

МАССИВЫ ЖЕЛЕЗНЫХ НАНОНИТЕЙ: ЧЕМ ЗАНЯТЬСЯ В ОЧЕРЕДИ НА НЕЙТРОНЫ?

Школа по Физике Поляризованных Нейтронов 2020

a.mistonov@spbu.ru

В НАРОДНОМ ХОЗЯЙСТВЕ

«ЖЕЛЕЗО РЖАВЕЕТ НЕ НАХОДЯ СЕБЕ ПРИМЕНЕНИЯ, СТОЯЧАЯ ВОДА ГНИЕТ ИЛИ ЗАМЕРЗАЕТ НА ХОЛОДЕ, А УМ ЧЕЛОВЕКА, НЕ НАХОДЯ СЕБЕ ПРИМЕНЕНИЯ, ЧАХНЕТ»

ЛЕОНАРДО ДА ВИНЧИ

2020

ейтронов

МЕДИЦИНА

СЕНСОРЫ

ХРАНЕНИЕ ИНФОРМАЦИИ

ТЕОРИЯ МАГНЕТИЗМА

Мистонов Александр Андреевич

A. S. Goncharova *et al*, **Journal of Sol-Gel Science and Technology**, vol. 81, no. 2, pp. 327–332, 2017

ОТ СОЗДАТЕЛЕЙ...

a.mistonov@spbu.ru

слайд.

НАНОСТРУКТУРА

2020 Физике Поляризованных Нейтронов Школа по

Измерения проводились в РЦ «Нанотехнологии» (nano.spbu.ru)

ПЕРИОД 101 ± 10 нм

a.mistonov@spbu.ru

ഹ

Мистонов Александр Андреевич

АТОМАРНАЯ СТРУКТУРА

Измерения проводились в РЦ «Рентгендифракционные методы исследования» (xrd.spbu.ru)

00000000

α-Fe

нет

ТЕКСТУРА

a.mistonov@spbu.ru

слайд 6

Мистонов Александр Андреевич

ЖИВАЯ ПЕТЛЯ

АНИЗОТРОПИЯ ФОРМЫ Разные петли в поле вдоль и поперёк нитей

ЛЁГКАЯ ОСЬ ВДОЛЬ НИТИ Даже для самого короткого образца

УМЕНЬШЕНИЕ ВЗАИМОДЕЙСТВИЙ? Коэрцитивная сила растёт

Измерения проводились в Институте физики конденсированного состояния (Германия)

Мистонов Александр Андреевич

[Qin2012] X. F. Qin *et al*, **IEEE Transactions on Magnetics**, 48 (11), 3136–3139 (2012)

S. Lim et al, Journal of Alloys and Compounds, vol. 505, no. 2, pp. 609–612, 2010

$$H_{c} = H_{0} \left(1 - \sqrt{\frac{\varepsilon M_{s} D_{p}^{2}}{4H_{0} D_{int} L}} \left(1 - \frac{1}{\sqrt{1 + L^{2}/D_{int}^{2}}} \right) \right)$$

 M_s = 21.3 кЭ D_p = 52 нм D_{int} = 101 нм H_0 – коэрцитивная сила отдельной нити ε – параметр, определяющийся взаимодействием

РОСТ $H_c C ДЛИНОЙ$

 ∞

ВИХРЕВАЯ ДОМЕННАЯ СТЕНКА

$$L_{v} = \frac{0.18}{\sqrt{10}} \frac{D_{p}^{2}}{l_{ex}} \frac{1}{\sqrt{1 - \frac{1}{30}} \frac{D_{p}^{2}}{A} \mu_{0} M_{s} H}$$

*M*_s = 21.3 кЭ *D*_{*n*} = 52 нм *l_{er} = 3.5 нм – обменная длина* А = 2.1 · 10⁻¹¹ Дж/м – обменная постоянная

S. Jamet et al, Magnetic Nano-and Microwires,

D. Sander et al, J. Phys. D: Appl. Phys., 50, 363001 (2017)

000000

 $L_v \rightarrow \infty \implies H_0 = 630 \exists$ $[H_0 = 615 \pm 38 \ \Im]$

2020

ронов

еЙ.

Поля

Физике

кола

pp. 783-811 (2015)

НАСЫЩЕНИЕ Образец помещается в поле больше H_s

неполное перемагничивание Поле уменьшается до *H*_r

Іоляризованных Нейтронов 2020

Школ

ИЗМЕРЕНИЕ

Измеряется намагниченность в полях H_b от H_r до H_s

ПОВТОРЕНИЕ Для новой кривой *H_r* уменьшается пошагово вплоть до *-H_s*

 $M_{FORC}(H_b, H_r)$

I. Mayergoyz, **Journal of Applied Physics**, vol. 57, no. 8, pp. 3803–3805, 1985.

основы метода I FIRST-ORDER REVERSAL CURVES

$\bullet \bullet \circ \circ \circ \circ$

 $H_u = \frac{H_b + H_r}{2}$

27

ОСНОВЫ МЕТОДА II **FIRST-ORDER REVERSAL CURVES**

$$H_c^F = \frac{H_b - H_r}{2}$$

ПОВОРОТ КООРДИНАТНОЙ ПЛОСКОСТИ

$$p_{FORC} = -\frac{1}{2} \frac{\partial^2 M_{FORC}(H_b, H_b)}{\partial H_b \partial H_r}$$

Мистонов Александр Андреевич

I. Mayergoyz, Journal of Applied Physics,

vol. 57, no. 8, pp. 3803-3805, 1985.

2020 ованных Нейтронов Поля Школа

a.mistonov@spbu.ru

слАйд 10

FORC ДИАГРАММЫ

Измерения проводились в РЦ «Инновационные технологии композитных наноматериалов» (nanocomposites.spbu.ru)

0

FORC СЕЧЕНИЯ

ЛОКАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ ПЕРЕХОДЯТ В СРЕДНИЕ (MEAN FIELD)

ПОЛЕ ПЕРЕМАГНИЧИВАНИЯ РАСТЁТ С ДЛИНОЙ

Отправлено в Journal of Alloys and Compounds

a.mistonov@spbu.ru

ВЗАИМОДЕЙСТВИЯ УМЕНЬШАЮТСЯ С ДЛИНОЙ НИТЕЙ

Зависимость коэрцитивной силы от длины Уменьшение ширины H_u

ПОВЕДЕНИЕ ПОХОЖЕЕ НА ОДНОДОМЕННОЕ

Замкнутые контура FORC диаграмм Рабочая модель перемагничивания

ДВИЖЕНИЕ ВИХРЕВОЙ ДОМЕННОЙ СТЕНКИ

Поля изолированной нити из разных моделей очень близки

выводы

Photo by Aaron Burden on Unsplash

$\bullet \bullet \circ \circ$

НЕЙТРОПЛАНИРОВАНИЕ

«РАЗВОРОТ» НАМАГНИЧЕННОСТИ

КОГЕРЕНТНЫЕ ЭФФЕКТЫ

202(Нейтронов ванных Школа по Физике Поляриз

?

 $\mu_0 H (mT)$

С.В. Григорьев и др., Письма в

A.P. Chumakov et al, Physica B, 406, **ЖЭТФ**, т. 94, в. 8, с. 678-684 (2011) 2405-2408 (2011)

Мистонов Александр Андреевич

a.mistonov@spbu.ru

