшие полученные там оценки, с учетом дальнейших усилений,
предложенных в [62, 74, 82, 133, 175–177, 243, 245, 246, 367, 374]:

• Нечетное совершенное число > 101500,
• Оно имеет по крайней мере 10 различных простых делителей38,
• Количество его простых сомножителей с учетом кратности ≥ 101,
• Его старший простой делитель > 108,
• Его второй по старшинству простой делитель > 104,
• Его третий по старшинству простой делитель > 102,

35Во избежание недоразумений, Benjamin Peirce, 1809–1880, отец Чарльза Пёрса, 1839–1914. По-русски
обычно беззастенчиво пишут “Пирс”, так, как будто исходно было “Pierce”.36Тот самый Сильвестр! В преклонном возрасте он внезапно начал экспериментировать с классическими
неприступными проблемами теории чисел, в том числе проблемой Гольдбаха.37Тот самый Градштейн, больше известный советским математикам как Градштейн—Рыжик.38Больше при некоторых дополнительных предположениях.
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• Его старший примарный сомножитель > 1062.
В упомянутых выше работах есть и много других ограничений: оценки на простые
делители сверху, сравнения, условия на кратности различных простых делителей и т.д.
Очевидно, что с учетом всех этих ограничений найти нечетное совершенное число в
этом мире нет никаких шансов, а на бытовом компьютере тем более!

6.3. Некоторые обобщения совершенности
Число n называется k-кратно совершенным39, если σ(n) = kn. Обычные совер-

шенные числа получаются при k = 2. Кратно совершенные числа с k ≥ 3 называются
полисовершенными.
Задача. Еcли у числа n не более трех различных простых делителей, как правило из того,
что n делит σ(n) вытекает, что n совершенно. Найдите исключения.
Ответ. Имеются два таких числа, а именно 120 и 672, для которых σ(n) = 3n.

Для совершенного числа n выполняется равенство σ(n) = 2n. Число n называется
сверхсовершенным, если σ(σ(n)) = 2n.
Задача.Найдите сверхсовершенные числа меньшие одного миллиона и сформулируйте
гипотезу о том, как выглядят все сверхсовершенные числа.
Ответ. Таких чисел семь:
2 = 22−1, 4 = 23−1, 16 = 25−1, 64 = 27−1, 4096 = 213−1, 65536 = 217−1, 262144 = 219−1.

Все они являются степенями двойки, а список показателей уже встречался нам в связи
с числами Мерсенна. Как заметил Сурьянарая [331], эта гипотеза верна: любое четное
сверхсовершенное число имеет вид 2p−1, для некоторого простого числа Мерсенна Mp .

Число n называется избыточным, если s(n) > n, и недостаточным, если s(n) < n.
Задача. Каких чисел среди чисел < 106 больше, избыточных или недостаточных?

Число n называется полусовершенным, если оно является суммой каких-то — не
обязательно всех! — своих собственных делителей. Число называется причудливым,
если оно избыточно, но не полусовершенно.
Задача. Найдите все причудливые числа, меньшие 500.
Ответ. Такое число ровно одно, а именно, 70.
39Про кратно совершенные числа я впервые услышал от Николая Григорьевича Чудакова году в 1968. Тог-

да в ЛОМИ, да и на мат-мех потоком шли письма любителей математики с новыми великими открытиями.
Написаны они были от руки на клетчатых листочках бумаги, вырванных изшкольных тетрадок. Процентов
на 90 это были доказательства теоремы Ферма с одной и той же стандартной ошибкой. Но встречались и
более занимательные вещи, опровержение канторовского диагонального процесса, доказательство четной
гипотезы Гольдбаха, основанное на равенстве 2 + 3 = 5, доказательство формулы (−1) · (−1) = −1 и т.д.
Теперь, конечно, весь подобный делириум сразу выплескивается в социальные сети, минуя отдел науки
Василеостровского райкома КПСС (собственно, социальные сети и играют теперь такую же роль). Так вот,
Чудаков упомянул про письмо, автор которого нашел общее решение уравнения σ(n) = kn, для любого
k , и уверял, что это знание гарантирует бессмертие в буквальном физическом смысле — “Some pirates
achieved immortality by great deeds of cruelty or derring-do . . . But the captain had long ago decided that he
would, on the whole, prefer to achieve immortality by not dying.” Николай Григорьевич улыбнулся и добавил:
“Неудивительно, ведь уже тот, кто найдет все решения уравнения σ(n) = 2n, станет бессмертным”. Гораздо
больше про роль Николая Григорьевича в возникновении этой статьи, а также про то, как избежать
Танатоса и черную Керу, рассказано в [5].
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Вот еще несколько подобных условий, которые ФАКТИЧЕСКИ РАССМАТРИВАЛИСЬ и
которые могут послужить субстратом для такого же рода задач.

• Число n называется квазисовершенным, если оно совпадает с суммой своих
нетривиальных делителей — всех, кроме 1 и n, т.е. n = s(n) − 1. Никаких квазисовер-
шенных чисел пока не обнаружено, но они интенсивно изучались, и удовлетворяют
большому количеству ограничений, в частности, n > 1035.

• Число n называется просто совершенным, если у n и s(n) одинаковые множества
различных простых делителей. Ясно, что любое совершенное число просто совершенно,
но есть и другие примеры, скажем, 120, 270 и 672.

• Делитель d числа n называется унитарным, если d и n/d взаимно просты.
Число равное сумме своих собственных унитарных делителей называется унитарно
совершенным

• Делитель d числа n называется би-унитарным, если наибольший общий
унитарный делитель d и n/d равен 1. Число равное сумме своих собственных би-
унитарных делителей называется би-унитарно совершенным.
Задача. Докажите, что единственными би-унитарно совершенными числами являются
6, 60 и 90.

В общем, you’ve got the idea! Фантазия числовиков-затейников стольженеисчерпаема,
как электрон. Попрактиковавшись на [13, 16, 55, 58–61, 66, 67, 70, 71, 75, 76, 82, 90, 94, 120,
121, 154–158, 165, 173, 180, 187, 219, 232, 255, 259, 261, 265, 267, 285, 293, 297, 311, 312, 315, 325,
329–332, 354, 372, 373] я теперь и сам могу придумать несколько сот такого рода задач за
вечер.

7. ДРУЖЕСТВЕННЫЕ ЧИСЛА
В связи с совершенными числами невозможно не упомянуть и о другой пифагорей-

ской задаче — задаче о дружественных числах.
7.1. Пары дружественных чисел

Числа m и n называются дружественными40, если сумма собственных делителей
числа m равна n, а сумма собственных делителей числа n равна m. Иными словами,
одновременно выполняются равенства s(m) = n и s(n) = m или, что то же самое,

σ(m) =σ(n) = m +n.

Известный болтун и фантазер Ямвлих из Халкиса приписывает лично товарищу
Пифагору с острова Самос открытие первой пары дружественных чисел41

220 = 22 ·5 ·11, 284 = 22 ·71.

Впрочем, Леонард Диксон отмечает [101] что уже в относящейся к более ранней дате
части Библии в знак примирения Иаков подарил Исаву, брату своему, ровно 220 овец и
220 коз42, а Поль Таннери считал, что магические свойства пары 220, 284 были известны
40По-английски amicable pair. Термин friendly pair тоже существует, но означает нечто совершенно

другое, равенство σ(m)/m =σ(n)/n.41Эта точка зрения получила широкое распространение в литературе: “It might be argued that elementary
number theory began with Pythagoras who noted two-and-a-half millennia ago that 220 and 284 form an amicable
pair”, [262].42 “Двести коз, двадцать козлов, двести овец, двадцать овнов”, Книга Бытия, XXXII, 14.
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уже в древнем Египте.
В IX веке сирийский математик абу-Хасан Сабит ибн-Корра ибн Марван аль-Харрани

доказал следующий результат. Теорема Сабита ибн-Корры: если все три числа
p = 3 · 2n−1 − 1, q = 3 · 2n − 1 и r = 3222n−1 − 1 нечетные простые, то числа 2n pq и 2nr —
дружественные43 [2, 171], это так называемая первая форма Эйлера, [85].
Задача. Найдите три пары дружественных чисел.
Указание. Как всегда, когда речь идет о небольшом переборе вначале по-простому: Se-
lect, PrimeQ и поверх Map. Обратите внимание, что n ≥ 2, иначе p = 2.
Ответ. Пифагорейская пара получается, если взять в теореме Сабита ибн-Корры n = 2.
С помощью этой теоремы в XIII веке марокканский ученый, ибн аль-Банна, открыл
следующую пару дружественных чисел,

17296 = 24 ·23 ·47, 18416 = 24 ·1151,

отвечающую случаю n = 4. Теорема Сабита ибн-Корры была независимо переоткрыта
в 1636 году Пьером Ферма и в 1638 Рене Декартом. При этом Ферма переоткрыл пару,
отвечающую случаю n = 4, а Декарт переоткрыл следующую пару,

9363584 = 27 ·191 ·383, 9437056 = 27 ·73727,

отвечающую случаю n = 7, обнаруженную в XVI веке иранским ученым Мухаммадом
Бакиром Йазди. Сейчас мы можем найти все эти пары за доли секунды.
Задача. Найдите все дружественные числа ≤ 106.
Ответ. В данном случае, конечно, лучше не выбирать их из списка, а организовать цикл,
вычисляющий все получающиеся 40 пар за секунды:

220 284 1184 1210 2620 2924 5020 5564

6232 6368 10744 10856 12285 14595 17296 18416

63020 76084 66928 66992 67095 71145 69615 87633

79750 88730 100485 124155 122265 139815 122368 123152

141664 153176 142310 168730 171856 176336 176272 180848

185368 203432 196724 202444 280540 365084 308620 389924

319550 430402 356408 399592 437456 455344 469028 486178

503056 514736 522405 525915 600392 669688 609928 686072

624184 691256 635624 712216 643336 652664 667964 783556

726104 796696 802725 863835 879712 901424 898216 980984

Кроме того, имеется две пары дружественных чисел, одно из которыхменьшемиллиона:
947835 1125765 998104 1043096

В качестве исторического курьеза отметим, что вторую по величине пару 1184 и 1210
открыл только Никколо Паганини44 в 1866 году [249] — четыре следующих построил еще
Эйлер в 1747–1750 годах!
43Вот, что пишет по этому поводу Херман те Риле: “De meeste bekende bevriende getallenparen zijn gevonden
met behulp van variaties van de Regel van Thabit ibn Kurrah”, [300].44Другой Паганини, полный тезка.
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Всего Эйлер обнаружил пятьдесят девятьновых пар дружественных чисел [113], как
четных, так и нечетных, из которых мы укажем лишь несколько самых маленьких: две
четные пары

6232 = 23 ·19 ·41 6368 = 25 ·199 10744 = 23 ·17 ·79 10856 = 23 ·23 ·59

и две нечетные пары
69615 = 32 ·7 ·13 ·5 ·17 87633 = 32 ·7 ·13 ·107

11498355 = 34 ·5 ·11 ·29 ·89 12024045 = 34 ·5 ·11 ·2699.

Всего к 1946 году было известно 390 пар дружественных чисел, из которых 233
открыл Эдвард Эскотт [112]45. После этого построение дружественных пар стало
набирать обороты. К 1971–1972 годам было открыто уже 1108 таких пар, из которых 389
открыл Элвин Ли, и все их авторы известны поименно. Все они перечислены в обзоре Ли
и Джозефа Мадачи [205–207], которые насчитывают таковых 27 человек46,47.

Однако в это время произошли два события — появились работы Вальтера Боро
[2], и начали всерьез использовать компьютеры, и это породило лавину новых пар. За
последние 50 лет было открыто примерно в миллион раз больше новых дружественных
пар, чем за всю предшествующую историю. Огромную роль в этом сыграли работы Яна
Педерсена, Хенрика те Риле и Мариано Гарсии, за которыми стоят уже миллионы новых
пар48.

Но в последние годы рекордсменами стали Роберт Гербич, который открыл больше
173 миллионов новых дружественных пар и Сергей Черных, который открыл их
больше миллиарда, см. описание истории всего проекта и текущей ситуации на
его сайте https://sech.me/ap/. В настоящее время запущен еще один проект
распределенных вычислений Amicable pairs, см. https://boinc.ru/tag/amicable-
numbers/ и добровольцы открыли еще примерно 5 миллионов новых пар.

Тем не менее, вопрос о бесконечности множества таких пар открыт так же широко,
как во время Пифагора.
Проблема. Бесконечно ли количество дружественных пар?

Обратите внимание, что все известные пары либо четные, либо нечетные.
Следующий вопрос по-прежнему открыт.
Проблема. Существуют ли четно-нечетные дружественные пары?
45Впрочем, Ли утверждает, что у Эскотта были ошибки и фактически тот открыл всего 219 пар.46Тут, правда, нужно аккуратно сверять, как они учитывают повторы, иранских и арабских авторов, и т.д.

Но это, конечно, серьезная собственно историческая работа.47Чтобы проиллюстрировать, какого рода бреднями наполнен интернет, процитирую широко
обсуждавшуюся на шахматных сайтах байку о Федоре Ивановиче Дуз-Хотимирском: “. . . исписывал целые
пачки бумаги цифрами, открывая «родственные числа», . . . А гении математические заседали в академиях,
и одному из них, академику по фамилии Виноградов, дядя Федя послал обнаруженные им в бесконечности
«родственные числа». Как я поняла, первые четырнадцать этих чисел нашел в свое время Декарт, а дядя
Федя довел их количество до шестисот. Академик, разумеется, был человеком умным и опубликовал Дузово
открытие под своим великим именем. Дуз жутко на него разозлился, но судиться и доказывать авторство
не стал. Во-первых, потому, что наверняка проиграл бы. А во-вторых, потому, что не желал апеллировать
к государству, коего в принципе не признавал.” [9]. Матерый человечище, шестьсот пар дружественных
чисел от руки в школьной тетрадке, это шутка посильнее, чем “Микромегас” Гете.48“Millionen stehen hinter mir”.

30 © КОМПЬЮТЕРНЫЕ ИНСТРУМЕНТЫ В ОБРАЗОВАНИИ. №-, 2020 г.



Компьютер как новая реальность математики

7.2. Некоторые обобщения дружественности
Леонард Диксон предложил следующее обобщение понятия дружественных чисел

— совершенно другое обобщение, предложенное Каталаном, обсуждается в следующем
параграфе. А именно, он говорит, что n1, . . . ,nm образуют m-ку дружественных чисел,
если

σ(n1) = . . . =σ(nm) = n1 + . . .+nm .

Существуют ли дружественные m-ки при m ≥ 3?
Задача. Постройте четыре первых дружественных тройки.
Ответ. Вот самая маленькая49 из них:

1980 = 22 ·32 ·5 ·11, 2016 = 25 ·32 ·7, 2556 = 22 ·32 ·71,

с суммой 6552. Вот следующая
9180 = 22 ·33 ·5 ·17, 9504 = 25 ·33 ·11, 11556 = 22 ·33 ·107,

с суммой 30240. Еще две совсем маленькие тройки с суммами 70680, 87360 без труда
строятся за секунды.
Задача. Постройте две дружественных тройки с одинаковой суммой.
Ответ. Две таких тройки встречаются довольно рано. А именно тройка

37380 = 22 ·3 ·5 ·7 ·89, 41412 = 22 ·3 ·7 ·17 ·29, 42168 = 23 ·3 ·7 ·251

и тройка
38940 = 22 ·3 ·5 ·11 ·59, 40608 = 25 ·33 ·47, 41412 = 22 ·3 ·7 ·17 ·29

обе имеют сумму 120960.
В заключение параграфа приведем неполную и достаточно случайную подборку

статей про дружественные пары и различные их обобщения, которые мы использовали
для составления задач в разные годы и где можно найти дальнейшие ссылки: [1, 21, 22,
33–37, 39, 41, 42, 47, 69, 73, 74, 85–87, 104, 107, 122–126, 130, 144–147, 149, 161, 181, 182, 185, 186,
198, 203, 204, 220, 226, 251, 252, 256, 257, 259, 268, 269, 271, 292, 295, 296, 298, 299, 301, 333, 353].

8. ОБЩИТЕЛЬНЫЕ ЧИСЛА И ГИПОТЕЗА КАТАЛАНА—ДИКСОНА
В действительности, как задача о совершенных числах, так и задача о дружественных

числах являются частными случаями вопроса о траекториях функции s : n 7→ σ(n)−n.
Число n совершенно, если оно является неподвижной точкой этой функции, s(n) = n, и
является одним из дружественных чисел, если s2(n) = n. Естественно возникает вопрос,
имеет ли эта функция более длинные циклы? Элементы таких циклов называются
общительными числами. Иными словами, число m общительное, если существует
такое k ≥ 1, что sk (n) = n.

• Начинающаяся с числа n последовательность
n, s(n), s2(n), s3(n), . . .

49Мы не рассматриваем тройки с повторяющимися элементами.
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называется аликвотной последовательностью.
•Общительное числоn это такое число, для которого аликвотная последовательность

возвращается в n, иными словами, является аликвотным циклом.
В пакете NumberTheory‘NumberTheoryFunctions‘ реализованыфункции AliquotSe-

quence и AliquotCycle, возвращающие аликвотную последовательность и ее период,
хотя, конечно, эти функции за несколько секунд можно написть от руки.
Задача. Существуют ли общительные числа, не являющиеся совершенными или
дружественными?
Ответ. Существуют, хотя найти их непросто, так как дополнительным параметром здесь
служит длина аликвотного цикла, а коротких циклов (кроме циклов длины 4) среди
маленьких чисел весьма мало! Следующий примитивный код

Timing[Block[{i=1},While[
Implies[Nest[divsum,i,5]==i,divsum[i]==i],i++];i]]

позволяет за секунду найти цикл длины 5:
12496, 14288, 15472, 14536, 14264.

Этот цикл нашел Пуле в 1918 году.
За пару минут прямым перебором можно обнаружить и цикл длины 4:

1264460, 1547860, 1727636, 1305184.

Известно много десятков циклов длины 4. Вот наименьшие элементы в остальных
циклах до 107:

2115324, 2784580, 4938136, 7169104,

Кроме того, имеется еще пять циклов в интервале от 107 до 108, начинающеися с
18048976, 18656380, 28158165, 46722700, 81128632,

и четыре цикла в интервале от 108 до 109, начинающиеся с
174277820, 209524210, 330003580, 498215416.

Мы не будем приводить остальные известные 4-циклы.
Есть еще несколько коротких циклов, состоящих из совсем небольших чисел. Вот два

6-цикла:
21548919483, 23625285957, 24825443643, 26762383557, 25958284443, 23816997477,

90632826380, 101889891700, 127527369100, 159713440756, 129092518924, 106246338676;

два 8-цикла:
1095447416, 1259477224, 1156962296, 1330251784,

1221976136, 1127671864, 1245926216, 1213138984,

1276254780, 2299401444, 3071310364, 2303482780,

2629903076, 2209210588, 2223459332, 1697298124;
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и, наконец, 9-цикл
805984760, 1268997640, 1803863720, 2308845400, 3059220620,

3367978564, 2525983930, 2301481286, 1611969514.

Самый длинный известный цикл это открытый Пуле цикл длины 28:
14316, 19116, 31704, 47616, 83328, 177792, 295488, 629072, 589786, 294896

358336, 418904, 366556, 274924, 275444, 243760, 376736, 381028, 285778

152990, 122410, 97946, 48976, 45946, 22976, 22744, 19916, 17716

В 1888 году Эжен Каталан [57] высказал предположениe, что каждое аликвотная
последовательность достигает либо 0, либо совершенного числа, на что Перро [253] тут
же возразил, что это неверно для последовательности, начинающейся с 220. Гипотеза
Каталана был исправлена Леонардом Диксоном в 1913 году. Диксон [99] истолковал ее
как отсутствие у функции s бесконечных траекторий.
Гипотеза Каталана—Диксона. Каждая траектория функции s за конечное число шагов
доходит либо до 1, либо до общительного числа.
Задача. Найдите число, которое само не является общительным, но начинающаяся
с которого аликвотная последовательность доходит до общительного числа, не
являющегося ни совершенным, ни дружественными.
Ответ. В качестве совсем простых примеров можно взять 9464, 12032 или 15476, сумма
собственных делителей которых равна 12496, или же s(16312) = 14288, s(29066) = 14536.
Легко строятся и более длинные траектории. Например, s(18922) = 9464.

Впрочем, многие считают, что эта гипотеза может быть неверна. Никто, насколько
я знаю, не выражал сомнения в том, что все траектории начинающиеся в нечетных
числах обрываются, либо зацикливаются.
Гипотеза Гая—Селфриджа. Почти все траектории функции s начинающиеся в четных
числах бесконечны.

Самым убедительным опровержением гипотезы Каталана—Диксона было бы
построение строго возрастающей траектории, т.е. нахождение такого n, что sk (n) >
sk−1(n) для всех k. Это вряд ли получится, но Хенрик Ленстра доказал следующий
удивительный результат. Для любого k существует такое n, что n < s(n) < . . . < sk (n).
Доказательство этого факта конструктивно и приведено в работе Эрдеша [109].

Это значит, что как и для теоремы Гудстайна и других подобных результатов,
никакое чисто финитное доказательство гипотезы Каталана—Диксона невозможно,
мы должны научиться делать предсказания о поведении функции s не раскладывая
значения sk (n) на множители — что сегодня представляет основную трудность при
экспериментальном исследовании функции s.

Подобными экспериментами занималось много специалистов начиная с Лемера
и Годвина, см., например, [30–32, 38, 62, 72, 78, 96, 118, 136, 141–143, 196, 221–223, 233–
236, 250, 254, 263, 264, 272, 294]. Тем не менее, для многих даже относительно небольших n
вопрос о поведениипоследовательности sk (n) открыт. Дело в том, что ее промежуточные
члены могут достигать огромных значений, для которых разложение на множители
становится совершенно небанальным делом, а никаких других способов вычислять
sk (n) мы сегодня не знаем.
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Так, еще Лемер обнаружил, что уже для n = 138 последовательность итераций
s заканчивается только на 117-м шаге, s117(138) = 1. В дальнейшем Гай и Гай [136]
обнаружили, что для n = 840 такая последовательность заканчивается только на 747
шаге, достигая в промежутке значений порядка 1048. Митчел Дикерман побил этот
рекорд, проверив, что последовательность значений s, начинающаяся в n = 1248
заканчивается на 1075 шаге, достигая в промежутке значений порядка 1057. Бенито и
Варона [25] построили последовательность начинающуюся в 4170, которая сошлась к
1 после 869 итераций, достигнув на 289-м шаге значения порядка 1083 Это произошло
в процессе проверки аликвотных последовательностей для чисел меньших 10000 с
использованием PARI-GP1 и UBASIC и потребовало работу примерно 20 компьютеров на
протяжении двух лет, “during nights and weekends”.

Сегодня систематические исследования поведения аликвотныхпоследовательностей
проводятся в значительно больших интервалах значений n, но следить за ними можно
только по специализированным сайтам, так как порождаемые компьютерным поиском
объемы данных слишком велики для традиционной бумажной публикации. Среди
таких сайтов можно упомянуть, например,

https://www.unirioja.es/cu/jvarona/aliquot.html
http://www.aliquot.de/
https://www.rieselprime.de/Others/Aliquot000.htm

9. OÙ SOMMES-NOUS?
Жан Дьедонне [102] разделял все математические задачи на:
• неприступные—вот такие, как задачи о бесконечности количества простых чисел

Мерсенна или Ферма;
• стерильные— такие как проблема четырех красок — решение которых ничего не

дало математике; и
• плодотворные — такие как задача о представлении числа суммами квадратов,

решение которой привело к развитию нескольких фундаментальных математических
теорий.

Мне представляется, однако, что эти характеристики относятся не к самим задачам,
а к их решениям. Проблема четырех красок стерильна не потому, что она сама
не относится к математике, а потому что ее решение не является продуктивным
математическим решением. Но ведь, скажем, и доказательство гипотезы Римана
методами комплексного анализа тоже было бы почти бесполезно для математики.

Теория чисел с компьютером, это то же самое, что теория чисел без компьютера,
только с компьютером. Теорема Ленстры говорит, что существует натуральное число n,
для которого последовательность sk (n) является строго возрастающей на протяжении
10 ↑↑ 3 шагов, на протяжении 10 ↑↑↑ 3 шагов, на протяжении 10 ↑↑↑↑ 3 шагов, и так далее.

По своемумироощущениюи эстетике я совсемне интуиционист или конструктивист.
Но тут мне тоже было бы интересно знать, что означает найти и просуммировать
делители числа n > 10 ↑↑↑↑ 3? Меня пока не интересует вопрос, КАК ЭТО СДЕЛАТЬ? Для
начала хотелось бы просто понять, ЧТО ЭТО ОЗНАЧАЕТ? Как там насчет “He also sometimes
throws the dice where they cannot be seen”?

Тот факт, что все упомянутые здесь задачи о разложении целых чисел на множители
и суммах их делителей продолжают казаться столь же неприступными, как и несколько
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тысячелетий назад, означает лишь, что МЫ ВСЕ ЕЩЕ НЕ ПОНИМАЕМ ЧЕГО-ТО ЧРЕЗВЫЧАЙНО
ВАЖНОГО.

Огромная благодарность Володе Халину, вместе с которым мы начинали все это
дело лет 15–20 назад и Саше Юркову, который вдохнул в это новую жизнь. Отдельная
благодарность Сергею Позднякову, который убедил меня написать этот цикл статей.
Мне были очень полезны обсуждения с Галиной Ивановной Синкевич, повлиявшие на
содержание последних параграфов. Я признателен Боре Кунявскому, Леше Степанову
и Илье Шкредову, которые чрезвычайно внимательно прочли первый вариант этой
статьи и предложили большое количество исправлений и уточнений.
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Abstract
Nowhere in mathematics is the progress resulting from the advent of computers is as
apparent, as in the additive number theory. In this part, we describe the role of computers
in the investigation of the oldest function studied in mathematics, the divisor sum. The
disciples of Pythagoras started to systematically explore its behaviour more that 2500
years ago. A description of the trajectories of this function — perfect numbers, amicable
numbers, sociable numbers, and the like — constitute the contents of several problems
stated over 2500 years ago, which still seem completely inaccessible. A theorem due to
Euclid and Euler reduces classification of even perfect numbers to Mersenne primes.
After 1914 not a single new Mersenne prime was ever produced manually, since 1952
all of them have been discovered by computers. Using computers, now we construct
hundreds or thousands times more new amicable pairs daily, than what was constructed
by humans over several millenia. At the end of the paper, we discuss yet another problem
posed by Catalan and Dickson.
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