ENERGY SURFACE AROUND A DEFORMED EVEN-EVEN NUCLEI WITH 150<A<190

 $\textbf{Authors:} \ A. \ K. \ Vlasnikov^1; \boxed{A. \ I. \ Zippa^1}; V.M. \ Mikhajlov^1$

Corresponding Author: a.vlasnikov@spbu.ru

If an ideal energy surface around a deformed nucleus with even N and Z existed and were linear and quadratic in deviations s and t from N and Z respectively $(|s|/N \ll 1, |t|/Z \ll 1)$

¹ Saint Petersburg State University, Russia

$$E(N+s,Z+t) = M(N+s,Z+t) - m_n(N+s) - m_p(Z+t) = \mathscr{E}(N,Z) + d_{1n}s + d_{1p}t + d_{2n}s^2/2 + d_{2p}t^2/2 + d_{1n1p}st$$

(E,M) are nuclear energy and mass, m_n,m_p are nucleon masses), then parameters $\mathscr{E}(N,Z)$ and d_{inkp} should not depend on those adjacent nuclei which are used for calculations of these parameters. In particular, a measured E(N,Z) has to coincide with a calculated parameter $\mathscr{E}(N,Z)$. For determination of $E(N,Z)-\mathscr{E}(N,Z)$ and other parameters three groups of even-even nuclei are applied: s-Appr. (Approximation, $s=\pm 2, \pm 4, t=0$, i. e. isotopes); t-Appr. (s=0,t)-Appr. in which t=0-Appr. in which t=0-Appr. t=0-

Calculated quantities $E(N,Z)-\mathscr{E}(N,Z)$ are given in Table [1], which shows that these quantities are sign variable in different approximations and a maximum divergence attains $\simeq 120 \mathrm{keV}$. Approximately the same difference is found in other parameters. Thus, description of the energy surface around a deformed even-even nucleus by Eq. (1) is rather approximate. This information is useful for prediction of unknown masses and calculations of the pairing energies.

Nucleus	$E(N,Z)-\delta(N,Z)$		
	s -Appr.	t -Appr.	(st) -Appr.
$^{154}_{64}~{ m Gd}_{90}$	128.6 ± 2.0	-8.9 ± 19.2	121.8 ± 10.3
$^{160}_{66} \mathrm{Dy}_{94}$	-29.6 ± 8.6	-53.1 ± 9.2	-68.2 ± 18.4
⁷⁰ ₁₇₀ Yb ₁₀₀	37.7 ± 1.4	29.9 ± 16.9	-8.8 ± 33.9
$^{180}_{74}\mathrm{W}_{106}$	74.6 ± 13.6	77.6 ± 11.3	-55 ± 61
¹⁸⁸ ₇₆ Os ₁₁₂	-21.0 ± 1.1	-179.0 ± 7.2	12.4 ± 9.7

The reported study was funded by RFBR, project number 20-02-20032.

References:

1. M. Wang, G. Audi, F.G. Kondev et al., Chinese Phys. C 41, 030003 (2017).