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Аннотация

В статье рассматриваются проблемы аппроксимации мат-
риц матрицами единичного ранга. Задача аппроксимации
формулируется как задача минимизации log-чебышевского
расстояния, которая затем сводится к задаче оптимизации,
имеющей компактное представление в терминах тропиче-
ской математики. Приводятся необходимые определения и
результаты из области тропической математики, на основе
которых дается решение исходной задачи аппроксимации.

Введение

К задаче аппроксимации матриц сводится значительное число при-
кладных задач из разных областей. Многие вычислительные зада-
чи требуют решения системы линейных алгебраических уравнений.
Например, задачи вычислительной гидродинамики, теории электри-
ческих цепей, уравнения балансов и сохранения в механике. Ме-
тоды решения систем линейных уравнений принято разделять на
итерационные и прямые. Прямые методы обычно основываются на
LU -разложении и требуют больших затрат памяти и временных ре-
сурсов. Применение техники малоранговой аппроксимации к множите-
лям LU -разложения, изложенное в работе [1], значительно повышает
эффективность этих методов. Схожий подход может быть применен
и к решению задачи итерационными методами. Например, в [2] опи-
сано использование приближения LDLT -разложения, полученного на
основе малоранговой аппроксимации, в качестве предобуславливате-
ля. Потребность в аппроксимации возникает и при обработке массивов
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данных. Матрицы, заполненные результатами какого-либо физическо-
го эксперимента, биологическими наблюдениями или оценками поль-
зователей, могут иметь пропуски или значения, с которыми сложно
работать. Аппроксимация матрицами из выбранного множества мат-
риц дает возможность работать с данными в удобной и корректной с
математической точки зрения форме.

Понижение ранга матрицы при помощи аппроксимации существен-
но упрощает ее структуру и позволяет сократить объем памяти, тре-
бующийся для её хранения. Логично выделять аппроксимацию матри-
цами единичного ранга, так как они устроены наиболее просто. Неко-
торые методы одноранговой аппроксимации описаны,например, в ра-
ботах [3], [4].

Задача аппроксимации матрицы \bfitA \in R
n\times n матрицами

\bfitX \in \sansS \subset R
n\times n формулируется как задача оптимизации

\mathrm{m}\mathrm{i}\mathrm{n}
\bfitX \in \sansS 

\mathrm{d}(\bfitA ,\bfitX ),

где \mathrm{d} — функция расстояния на множестве матриц, измеряющая вели-
чину ошибки аппроксимации.

Подходы к решению задачи аппроксимации могут варьироваться
в зависимости от нюансов исходной задачи и особенностей матрицы.
Различия между подходами во многом определяются выбором функ-
ции расстояния.

Распространенным решением проблемы является применение к ап-
проксимации матриц разновидностей метода наименьших квадратов, в
основе которого лежит минимизация евклидова расстояния. Вариант
применения описан, например, в работе [5]. Метод надежен, но требует
больших затрат вычислительных ресурсов, что делает его малопригод-
ным для решения задач больших размерностей или задач, в которых
проблема экономии ресурсов является первостепенной. В [6] освеща-
ется использование расстояния Минковского (lp) и расстояния Чебы-
шева, которое рассматривается как предел расстояния Минковского
при p \rightarrow \infty . В частности, в этой работе доказывается существование
приближения Чебышева с рангом r для любой матрицы \bfitA с бо̀льшим
рангом. Но использование функции расстояния Минковского при p > 2
еще более трудоемко, чем евклидовой функции расстояния.

В работе [7] проблема чебышевской аппроксимации сформулирова-
на в виде задачи линейного программирования, к решению которой мо-
гут применяться соответствующие методы, например, симплекс-метод.
Для аппроксимации положительных матриц иногда целесообразнее пе-
рейти к оценке погрешности в логарифмической шкале. Задача ми-
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нимизации log-чебшевского расстояния может быть сведена к задаче
конического программирования второго порядка, как в работе [8], и
решена, например, барьерным методом [7].

Далее в статье предлагается метод аппроксимации положи-
тельных матриц матрицами единичного ранга путем минимизации
log-чебышевского расстояния между матрицами. Будет показано, что
задача минимизации log-чебышевского расстояния может быть приве-
дена к задаче, записанной в компактной форме в терминах идемпотент-
ного полуполя R\mathrm{m}\mathrm{a}\mathrm{x},\times , которое часто называют \mathrm{m}\mathrm{a}\mathrm{x}-алгеброй. Затем
для нахождения решения будут использованы результаты из области
тропической математики.

Log-чебышевская одноранговая аппроксимация

Чебышевская аппроксимация положительной матрицы \bfitA = (aij)
при помощи положительной матрицы \bfitX = (xij) в логарифмической
шкале использует функцию расстояния

\mathrm{d}(\bfitA ,\bfitX ) = \mathrm{m}\mathrm{a}\mathrm{x}
i,j

| \mathrm{l}\mathrm{o}\mathrm{g} aij  - \mathrm{l}\mathrm{o}\mathrm{g} xij | ,

где логарифм берется по основанию больше единицы.
Справедливо следующее утверждение

Утверждение 1. Пусть \bfitA ,\bfitX — положительные матрицы. Мини-

мизация по \bfitX величины \mathrm{d}(\bfitA ,\bfitX ) эквивалентна минимизации

\mathrm{d}\prime (\bfitA ,\bfitX ) = \mathrm{m}\mathrm{a}\mathrm{x}
i,j

\mathrm{m}\mathrm{a}\mathrm{x}(aijx
 - 1
ij , xija

 - 1
ij ).

Следовательно, задача \mathrm{l}\mathrm{o}\mathrm{g}-чебышевской аппроксимации может
быть сведена к задаче

\mathrm{m}\mathrm{i}\mathrm{n}
\bfitX 

\mathrm{d}\prime (\bfitA ,\bfitX ). (1)

В силу того, что любая матрица \bfitX ранга 1 имеет представление
\bfitX = \bfits \bfitt T , где векторы \bfits = (si) и \bfitt = (tj) не содержат нулевых элемен-
тов, целевую функцию задачи (1) можно записать в виде

\mathrm{d}\prime (\bfitA ,\bfitX ) = \mathrm{d}\prime (\bfitA , \bfits \bfitt T ) = \mathrm{m}\mathrm{a}\mathrm{x}
i,j

\mathrm{m}\mathrm{a}\mathrm{x}(s - 1
i aijt

 - 1
j , sia

 - 1
ij tj).

Таким образом, задача одноранговой аппроксимации сводится к за-
даче

\mathrm{m}\mathrm{i}\mathrm{n}
\bfits ,\bfitt 

\mathrm{m}\mathrm{a}\mathrm{x}
i,j

\mathrm{m}\mathrm{a}\mathrm{x}(s - 1
i aijt

 - 1
j , sia

 - 1
ij tj). (2)

Одноранговая аппроксимация положительных матриц с использованием методов… 531



Элементы тропической математики

Приведем основные определения, обозначения и предварительные
результаты тропической математики [9], на которые будем опираться
в дальнейшем.

Идемпотентное полуполе

Идемпотентным полуполем называется алгебраическая система
(X,\oplus ,\otimes , 0, 1), где X — непустое множество, которое замкнуто относи-
тельно операций сложения \oplus и умножения \otimes и включает их нейтраль-
ные элементы 0 и 1. Сложение является идемпотентным, то есть удо-
влетворяет условию x \oplus x = x для всех x \in X. Выполняется свойство
дистрибутивности умножения относительно сложения и для каждого
x \not = 0 существует обратный по умножению элемент x - 1 такой, что
x - 1 \otimes x = 1.

Например, в вещественном полуполе R\mathrm{m}\mathrm{a}\mathrm{x},\times = (R+,\mathrm{m}\mathrm{a}\mathrm{x},\times , 0, 1), где
R+ — множество неотрицательных вещественных чисел, операция сло-
жения определена как взятие максимума двух чисел и имеет нейтраль-
ный элемент 0, а умножение \otimes определено как арифметическое умно-
жение с нейтральным элементом 1. Понятия обратного элемента и сте-
пени имеют обычный смысл.

Матрицы и векторы

Множество всех матриц, которые имеют m строк и n столбцов с
элементами из X, обозначается через X

m\times n. Матрица, все элементы
которой равны 0, называется нулевой и обозначается \bfzero . Квадратная
матрица, диагональные элементы которой равны числу 1, а недиаго-
нальные — числу 0, называется единичной и обозначается \bfitI . Матрица
называется неразложимой, если перестановкой строк вместе с такой же
перестановкой столбцов ее нельзя привести к блочно-треугольному ви-
ду. Сложение и умножение двух матриц подходящего размера и умно-
жение матрицы на число выполняются по стандартным правилам с
заменой обычных арифметических операций на операции \oplus и \otimes .

Для любой ненулевой матрицы \bfitA = (aij) \in X
m\times n определена муль-

типликативно сопряженная матрица \bfitA  - = (a - ij) \in X
n\times m с элементами

a - ij = a - 1
ji , если aji \not = 0, и a - ij = 0 — в противном случае.
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След матрицы \bfitA = (aij) \in X
n\times n вычисляется по формуле

\mathrm{t}\mathrm{r}\bfitA = a11 \oplus \cdot \cdot \cdot \oplus ann.

Для любой матрицы \bfitA \in X
n\times n введем в рассмотрение матрицу

\bfitA \ast = \bfitI \oplus \bfitA \oplus \cdot \cdot \cdot \oplus \bfitA n - 1.
Множество всех векторов-столбцов размера n с элементами из X

обозначается X
n. Вектор, все элементы которого равны 0, называется

нулевым. Вектор называется регулярным, если он не имеет нулевых
компонент. Для любого ненулевого вектора \bfitx = (xi) \in X

n определен
вектор-строка \bfitx  - = (x - 

i ), где x
 - 
i = x - 1

i , если xi \not = 0, и x - 
i = 0 — иначе.

Собственное число и вектор матрицы

Число \lambda \in X и ненулевой вектор \bfitx \in X
n называются собственным

значением и собственным вектором матрицы \bfitA \in X
n\times n, если они удо-

влетворяют равенству
\bfitA \bfitx = \lambda \bfitx .

Любая матрица \bfitA порядка n имеет собственное число, которое вы-
числяется по формуле

\lambda =

n\bigoplus 
m=1

\mathrm{t}\mathrm{r}1/m(\bfitA m).

Если у матрицы \bfitA есть другие собственные числа, то они по вели-
чине не превосходят числа \lambda , которое называется спектральным ради-
усом матрицы.

Задача тропической оптимизации и ее решение

Предположим, что задана матрица \bfitA \in X
n\times n и требуется решить

задачу минимизации

\mathrm{m}\mathrm{i}\mathrm{n}
\bfitx ,\bfity 

\bfitx  - \bfitA \bfity \oplus \bfity  - \bfitA  - \bfitx , (3)

где минимум берется по всем регулярным векторам \bfitx ,\bfity \in X
n.

В работе [9] получен следующий результат

Лемма 1. Пусть \bfitA \in X
n\times n — неразложимая матрица, \mu — спек-

тральный радиус матрицы \bfitA \bfitA  - . Тогда минимум в задаче (3) равен
\mu 1/2 и достигается тогда, когда \bfitx и \bfity = \mu  - 1/2\bfitA  - \bfitx — собственные

векторы матриц \bfitA \bfitA  - и \bfitA  - \bfitA , соответствующие \mu .
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Следующая теорема дает полное решение задачи (3).

Теорема 1. Пусть \bfitA \in X
n\times n, \mu — спектральный радиус матрицы

\bfitA \bfitA  - . Тогда минимум в задаче (3) равен \mu 1/2 и достигается тогда и

только тогда, когда

\bfitx = (\mu  - 1\bfitA \bfitA  - )\ast \bfitv \oplus \mu  - 1/2\bfitA (\mu  - 1\bfitA  - \bfitA )\ast \bfitw ,

\bfity = \mu  - 1/2\bfitA  - (\mu  - 1\bfitA \bfitA  - )\ast \bfitv \oplus (\mu  - 1\bfitA  - \bfitA )\ast \bfitw ,

где \bfitv , \bfitw — произвольные регулярные векторы размера n.
В частности, минимум достигается, когда \bfitx и \bfity = \mu  - 1/2\bfitA  - \bfitx —

собственные векторы матриц \bfitA \bfitA  - и \bfitA  - \bfitA , соответствующие \mu .

Решение задачи аппроксимации

Рассмотрим задачу одноранговой аппроксимации (2). При замене
арифметических операций на тропические, получим задачу

\mathrm{m}\mathrm{i}\mathrm{n}
i,j

\bigoplus 
i,j

(s - 1
i aijt

 - 1
j \oplus sia

 - 1
ij tj). (4)

Целевую функцию задачи (4) можно записать в виде\bigoplus 
i,j

(s - 1
i aijt

 - 1
j \oplus sia

 - 1
ij tj) = \bfits  - \bfitA (\bfitt  - )T \oplus \bfitt T\bfitA  - \bfits .

Таким образом, задача (4) принимает вид

\mathrm{m}\mathrm{i}\mathrm{n}
\bfits ,\bfitt 

\bfits  - \bfitA (\bfitt  - )T \oplus \bfitt T\bfitA  - \bfits . (5)

Положив в задаче (5) \bfits = \bfitx , \bfitt = (\bfity  - )T , получим задачу тропической
оптимизации в форме (3). Применение к ней теоремы 1 дает решение
в виде следующего утверждения

Утверждение 2. Пусть \bfitA \in X
n\times n, \mu — спектральный радиус мат-

рицы \bfitA \bfitA  - . Тогда минимальная погрешность аппроксимации матри-

цы \bfitA матрицами единичного ранга равна \mu 1/2 и достигается на мат-

рицах вида \bfits \bfitt T , где

\bfits = (\mu  - 1\bfitA \bfitA  - )\ast \bfitv \oplus \mu  - 1/2\bfitA (\mu  - 1\bfitA  - \bfitA )\ast \bfitw ,

\bfitt T = (\mu  - 1/2\bfitA  - (\mu  - 1\bfitA \bfitA  - )\ast \bfitv \oplus (\mu  - 1\bfitA  - \bfitA )\ast \bfitw ) - ,
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и \bfitv , \bfitw — произвольные регулярные векторы размера n.
В частности, минимальная погрешность достигается, когда

\bfits — собственный вектор матрицы \bfitA \bfitA  - , соответствующий \mu , а
\bfitt T = \mu 1/2(\bfitA  - \bfits ) - .
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