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Thermodynamic Analysis of Adsorption and Line-Tension 
Contributions to Contact Angles of Small Sessile Droplets
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Abstract—Relations for the contact angles of sessile liquid droplets with axially symmetric or cylindrical
shapes and different equilibrium sizes have been considered using a general thermodynamic approach. For a
multicomponent system comprising a liquid droplet, a vapor–gas medium, and a solid substrate, influence
of dependence of the surface tension on the chemical potentials related to equilibrium droplet size (i.e., the
effect of adsorption) and the effect of size-dependent line tension on the contact angles have been discussed.
It has been shown that, for an axially symmetric sessile droplet, the effects of adsorption and line tension are,
in the general case, comparable and manifest themselves already at the first order with respect to the droplet
curvature. For a cylindrical droplet, the effect of adsorption is observed already in the first order with respect
to the droplet curvature, while the influence of the line tension manifests itself only in the second order and
is governed by the droplet-size dependence of the line tension.
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INTRODUCTION
When considering macroscopic sessile droplets on

partially wettable surfaces, the cosine of the
contact angle can be found from the classical Young
equation [1]

(1)

where  , and  are the thermodynamic sur-
face tensions of the three interfaces, which come
across at the contact line of phases α, β, and γ. The
measurements of contact angles θ of rather small (sub-
micron) droplets have shown a dependence of  on
droplet size. Commonly, this dependence is described
using a modified (generalized, extended) Young equa-
tion/relation that takes into account the thermody-
namic tension of the three-phase contact line [2–7].
Under the assumption of constant line tension κ, this
yields correction  where r is the base radius of a
sessile droplet (i.e., the curvature radius of the three-
phase contact line). Therefore, the object for study is,
as a rule, the dependence of  on  which must,
in this case, have a linear pattern, while the determina-
tion of the slope of this dependence is widely used to
find the line tension [8, 9]. Some measurements of the
contact angles for nanosized droplets have also shown
nonlinear dependences of  on  [10].

It has recently become possible to study partial
wetting and nanosized sessile droplets numerically by
molecular simulation methods, such as the molecular

dynamics and Monte Carlo methods. These studies
involve both axially symmetric [11–16] and cylindrical
droplets [13–20], with the latter having a translational
symmetry along a single direction. The latter droplets
are also referred to as liquid channels, bridges, etc., in
the literature. In spite of the possible existence of the
Rayleigh–Plateau instability [21–24], thermody-
namic consideration of cylindrical droplets is of prac-
tical interest. It is believed that the contact angle of
such a droplet should only weakly depend on its size
(width), thereby enabling one to accelerate the calcu-
lations by diminishing the size of a model system and
using periodic boundary conditions along the longitu-
dinal axis of a cylindrical droplet. In contrast to exper-
iments, for which rather large droplets (with base radii
of several hundred nanometers and larger) are primar-
ily available, the molecular dynamics and some other
calculations involve namely nanosized sessile drop-
lets, while the study of larger droplets substantially
increases the required computational resources. As a
whole, molecular simulation makes it possible to
essentially refine the influence of size effects on the
contact angle of a sessile droplet on both planar and
curved substrates and relate these effects to the param-
eters of the substrate–condensate and condensate–
condensate intermolecular interactions. However,
these methods require a rigorous thermodynamic sub-
stantiation of equilibrium equations for the contact
line.

The goal of this work is to perform a rigorous ther-
modynamic analysis of the contact angle versus drop-
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let size dependence with account of the relation
between this size and the thermodynamic state of a
system (the chemical potentials of the components),
with this relation affecting the values of the surface and
line tensions. Previously, we considered a similar
problem for an axially symmetric droplet of a one-
component f luid [25, 26]. The inferred conclusions
were supported by calculations [25] performed in
terms of a model, in which a sessile droplet was con-
sidered as a film of varying thickness with the use of a
disjoining pressure isotherm for describing wetting
properties of the film [27, 28]. In this work, we extend
the thermodynamic approach to systems comprising
multicomponent f luid phases and cylindrical droplets.

In Section 1, we shall consider the cases of equilib-
rium axially symmetric and cylindrical droplets on a
planar partially wettable substrate and show the form,
in which the Laplace and generalized Young equations
must be written as the conditions of equilibrium in
these cases. A variational derivation performed using a
transversality condition at the three-phase contact
line [3, 6, 29, 30] will be considered. This will enable
us to discuss in greater detail the terms of the general-
ized Young equation and, in particular, consider the
question of which variable characterizing the droplet
size must the line tension explicitly depend on. In Sec-
tion 2, we shall discuss the equations that determine
the dependence of the surface and line tensions on the
thermodynamic state of the system (the chemical
potentials of the components), as well as the relation
between this state and the equilibrium curvature
radius of a free droplet surface. Taking into account
these results and the results of Section 1, we shall con-
sider the dependences of the contact angle on droplet
base radius/half-width r and obtain asymptotic
expressions for the slopes of the –  depen-
dences for axially symmetric and cylindrical droplets.
The results obtained will be discussed in Section 3.

1. THERMODYNAMIC DESCRIPTION 
OF A DROPLET WITH A CONTACT ANGLE

Let us consider a system in thermodynamic equi-
librium in which a sessile liquid droplet is located on a
planar partially wettable solid surface and brought in
contact with an ambient vapor.1 We shall study both an
axially symmetric sessile droplet (such a macroscopic
droplet will be shown below to have the shape of a
spherical cap) and a droplet having the shape of a (cur-
vilinear) cylinder with the zero surface curvature at
any point along one of directions (such a macroscopic
droplet will be shown below to have the shape of a hor-
izontal cylindrical segment).

In the general case, we shall consider a multicom-
ponent f luid; i.e., the liquid droplet and the ambient

1 Critical droplets in nucleation that are in unstable material equi-
librium with an ambient supersaturated vapor are also involved.

cos θ 1 r
vapor–gas medium will consist of some set of mobile
components {i} that, in the general case, may also be
present in the solid phase. The solid phase necessarily
contains at least one immobile component j. The liq-
uid phase, vapor–gas phase, and solid phase of the
substrate material will be denoted as α, β, and γ,
respectively. These denotations will be used as super-
scripts at physical parameters: single and double
superscripts will mark the phases and interfaces,
respectively. Let the pressures in the droplet and the
vapor be equal to pα and pβ, respectively, while the
thermodynamic surface tensions (the specific surface
excesses of the grand thermodynamic potential) of
corresponding interfaces be equal to σαβ, σαγ, and σβγ,
whereas the thermodynamic line tension (the specific
line excess of the grand thermodynamic potential) of
the three-phase contact line be equal to κ. Thus, the
expression for the grand thermodynamic potential of
the system decomposes into volume, surface, and line
contributions:

(2)

where V, А, and L are the volume corresponding to a
phase, the area of an interface, and the length of the
three-phase contact line, respectively. Here, it has
been taken into account that the pressure in the f luid
phase corresponds, up to a sign, to the density of the
grand thermodynamic potential:  The
grand thermodynamic potential in the solid phase and
its surface excesses may be understood in the sense
defined in [31, 32].

The shape of the droplet surface and the relations
for the droplet sizes can be obtained by determining
the stationary profile for the functional of the grand
thermodynamic potential.

1.1. An Axially Symmetric Droplet
Cylindrical coordinates are convenient to use for

an axially symmetric droplet. Denoting the droplet
surface profile as  where x is the radial coordi-
nate in the substrate plane, and assuming, in the gen-
eral case, the thermodynamic line tension to depend
on the droplet base radius r (the curvature radius of the
three-phase contact line), we may write the functional

 of the grand thermodynamic potential of the sys-
tem as

(3)

where Ωγ is the grand thermodynamic potential of the
bulk solid substrate and Aβγ is the area of βγ interface.

,
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Fig. 1. Sessile liquid droplets on a solid substrate: (a) axially symmetric droplet and (b) cylindrical droplet. 
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The introduction of  into the integrand makes it
possible to formally include the contribution of line
excess  associated with the existence of the
three-phase contact line into the integral functional.
For convenience, non-variable contributions to the
functional are isolated in separate non-integral terms.

The equilibrium profile of a sessile droplet may
be found by equating the first variation of the func-
tional (3) to zero, while fulfilling the transversality
condition at the three-phase contact line and the fol-
lowing condition:

(4)

The latter condition follows from the smoothness
of the axially symmetric profile. This yields the Euler–
Lagrange equation for the functional (3),

(5)

with the condition (4) and the transversality condition
 imposed on the three-phase contact line as

boundary conditions. The latter condition implies free
motion of this line along the substrate surface [33, 34]
and takes form

(6)

The left-hand side of Eq. (5) comprises the local
mean curvature of the droplet surface multiplied by
σαβ. This curvature is negative at  thereby cor-
responding to a surface convex upward, and, as can be
seen, must be constant. This is nothing but the
Laplace equation for curvature radius R of a droplet
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having the shape of a spherical cap with its vertex
located at  (see Fig. 1a):

(7)

Condition (6) yields the generalized Young relation

(8)

where θ is the contact angle ( ), while the
derivative  should be understood as that taken at
constant values of the temperature T and the chemical
potentials {μi} of the molecules of the components
composing the f luid phases α and β (it corresponds to
conditions under which the functional (3) was varied).
For more detailed information, see [7], where Eqs. (7)
and (8) were also derived primordially assuming the
sphericity of the sessile droplet surface. The above-
described derivation using the functional (3) is based
on the scheme employed in [3, 6]. This may appear to
be more convenient for subsequent comparison with a
model system (e.g., within the framework of the
model, in which a droplet is represented by a film of
varying thickness [25]) and will enable us to discuss
which variable characterizing the droplet size must the
line tension explicitly depend on.2

1.2. A Cylindrical Droplet
The Cartesian coordinate system is convenient to

use for a cylindrical droplet. Let the y axis be directed
along the droplet axis, while the x axis be oriented
transversely to it and in parallel to the substrate sur-
face. Denoting the droplet surface profile as 
and, also, assuming that the thermodynamic line ten-

2 We assume that the line tension κ depends on the radius r of the
three-phase contact line. However, explicit dependences of κ on
the contact angle θ [13, 37, 38] and even on both these variables
[6, 39] are also considered in the literature.
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sion depends on the half-width r of the droplet base
(here, r does not play the role of the curvature radius
of the three-phase contact line, the latter is always
straight in this system), we may write the functional

 of the grand thermodynamic potential of the sys-
tem per unit length along the y axis in the following
form analogous to Eq. (3):

(9)

Since the three-phase contact line length in this sys-
tem is independent of r, the term comprising the line
tension is left non-integral.

The Euler–Lagrange equation for the functional (9)
has the form of 

(10)

with condition (4) and the transversality condition
 imposed on the three-phase contact line as

boundary conditions. In this system, the latter condi-
tion acquires the following form:

(11)

The left-hand side of Eq. (10) comprises the local
mean curvature of the droplet surface multiplied by
σαβ. This curvature is negative at  thereby cor-
responding to a surface convex upward, and, in this
case, it is equal to the main curvature along the x axis;
according to the equation, it is constant. This is noth-
ing but the Laplace equation for the curvature radius R
of a droplet having the shape of a circular cylinder
(hereafter, a cylinder segment for short) with a vertex
at  (see Fig. 1b):

(12)

With allowance for , condition (11) leads
to the generalized Young relation, the form of which
is, in this geometry, different from Eq. (8):

(13)

The term  is absent in the right-hand side of
Eq. (13), because variations in cylindrical droplet pro-
file  lead to variations in the base half-width r;
however, the length of the three-phase contact line
remains unchanged and independent of r. At the same
time, the term  has remained preserved,
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because the line tension does change upon such varia-
tions.

The considered system with the cylindrical droplet
actually coincides with a two-dimensional system
“extended” along the y axis. Therefore, Eqs. (12) and
(13) reproduce expressions for two-dimensional sys-
tems with the pressures replaced by two-dimensional
pressures in corresponding two-dimensional phases,
the surface tensions replaced by line tensions of inter-
facial lines, and the line tension of the three-phase
contact line replaced by the point excess of the grand
thermodynamic potential at the three-phase contact
point [35, 36].

1.3. On Derivation of Equilibrium Conditions
for Droplets of Non-Volatile Liquids

The Laplace equation and the generalized Young
relation obtained as equilibrium conditions may also
be derived when considering the system in a canonical
ensemble with fixed numbers of particles of each com-
ponent in the system rather than the values of the
chemical potentials of the particles (molecules and
atoms). The need to fix the numbers of particles arises,
in particular, when considering droplets of non-vola-
tile liquids or performing molecular dynamics simula-
tion. Therewith, the Helmholtz free energy functional

 should be minimized under additional condi-
tions of constant numbers of particles of such “non-
volatile” components (as well as immobile compo-
nents of the solid substrate).

Let us initially discuss derivation of equilibrium
conditions in the canonical ensemble, when the num-
bers of the particles of all system components are
fixed. Then, let us indicate the manner in which this
may be extended to the case in which only the num-
bers of particles of some “non-volatile” components
are fixed in a multicomponent f luid, while the condi-
tions for other components are set by specifying the
values of their chemical potentials.

The structure of the expression for the free energy
is analogous to that for the grand thermodynamic
potential (2) with replacement of the densities (spe-
cific values) of the grand thermodynamic potential by
corresponding densities (specific values) of the free
energy:

(14)

where f, , and  denote the bulk density and the spe-
cific surface and line excesses of the Helmholtz free
energy, respectively. The number of particles of an ith
component in the system may be written as

(15)

[ ( )]F m x

,

F f V f V f V f A

f A f A fL

α α β β γ γ αβ αβ

αγ αγ βγ βγ

= + + +
+ + +

f f

,
i i i i i

i i i

N n V n V n V A

A A L

α α β β γ γ αβ αβ

αγ αγ βγ βγ

= + + + Γ
+ Γ + Γ + Λ
COLLOID JOURNAL  Vol. 81  No. 4  2019



THERMODYNAMIC ANALYSIS OF ADSORPTION 459
where n is the number density of particles in the bulk
phase and Γ and Λ are the surface and line adsorptions
(specific surface and line excess numbers of particles),
respectively. The subscript marks a component. Note
that expression (15) may also be formally used for
immobile component/components j in solid phase γ;
if such a component is absent in adjacent phase α or β,
corresponding bulk density  and adsorption  will
be equal to zero. Analogously, for components absent
in the phase Γ, corresponding densities  will be
equal to zero.

In this case, minimization of the Helmholtz free
energy under conditions (15) of a constant number of
particles of each component is reduced, with use of the
Lagrange multiplier method [33], to minimization of
the functional

(16)

while undetermined multipliers μk can be found from
set of conditions (15) specifying the numbers of parti-
cles of each component in the system. It is obvious
that, for mobile components i, these multipliers are
exactly equal to the chemical potentials of their parti-
cles, while the potential (16), whose functional is
being minimized, equals the grand thermodynamic
potential. When using the definition [31] of the grand
thermodynamic potential of a solid, the multiplier μj
for the component j immobile in the solid phase is
equal to the normal component of the chemical
potential tensor  in the solid phase (see [31, 32] for
details). It is also obvious that minimization of the
functional (16) will, in this case, yield the same equi-
librium conditions as those previously obtained with
allowance for the relations between the densities (spe-
cific excesses) of the Helmholtz free energy and the
grand thermodynamic potential:

(17)

When both volatile and non-volatile components
are present in the system, the equilibrium conditions
may be derived analogously starting from the hybrid
potential where the Legendre transformation of the
Helmholtz free energy F with respect to variables

 is performed only for “volatile” components:

(18)

This potential will, in addition to the temperature and
the volume of the system, depend on the chemical
potentials {μi} of “volatile” components and the parti-
cle numbers {Nj} of “non-volatile” components (it is
convenient to include the immobile components of
the solid phase into this list). Minimization of its func-
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tional (to be more correct, finding the stationary pro-
file, with the same boundary conditions, for which the
first variation equals zero) will give the desired equilib-
rium conditions. However, the constraint (15) of a
constant number of particles must, in this case, be
taken into account. In such a condition, the number
densities nj of the particles of “non-volatile” compo-
nents will be nonzero in an only phase (phase α, if
“non-volatile” components in the liquid droplet
brought in contact with a vapor–gas medium are con-
cerned). Moreover, adsorption  of some of these
components will possibly (but not necessarily) be
equal to zero.

Now, by determining, analogously to the func-
tional (16), a new functional

(19)

using the Lagrange multiplier method as applied only
to “non-volatile” components {j}, we again arrive at
minimization of the same functional of the grand ther-
modynamic potential.

When considering non-volatile liquids and per-
forming the variational derivation of the equilibrium
conditions, the surface and line excesses are often
omitted, and only the bulk contribution proportional
to  is preserved in expressions similar to
Eq. (15) for the number of particles in a system (see,
e.g., [29, 30, 37]), thereby ignoring the contributions
of adsorptions Γ and Λ to the thermodynamic surface
and line tensions. As is seen from expressions (17), the
thermodynamic surface tensions σ and the line ten-
sion κ are, in this case, actually identified with corre-
sponding excesses  and  of the Helmholtz free
energy. As will be shown in section 2, consistent disre-
gard of adsorptions Γ leads to omitting substantial part
of the dependence of contact angle θ on radius/half-
width r of a droplet base.

In further derivatives, we shall again use the grand
thermodynamic potential implying consideration in
the grand canonical ensemble. At fixed numbers {Nj}
of particles of some components in the system, we
shall be able to consider these numbers to be indepen-
dent variables and find the values of the chemical
potentials {μj} from relations similar to Eq. (15).

1.4. Which Geometric Variable Does Line Tension 
Depend on?

When performing the variational derivation of the
generalized Young relation for axially symmetric (8)
and cylindrical (13) droplets, we assumed existence of
a size dependence of the thermodynamic line tension
specifically on the radius/half-width r of the droplet

j
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base. As a result, the  derivative has entered into
this equation in both cases.

Some authors involve in the consideration a possi-
ble dependence of the line tension on the contact
angle [13, 37, 38] or on the radius/half-width of
the droplet base and the contact angle simultaneously
[6, 39].

When deriving the conditions of equilibrium, we
may confine ourselves to a droplet profile with the
shape of a spherical cap/horizontal cylindrical seg-
ment (as is most often done). In this case, to obtain
equations for the parameters of an equilibrium drop-
let, it is sufficient to determine the conditions under
which the partial derivatives of the grand thermody-
namic potential over two independent geometric vari-
ables (r and θ, r and R, or R and θ) are equal to zero.
This leads to two equations. When a possible depen-
dence of the line tension on r alone is considered,
these equations, together with the geometrical relation

(20)
yield the Laplace equation and the generalized Young
relation. When considering a possible dependence of
the line tension on both r and θ, an additional term
arises in the generalized Young relation containing the

 derivative. However, detailed analysis [39] has
shown that this derivative appears to be related to the

 derivative. Thus, when choosing the surface
of tension as the αβ dividing surface, both derivatives
appear to be equal to zero.

The Laplace equations (7) or (12), which we
obtained when considering the equilibrium conditions
in terms of the variational problem, does not comprise
the  derivative, which must arise in it at an
arbitrary choice of the dividing surface [7, 39]. This
indicates that, in the considered variational problem,
we are dealing with the surface of tension, and, as fol-
lows from the derivations in [39], this must correspond
to  Here, we use the identity sign, because
this is not an additional equilibrium condition, it must
be fulfilled “automatically.” Thus, the 
dependence cannot be an arbitrary function of r and θ.

Another argument may be presented. If we confine
ourselves only to the droplet profiles with the shapes of
spherical cap/horizontal cylindrical segment, vari-
ables r and θ cannot be independent at radius R preset
by the Laplace equation. However, the variational
problem under consideration is free of this confine-
ment. At first sight, this must make it possible to con-
sider arbitrary  dependences on variables r
and θ and result in the appearance of equation

 as one more equilibrium condition in addi-
tion to the aforementioned Laplace equation and gen-
eralized Young relation [6]. However, it is obvious
that, for an arbitrary  dependence on vari-
ables r and θ, this leads to, generally speaking, an

r∂κ ∂

sin ,r R= θ
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({ }, , )i rκ μ θ

({ }, , )i rκ μ θ

0∂κ ∂θ =

({ }, , )i rκ μ θ
inconsistent set of four equations with three
unknowns, because geometrical relation (20) must
also be fulfilled. In the general case, it will have a solu-
tion only at 

If this equality is not fulfilled as an identity, the
variational problem itself appears to be ill-posed, i.e.,
having no solution within the class of functions (hav-
ing the physical meaning of m(x) droplet profiles), for
which it has been formulated. Indeed, it is clearly seen
that the previously found profile, which satisfies the
Laplace equation and the generalized Young relation,
will not correspond to a zero first variation of the func-
tional, if, therewith, the contact angle

 does not satisfy (due to some coin-
cidence) condition  In the general case,
when  the m(x) profile may be somewhat
varied in a small vicinity to the left of point r to meet
the condition  at the edge of the segment.
In such a way, by varying the value of line tension κ, we
can formally cause substantial variations in the value of
term  in the functional  with no or
almost no changes in the values of other (integral)
contributions to it. Making this small vicinity increas-
ingly smaller, we may approach the first variation of
the functional to zero. This procedure will lead to a
profile that has a specific singularity at  and the
regular part of the profile will, this case, coincide with
the previously found one. Of course, such a “solution”
of the variational problem has no physical meaning.

Thus, the aforementioned arguments support our
initial decision to consider the line tension as a func-
tion of only 

2. THERMODYNAMIC EQUATIONS 
FOR SURFACE AND LINE TENSIONS 

AND THE DEPENDENCE OF THE CONTACT 
ANGLE ON DROPLET SIZE

Pressures and thermodynamic surface and line ten-
sions, which enter into Eq. (2) and expressions (3) and
(9) for the functionals, also depend on T and {μi}, so
that all the terms in the Laplace Eqs. (7) and (12), as
well as in the generalized Young relations (8) and (13),
are, strictly speaking, dependent on droplet size.
Indeed, at given values of T and {μi}, the pressures pα

and pβ are determined by the equations of state for the
fluid phases, while equilibrium droplet curvature
radius R is described by the Laplace equation (7) or
(12), and the equilibrium contact angle is expressed by
the generalized Young relation (8) or (13), in which the
thermodynamic surface and line tensions are, in the
general case, also dependent on T and {μi}. Confining
ourselves to the isothermal case, we may ignore the
dependence of the parameters on temperature T.
However, the chemical potentials {μi} for a droplet
occurring at equilibrium with a vapor will be deter-

0.∂κ ∂θ ≡

( )arctan '( )m rθ = −
0.∂κ ∂θ =

0,∂κ ∂θ ≠

0∂κ ∂θ =

2 rπκ [ ( )]m xΩ

,x r=

({ }, ).i rκ μ
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mined by the vapor state, i.e., the set of {μi} values.
Moreover, we shall be interested in the limiting case of
an infinitely large droplet,   corre-
sponding to a certain point on the binodal and, hence,
to the equilibrium between macroscopic liquid and
vapor phases (which corresponds to ). We
shall also consider this preset point ({μi0},T) (on the
binodal), which corresponds to a passage to the limit-
ing case of the infinitely large droplet, under the stud-
ied conditions (such as fixation of the droplet compo-
sition, insolubility of a passive gas, etc.). It is conve-
nient to introduce deviations of the chemical
potentials from their limiting values

(21)
Here and below, subscript “0” at a physical parameter
marks its value on the binodal, i.e., at the equilibrium
between the bulk liquid and vapor phases (which cor-
responds to  and, hence, to the limiting case
of an infinitely large droplet,  ).

Using the Gibbs–Duhem relations 
for phases α and β, it is easy to relate difference

 with the values of {δμi}. When considering the
system far from the critical liquid–vapor
points/curves, we believe the liquid (phase α) to be
incompressible or weakly compressible and much
denser than the vapor. Then, taking into account the
condition of equilibrium on the binodal,  we
easily obtain

(22)

From here, it also follows for the value of , which has
been introduced into the right-hand side of Eq. (5)
and is used in Eq. (10), that

(23)

Taking different values of the chemical potentials,
we obtain different values of the thermodynamic sur-
face and line tensions in the generalized Young rela-
tions (8) and (13). In the limiting case , we
have   the contact angle has its limiting
value θ0, to which a straight three-phase contact line
corresponds, while the generalized Young relations (8)
and (13) acquire the form of the classical Young equa-
tion for a macroscopic contact angle:

(24)
As before, subscript “0” here marks a value of a quan-
tity at the point preset on the binodal, i.e., at

Subtracting the generalized Young relation (8)
from the classical Young equation (24), we, for the
axially symmetric droplet, obtain

,R → ∞ ,r → ∞

p pα β=

0.i i iδμ ≡ μ − μ

p pα β=
,R → ∞ r → ∞

i ii
dp n d= μ

p pα β−

0 0 ,p pβ α=

0 .i i
i

p p nα β α− ≈ δμ
μ�

0 0 .i i
i

nα αβμ ≈ δμ σ�

{ }0iδμ → +
,R → ∞ ;r → ∞

0 0 0 0cos .αβ βγ αγσ θ = σ − σ

0{ }.i iμ = μ
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(25)

where we have used the quantity

(26)

Here and below, the symbol δ denotes the difference
between the values of a parameter in the current state
and in the considered limiting state on the binodal (at

).
The difference between the surface tensions at dif-

ferent {μi} values is, as a rule, ignored in the literature,
the line tension is believed to be constant and equal to
its limiting value κ0 for a straight three-phase contact
line, and the generalized Young relation (8) is written
in a simplified form

(27)

which is called by different authors the modified or,
sometimes, extended Young equation. The values of
the surface and line tensions, which enter into this
equation, refer to the binodal; hence, they are inde-
pendent of droplet size. Subtracting this relation from
the “classical” Young equation (24), we derive the
relation

(28)

which is widely used to determine the line tension
from the slope of the –  dependence [9, 8]. It
is clearly seen that expression (28) can also be obtained
from relation (25), if we take 

 and 
Let us estimate the δΔσγ value using the general-

ized Gibbs adsorption equation for the βγ and αγ
interfaces, which is a version of the “classical” Gibbs
adsorption equation for solid surfaces [36, 40, 41]:

(29)

where  is the specific surface excess entropy,  is the
tensor of the mechanical surface tension (specific sur-
face excess stress tensor),  is the tensor of the surface
strain,  is the unit tensor,  is the mass displacement
tensor indicating changes in the amount of immobile
component j of the solid phase in different directions
(see [41] for details),  is the amount of the
substance (the number of molecules/atoms) of the
immobile component j in the solid phase; subscript i
enumerates only mobile components, and the colon
denotes the biscalar product of the tensors. For an
undeformable solid (or a solid with a constant strain)
having a constant mass (within the boundaries speci-
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fied by the dividing surfaces),   and
Eq. (29) acquires the form of the “classical” Gibbs
adsorption equation, as it is written for a dividing sur-
face between fluid phases:

(30)

Let us assume that the solid phase of the substrate
contains no mobile components and neglect the
dependence of the substrate strain tensor on the sessile
droplet size and the chemical potentials of f luid mole-
cules. Choosing the βγ and αγ dividing surfaces to be
equimolecular with respect to the immobile compo-
nent j of the solid (and assuming that they are copla-
nar), the following may be written for our system
under isothermal conditions:

(31)

Integrating this equation from the μi0 value on the
binodal to current μi values, we derive

(32)

The approximate equality corresponds to the asymp-
totic expression for rather low δμi values, and subscript
“0” refers, as usual, to the values of parameters at

 corresponding to the limiting state on the
binodal.

Let us use the Gibbs adsorption equation for the αβ
interface between the liquid and vapor phases to esti-
mate the correction to the surface tension  due to
changes in μi. Since the initial functionals and equilib-
rium conditions were obtained for the surface of ten-
sion3 used as the αβ dividing surface, i.e.,

 and the Gibbs adsorption equation in
the isothermal case has the form of

(33)

similarly to the case of Eq. (32), the integration yields

(34)

Let us rewrite relation (25) as

(35)

3 See [7, 39] and review [36] for detailed discussion of the equilib-
rium conditions for an arbitrary choice of the αβ dividing sur-
face.
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The latter approximate expression has been obtained
under the assumption that correction  is
small due to the smallness of δσαβ or/and the differ-
ence between  and  (this is, in particular,
true in the limiting case of rather large droplets). The
error in this approximation may be estimated as

To estimate the term  in the right-hand side of
the generalized Young relation (8) and relations (25),
(27), and (35) for an axially symmetric sessile droplet,
we compare the Laplace equation (7), geometric rela-
tion (20), and Eq. (23). This will yield the following
asymptotic expression for rather large droplets:

(36)

Thus, it can be seen that the terms δΔσγ , ,
and  in the right-hand side of relation (35) have the
first order with respect to  or  For not too small

droplets, the correction  must be small due
to the very small Tolman length as compared with the
characteristic values of curvature radius R of the drop-
let meniscus. It may also be expected that it is small as
compared with δΔσγ, e.g., for a free βγ surface covered
with a polymolecular adsorption film or a wetting one
(which yields large values of  compar-

ing to ), as it takes place upon, e.g., nucleation
of sessile droplets on a glass surface in supersaturated
vapors of water and alcohols, and in a number of other
cases [42, 43].

For a cylindrical droplet, the generalized Young
relation (13) is also transformed into the “classical”
Young equation (24) for the macroscopic contact
angle in the limiting case of  i.e., 
in which  [35, 36]. The counterparts of
relations (25) and (35), in this case, have no term 
in the right-hand side:

(37)

(38)

To estimate the term  in the right-hand side
of generalized Young relation (8) and Eqs. (25) and
(35) for an axially symmetric sessile droplet, as well as
the generalized Young equation (13) and relations (37)
and (38) for a cylindrical droplet, we use the line
adsorption equation, an analog of the Gibbs–Duhem
relation and the Gibbs adsorption equation for the
three-phase contact line [41, 44]. We suppose that,
taking into account the assumptions used above in
Eq. (31) for the strain of the solid substrate and the
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choice of the dividing surfaces, this equation for our
system will have a form similar to that for a system
composed of only f luid phases [7]:

(39)

where  is the specific (per unit length of the three-
phase contact line) line excess of entropy (the term
containing this parameter will be absent in the isother-
mal case under consideration). The term 
which is analogous to  is absent in the Gibbs
adsorption equations; namely, it is absent in Eqs. (29)
and (30) for a planar interface, because  in
the limiting case  (i.e., ), and in
Eq. (33) for a curved αβ surface, because, for the cho-
sen surface of tension,  The choice of three
dividing surfaces αβ, αγ, and βγ fixes the position of
the three-phase contact line, and, in the general case,

 for it [7, 36].

Note that use of the generalized Young relation (8)
containing total derivative  along the equilib-
rium states of droplets instead of partial derivative

 may be found in the literature [45]. It can be
seen from Eq. (39) that disregard of the line adsorp-
tions  (as in the case of, e.g., minimization of the
Helmholtz free energy (14) under the condition of
constant particle numbers with allowance for only
bulk contributions in (15)) corresponds, in the iso-
thermal case, namely to identification of the 
and  derivatives.

Assuming that, for the line tension κ and the line
adsorptions Λi expressed as functions of the equilib-
rium radius4 (base half-width) r, the following asymp-
totic (at ) estimates

(40)

may be written with finite limiting values of κ0 and Λi0,
we, from Eq. (39) with allowance for the Laplace
equations (7) or (12), geometrical relation (20) and
expression (23), obtain the following:

(41)

Indeed, it follows from estimates (40) that, along the
states of equilibrium,  The
Laplace equations (7) or (12), geometrical relation
(20) and Eq. (23) yield

4 That is, along the line (“trajectory”) of equilibrium states of the
system under preset (e.g., by an experiment) conditions 
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where  and 1 for axially symmetric and cylindri-
cal droplets, respectively, and, in the general case, this
value is nonzero. The subscript j here and further runs
over the same values as the subscript i. Then,

Thus, neglecting the term  is justified in the
asymptotic limit of relatively large droplets [7], while
neglecting adsorption effects (nonzero values of cor-
rections δΔσγ and ) cannot be considered to
be justified without certain estimates.

Relation (28) is often used to determine the line
tension κ0 from the slope of the  versus the three-
phase contact line curvature  dependence for axi-
ally symmetric sessile droplets. In the majority of
experiments, this dependence for micron and submi-
cron sessile droplets is, within the measurement
errors, linear. At the same time, the unjustified
neglecting adsorption effects does not give grounds to
believe that the value measured in such a way is really
equal to the line tension κ0. Differentiating the right-
hand side of expression (35) over  we
may, similarly to the case of the derivation of Eqs. (41)
and (42), show that the real slope of the –
dependence in asymptotic limit  (or,
equivalently, ) will be equal to

(43)

Here, the first term results from the effect of the
line tension, while the second term is due to the effect
of adsorptions at the interfaces. In [46], it has been
rightly pointed out that even the adsorption effect
alone may, in principle, be sufficient to explain the
existence of the dependence of  on  In reality,
these effects are inseparable and take place simultane-
ously.

For cylindrical droplets, the line tension yields no
correction (linear with respect to ) to the cosine of
the contact angle, so that the slope of the –
dependence is governed only by the effect of adsorp-
tions at the interfaces, and, in asymptotic limit

 (or, equivalently, ), it is equal to

(44)
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Note that, in the multicomponent case, the terms that
enter into expressions (43) and (44) and are deter-
mined by the adsorption effects, depend not only on
temperature T and the values of the chemical poten-
tials {μi0} at the “limiting” point {μi0} on the binodal,
but also, strictly speaking, on the “trajectory” in the
space of the chemical potentials {μi}, over which the
droplets “approach” {μi0}. This is evident from the
presence of the  derivatives along the “trajec-
tory” in expressions (43) and (44).

It should be noted that the simplified description of
axially symmetric sessile droplets by Eqs. (7) and (28)
is rather widely used. When it is required to describe
the contact angles of not too small droplets, Eq. 28
may be considered as an asymptotic form of the exact
relations (25) and (35) with the coefficient in the
right-hand side equal to the expression (43) taken with
the reverse sign rather than  For smaller drop-
lets and description of the thermodynamic quantities
as the work of droplet formation, it is necessary to take
into account the dependences of the surface tensions
on the chemical potentials and, generally speaking,
the nonlinear character of the –  dependence.

The absence of the line tension in the asymptotic
expression (44) for the slope of the –  depen-
dence for cylindrical droplets partly justifies the
assumption used in a number of works [18, 19] that the
simulation of namely cylindrical droplets makes it
possible to exclude the effect of the line tension on the
contact angles of sessile droplets. At the same time, it
can be seen that the effect of adsorption at the inter-
faces remains preserved, and it is this effect that prede-
termines the existence of the size dependence of 
already at the first order with respect to  At higher
orders with respect to , the line tension will also
affect the contact angle due to the presence of the term

 in Eq. (37).

2.1. Results for a One-Component Fluid

When fluid phases α and β consist of particles of a
single component, the obtained results look clear and
may be interpreted in the simplest way [25]. Under the
considered conditions of a preset value of the chemical
potential of vapor/liquid particles, the system itself is
represented by a critical droplet in nucleation of a
supersaturated vapor on a partially wettable solid sub-
strate. The value of the chemical potential μ is related
to vapor supersaturation  as follows:

(45)

where  is the Boltzmann constant and μ0 is the value
of the chemical potential on the binodal at the consid-
ered temperature. In the case of a one-component
fluid having a preset temperature, the state of the sys-
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tem is governed by single variable μ, deviation δμ of
which from μ0 (cf. Eq. (21)) will, in the asymptotic
limiting case of large droplets, be proportional to small
parameter  determined by Eq. (5) (cf. Eq. (23)):

(46)

The asymptotic estimate (32) of  will acquire
the form of

(47)

while the estimate (36) of the  value is as follows:

(48)

Expression (47) for 
is easier to interpret in the one-component case. Vari-
ations in each solid–fluid thermodynamic surface
tension are governed by f luid adsorption on the sur-
face. In the case of a one-component “volatile” f luid,
the equilibrium surface of a solid brought in contact
with the vapor (the βγ surface) is represented by a
spontaneously formed metastable condensate film. Of
course, the value of the adsorption (or the film thick-
ness), which is unambiguously determined by δμ,
affects the equilibrium surface tension5 (see also our
work [25], which contains the results of model calcu-
lations performed for an axially symmetric droplet via
the interface potential/disjoining pressure isotherms
in liquid films on a solid substrate).

In the one-component case, estimate (34) for the
quantity  acquires the form of

(49)

The slope of the –  dependence given by
Eqs. (43) and (44) for axially symmetric and cylindri-
cal droplets, respectively, will, in the one-component
case, be equal to

(50)

for the axially symmetric droplet and

(51)

for the cylindrical one.
As a rule, in works where the dependence of the

surface tension  on the droplet size is taken into
account in the classical or generalized Young relation

5 Change  in the equilibrium solid–vapor surface ten-
sion for a condensing vapor may be found from the interface
potential/disjoining pressure isotherm [25, 26]. The difference
between the surface tensions/spreading coefficients for “bare”
and equilibrium solid surfaces may be estimated from the initial
region of a model adsorption isotherm [51, 52].
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[13, 18, 39, 47], the following asymptotic form of this
dependence [48, 49] is used:

(52)

where  and 1 for axially symmetric and cylindri-
cal droplets, respectively, and  is the Tolman
length, which is related to the adsorption and number
densities of particles in phases α and β on the binodal
as follows [48]:

(53)

Taking into account this relation, the correction
(obtained for an axially symmetric droplet in [39]) for
the size dependence of surface tension  coincides
with the correction that we obtained in Eq. (50). It
should, however, be noted that, for rather small drop-
lets, asymptotic equation (52) is an inadequate
approximation and must be replaced by an expression
comprising a contribution quadratic with respect to
the curvature [49, 53–55].

3. DISCUSSION

Let us summarize the results of the above-
described thermodynamic analysis of equilibrium
conditions for a sessile droplet and the  versus

 dependence, where r denotes the radius of the
droplet base and its half-width for axially symmetric
and cylindrical droplets, respectively. The equilibrium
conditions for sessile droplets are the Laplace equa-
tions (Eqs. (7) and (12) for the axially symmetric and
cylindrical droplets, respectively) and the generalized
Young relations (Eqs. (8) and (13) for the axially sym-
metric and cylindrical droplets, respectively). The lat-
ter relations indicate dependence of  on r (more
often, the dependence on the curvature  is consid-
ered). This dependence may be explicit (due to the
presence of the term  in Eq. (8) and the term 
in Eqs. (8) and (13)), and implicit, i.e., expressed via
the dependences of all the surface tensions and line
tensions on the chemical potentials {μi} of the compo-
nents, with the equilibrium droplet size (and, hence, r)
being also governed by {μi}. As the thermodynamic
analysis has shown, in the principal order with respect
to , the main corrections to the macroscopic value
of  are governed by dependences of the surface
tensions on {μi} (physically determined by the effect of
adsorption at interfaces), as well as (but only for the
axially symmetric droplet) by existence of a nonzero
line tension  in the limiting case of a macroscopic
droplet, i.e., of a straight three-phase contact line. In
the case of a cylindrical droplet, there is no correction
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provided by term  of the generalized Young rela-
tion.

In the multicomponent case, we should also note
the presence of  derivatives along the “trajec-
tory” of droplets in the space of chemical potentials
{μi} in Eqs. (43) and (44) for the slope of the  ver-
sus  plot in the asymptotic limiting case 
of infinitely large droplets. These relative variations in
the chemical potentials may, in particular, reflect the
influence of variations in the droplet composition on
its contact angle. This should be taken into account
when interpreting  versus  dependences
resulting from the measurements or simulations per-
formed in a multicomponent case. A more detailed
analysis requires instantiation of expressions for the
dependences of the chemical potentials in mixtures on
the number density of molecules/atoms, which is
beyond the scope of this study.

For smaller sessile droplets, the size dependence of
actually all the terms of the generalized Young relation
becomes important (here we are, in fact, dealing with
nanosized droplets, which are, at present, accessible
for simulation rather than for direct measurements).
Presence of an explicit size dependence of the line ten-
sion gives rise to the separate term  which
should be discussed in greater detail.

The choice of a geometrical variable, which
may/must the line tension of a sessile droplet depend
on, seems to be a rather formal question, when the
consideration is confined to spherical or cylindrical
segments (as was the case in our work [7] dealing with
an axially symmetric droplet). Therewith, the selec-
tion of, in some sense, more “local” variable θ seems
to be even more logical especially in the case of a cylin-
drical droplet, the three-phase contact line of which
remains straight at any values of r. However, we have
seen that, at a more general variational statement of
the problem, when the equilibrium shape of a droplet
is not assumed to be known in advance, the choice of
variable θ appears to be very inconvenient and leads to
an ill-posed variational problem. This is not just a
technical problem, but, on the contrary, indicates that
an explicit  dependence cannot be realized in a
physical system. Indeed, the  dependence must, at
an arbitrary value of the angle θ, induce some force
that tends to change this angle, thereby distorting the
droplet profile as locally as possible (because the pro-
file with the shape of spherical/cylindrical segment is
determined by a corresponding Euler–Lagrange
equation, and a change in droplet base radius/half-
width r also affects the value of the functional and,
therewith, may be realized independently of a change
in θ). This force disappears only at θ values for which

 In the general case, this gives rise to a non-
physical singularity of the profile shape in the vicinity
of the three-phase contact line or implies the existence

rκ

j id dμ μ

cos θ
1 r 0{ } { }i iμ → μ

cos θ 1 r

,r∂κ ∂

( )κ θ
( )κ θ

0.∂κ ∂θ =
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of separate equilibrium condition  The lat-
ter leads, generally speaking, to an inconsistent set of
equations, because the number of the equations
exceeds the number of unknowns.

In connection with the conclusion on the incorrect
consideration of the  dependence, a question
arises how to interpret results, where such a depen-
dence has been obtained in the explicit form for the
line tension (see, e.g., [38]) or the effective line ten-
sion [6]. Possibly, this dependence should, in such
cases, be interpreted as  and consid-
ered as an explicit dependence of κ on r.

The existence of nonzero term  may be veri-
fied by independent calculations of the surface ten-
sions (as well as the line tension and the base radius of
a sessile axially symmetric droplet) in terms of any
model. For example, we have performed such calcula-
tions in [25] for axially symmetric droplets within the
framework of a model describing a sessile droplet as a
liquid film of varying thickness, while the specific
properties of thin liquid films were taken into account
using a model short-range interface potential related
to disjoining pressure isotherm. The data obtained
have confirmed both the existence of an additional
correction to the contact angle cosine (we have related
this correction to the  derivative) and the sec-
ond order of smallness of this correction with respect
to  The results of calculating  , and
the line adsorption Λ have also appeared to be in
agreement with the line adsorption equation (39),
with this fact, however, being omitted in the text of the
article.

In some works (see, e.g., [47]), the authors have, in
accordance with the previous analysis [39], used the
generalized Young relation containing the 
derivative, and, in the general case, the  deriva-
tive as well. When comparing the relations obtained in
[39] with the results of this work, we should, first of all,
make two preliminary comments.

(1) Among two definitions of the line tension for a
sessile droplet considered in [39], our definition coin-
cides with the quantity denoted as  and corresponds
to allowance for surface contribution  (in our
notations) to the grand thermodynamic potential of
the system with thermodynamic surface tension 
calculated at the current value of the droplet pressure

, which differs from the pressure  in the vapor–
gas medium.

(2) In [39], relations were obtained for arbitrary
dividing surfaces, while we have made a certain
choice. For example, we have chosen the surface of
tension, for which  as the αβ dividing sur-
face. The quantity  (denoted in this work as

) is not independent, but is rather related to

0.∂κ ∂θ =

( )κ θ

(arcsin( ))r Rκ

r∂κ ∂

r∂κ ∂

1 .r ,r∂κ ∂ d drκ

∂κ ∂θ
r∂κ ∂

wτ
Aαγ αγσ

αγσ

pα pβ

0,Rαβ∂σ ∂ =
∂κ ∂θ

d dwτ θ
the  derivative (denoted in this work as
) via relation (6.44)

so both these quantities vanish at the surface of ten-
sion.

Thus, the use of a nonzero  derivative is jus-
tified only when the αβ dividing surface different from
the surface of tension is chosen. This also implies
appearance of an additional nonzero term  in
the Laplace equation. Therewith, the quantity 
must, as before, be taken into account in the exact
form of the generalized Young relation.

In this work, we discuss the adsorption-related cor-
rection to  that was also discussed in [46] as a cor-
rection sufficient, in principle, for describing the size
dependence of the contact angle of an axially symmet-
ric sessile droplet even without including the line ten-
sion. This correction is of the first order with respect
to  and associated with existence of adsorption at
interfaces (specifically, at solid–fluid interfaces). It is
clear that, in practice, the line tension cannot be
excluded from a real system; therefore, both effects
will take place (in the case of a cylindrical droplet, only
the effects of adsorption manifest themselves and yield
the correction to  with the correction having the
first order with respect to , while the line tension
must affect  only in the second order of smallness
with respect to ). The results of model calculations
performed in our work [25] have confirmed the exis-
tence of two corrections having the first order of small-
ness with respect to  A feature of the model gives

rise to only one correction related to adsorption 
(adsorption values  and  are equal to zero in the
used model). The authors of recent work [50], who
studied sessile droplets by the Monte Carlo method
within the framework of the lattice gas model, have
also come to the conclusion that there are comparable
effects of the adsorption (  and ) and the line
tension.

In this work, we have involved in the consideration
the influence of adsorption at all three interfaces on
the of the contact angle cosine. In our previous works
[25, 26], we ignored the dependence of surface tension

 on the curvature of free surface αβ of the consid-
ered droplets keeping in mind, primarily, sessile drop-
lets formed on top of a precursor adsorbed/wetting
film. For polar liquids, the thickness of such a film
(and corresponding adsorption ) will be rather
large (for water on the surfaces of quartz, glass, etc.,
the thickness of such a film may be as large as 1 nm
[42, 43], thereby exceeding the Tolman length by sev-

Rαβ∂σ ∂
d dRαβσ

2
2sin ,

2
r

R

αβ∂κ ∂σθ =
∂θ ∂

∂κ ∂θ

Rαβ∂σ ∂
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cos θ

1 r
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1 r
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αβσ
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eral orders of magnitude). However, in works devoted
to molecular simulation of sessile droplets, there is
often no adsorbed film on the solid surface, while the
droplets under investigation are very small, and the
curvature radii of their free αβ surfaces may be of the
same order with the Tolman length. This gives sense to
the including of corresponding correction 
into the exact form of relations (35) and (38). The
replacement of this correction by approximate correc-
tion  formally yields an error of the same
order  as the term  does, as well
as corrections of the same order to other terms in
right-hand side of Eqs. (35) and (38). However, the
use of this less accurate expression for the correction

 may make sense even in higher orders with
respect to  (or ), when this correction is small as
compared with others. In any case, expressions (43)
and (44) for the slope of the  versus  plot, as
well as their forms (50) and (51) for a one-component
fluid, have been obtained within the framework of a
linear approximation with respect to  (or ) and are
exact in this order. Obtaining expressions with higher
orders with respect to  (or ) requires to control
derivations of all the used equations, because many of
them are valid only in the first order with respect to 
(or ).

It should be separately noted that, when analyzing
the results of a measurement or simulation of small
droplets, an important question arises regarding to the
choice of the plane in which dividing surfaces αγ (sub-
strate–liquid) and βγ (substrate–gas) are located [47].
Adsorption-related corrections to  in Eqs. (43)
and (44) will be of the same order as a change in 
upon a shift of the plane of the αγ and βγ dividing sur-
faces by a value comparable with the thickness of the
adsorbed layers. This may explain why, in [18], even in
the presence of adsorption on the substrate surface,
the simulated system did not demonstrate noticeable
corrections to the contact angles of rather large cylin-
drical droplets. These corrections would be unexplain-
able by only the effect of adsorption at the liquid–
vapor interface with the Tolman length calculated for
the model f luid.

Remember that, in this work, we fixed the position
of the plane of the αγ and βγ dividing surfaces by
imposing the equimolecular condition with respect to
the immobile component of the solid substrate,
thereby substantially simplifying the choice of gener-
alized Gibbs adsorption equation (29) for the solid
substrate. Another position of the plain of these divid-
ing surfaces may be chosen for convenience [25].
However, in view of the complex structure of Eq. (29),
such a different choice would, in our opinion, require
separate consideration similar to [31, 32], i.e., more
detailed than that performed in [39].

cosαβδσ θ

0cosαβδσ θ
( ) ( )2 2O O r −μ =� r∂κ ∂
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cos θ 1 r
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