ENERGY SURFACE AROUND A DEFORMED EVEN-EVEN NUCLEI WITH 150<A<190

Authors: A. K. Vlasnikov ${ }^{1}$; A. I. Zippa ${ }^{1}$; V.M. Mikhajlov ${ }^{1}$

${ }^{1}$ Saint Petersburg State University, Russia

Corresponding Author: a.vlasnikov@spbu.ru
If an ideal energy surface around a deformed nucleus with even N and Z existed and were linear and quadratic in deviations s and t from N and Z respectively $(|s| / N \ll 1,|t| / Z \ll 1)$

$$
\begin{aligned}
E(N+s, Z+t)=M & (N+s, Z+t)-m_{n}(N+s)-m_{p}(Z+t)=\mathscr{E}(N, Z)+d_{1 n} s+d_{1 p} t+ \\
& +d_{2 n} s^{2} / 2+d_{2 p} t^{2} / 2+d_{1 n 1 p} s t
\end{aligned}
$$

(E, M are nuclear energy and mass, m_{n}, m_{p} are nucleon masses), then parameters $\mathscr{E}(N, Z)$ and $d_{\text {inkp }}$ should not depend on those adjacent nuclei which are used for calculations of these parameters. In particular, a measured $E(N, Z)$ has to coincide with a calculated parameter $\mathscr{E}(N, Z)$. For determination of $E(N, Z)-\mathscr{E}(N, Z)$ and other parameters three groups of even-even nuclei are applied: s-Appr. (Approximation, $s= \pm 2, \pm 4, t=0$, i. e. isotopes); t-Appr. $(s=0$, $t= \pm 2, \pm 4$, i.e. isotones) and (st)-Appr. in which $s= \pm 2, t=\mp 2 ; s= \pm 4, t=\mp 4$

Calculated quantities $E(N, Z)-\mathscr{E}(N, Z)$ are given in Table [1], which shows that these quantities are sign variable in different approximations and a maximum divergence attains $\simeq 120 \mathrm{keV}$. Approximately the same difference is found in other parameters. Thus, description of the energy surface around a deformed even-even nucleus by Eq. (1) is rather approximate. This information is useful for prediction of unknown masses and calculations of the pairing energies.

Nucleus	$E(N, Z)-\delta(\mathrm{N}, \mathrm{Z})$		
	s-Appr.	t-Appr.	$(s t)$-Appr.
${ }_{64}^{154} \mathrm{Gd}_{90}$	128.6 ± 2.0	-8.9 ± 19.2	121.8 ± 10.3
${ }^{166} \mathrm{Dy}_{94}$	-29.6 ± 8.6	-53.1 ± 9.2	-68.2 ± 18.4
${ }^{70} \mathrm{Yb}_{100}$	37.7 ± 1.4	29.9 ± 16.9	-8.8 ± 33.9
${ }^{170} \mathrm{Y}_{10} \mathrm{~W}_{106}$	74.6 ± 13.6	77.6 ± 11.3	-55 ± 61
${ }^{188} \mathrm{Os}_{112}$	-21.0 ± 1.1	-179.0 ± 7.2	12.4 ± 9.7

The reported study was funded by RFBR, project number 20-02-20032.

References:

1. M. Wang, G. Audi, F.G. Kondev et al., Chinese Phys. C 41, 030003 (2017).
