

МАССИВЫ ЖЕЛЕЗНЫХ НАНОНИТЕЙ:

ЧЕМ ЗАНЯТЬСЯ В ОЧЕРЕДИ НА НЕЙТРОНЫ?

Школа по Физике Поляризованных Нейтронов 2020

В НАРОДНОМ ХОЗЯЙСТВЕ

2020

Поляриз

«ЖЕЛЕЗО РЖАВЕЕТ НЕ НАХОДЯ СЕБЕ ПРИМЕНЕНИЯ, СТОЯЧАЯ ВОДА ГНИЕТ ИЛИ ЗАМЕРЗАЕТ НА ХОЛОДЕ, А УМ ЧЕЛОВЕКА, НЕ НАХОДЯ СЕБЕ ПРИМЕНЕНИЯ, ЧАХНЕТ»

ЛЕОНАРДО ДА ВИНЧИ

ХРАНЕНИЕ ИНФОРМАЦИИ

МЕДИЦИНА

СПИНТРОНИКА

СЕНСОРЫ

ТЕОРИЯ МАГНЕТИЗМА

A. S. Goncharova *et al*, **Journal of Sol-Gel Science and Technology**, vol. 81, no. 2, pp. 327–332, 2017

ОТ СОЗДАТЕЛЕЙ...

1 ПОРИСТАЯ МЕМБРАНА

сверху сбоку Al_2O_3 (AAO) **2** НАПЫЛЕНИЕ ПРОВОДЯЩЕГО СЛОЯ

3 ОСАЖДЕНИЕ НАНОНИТЕЙ

НАНОСТРУКТУРА

Физике Поляризованных Нейтронов

Измерения проводились в РЦ «Нанотехнологии» (nano.spbu.ru)

00000000

МАТЕРИАЛ НИТЕЙ

α-Fe

РЕШЁТКА

ОЦК

ТЕКСТУРА

нет

ЖИВАЯ ПЕТЛЯ

АНИЗОТРОПИЯ ФОРМЫ Разные петли в поле вдоль и поперёк нитей

> **ЛЁГКАЯ ОСЬ ВДОЛЬ НИТИ** Даже для самого короткого образца

УМЕНЬШЕНИЕ ВЗАИМОДЕЙСТВИЙ?Коэрцитивная сила растёт

Измерения проводились в Институте физики конденсированного состояния (Германия)

[Qin2012] X. F. Qin et al, IEEE Transactions on Magnetics,

48 (11), 3136-3139 (2012)

S. Lim et al, Journal of Alloys and Compounds, vol. 505, no. 2, pp. 609–612, 2010

$$H_c = H_0 \left(1 - \sqrt{\frac{\varepsilon M_s D_p^2}{4H_0 D_{int} L} \left(1 - \frac{1}{\sqrt{1 + L^2/D_{int}^2}} \right)} \right)$$

 M_s = 21.3 кЭ D_p = 52 нм D_{int} = 101 нм H_0 — коэрцитивная сила отдельной нити ε — параметр, определяющийся взаимодействием

РОСТ Н_с С ДЛИНОЙ

ВИХРЕВАЯ ДОМЕННАЯ СТЕНКА

$$L_{v} = \frac{0.18 D_{p}^{2}}{\sqrt{10} l_{ex}} \frac{1}{\sqrt{1 - \frac{1}{30} \frac{D_{p}^{2}}{A} \mu_{0} M_{s} H}}$$

 M_s = 21.3 кЭ D_p = 52 нм l_{ex} = 3.5 нм — обменная длина A = 2.1 · 10⁻¹¹ Дж/м — обменная постоянная

S. Jamet *et al*, **Magnetic Nano-and Microwires**, pp. 783–811 (2015)

D. Sander et al, **J. Phys. D: Appl. Phys.**, 50, 363001 (2017)

$$L_v \to \infty$$
 \longrightarrow $H_0 = 630 \ \Im$ $[H_0 = 615 \pm 38 \ \Im]$

НАСЫЩЕНИЕ

Образец помещается в поле больше H_s

(

НЕПОЛНОЕ ПЕРЕМАГНИЧИВАНИЕ

Поле уменьшается до H_r

ИЗМЕРЕНИЕ

Измеряется намагниченность в полях H_b от H_r до H_s

ПОВТОРЕНИЕ

Для новой кривой H_r уменьшается пошагово вплоть до $-H_s$

 $M_{FORC}(H_b, H_r)$

I. Mayergoyz, **Journal of Applied Physics**, vol. 57, no. 8, pp. 3803–3805, 1985.

ОСНОВЫ МЕТОДА І

FIRST-ORDER REVERSAL CURVES

I. Mayergoyz, **Journal of Applied Physics**, vol. 57, no. 8, pp. 3803–3805, 1985.

$$\rho_{FORC} = -\frac{1}{2} \frac{\partial^2 M_{FORC}(H_b, H_r)}{\partial H_b \partial H_r}$$

поворот координатной плоскости

$$H_c^F = \frac{H_b - H_r}{2}$$

$$H_u = \frac{H_b + H_r}{2}$$

основы метода II

FIRST-ORDER REVERSAL CURVES

FORC ДИАГРАММЫ

Измерения проводились в РЦ «Инновационные технологии композитных наноматериалов» (nanocomposites.spbu.ru)

Нейтронов

Физике Поляризованных

ВЗАИМОДЕЙСТВИЯ УМЕНЬШАЮТСЯ С ДЛИНОЙ НИТЕЙ

Зависимость коэрцитивной силы от длины Уменьшение ширины H_{II}

ПОВЕДЕНИЕ ПОХОЖЕЕ НА ОДНОДОМЕННОЕ

Замкнутые контура FORC диаграмм Рабочая модель перемагничивания

ДВИЖЕНИЕ ВИХРЕВОЙ ДОМЕННОЙ СТЕНКИ

Поля изолированной нити из разных моделей очень близки

Школа по Физике Поляриз

НЕЙТРОПЛАНИРОВАНИЕ

?) «РАЗВОРОТ» НАМАГНИЧЕННОСТИ

КОГЕРЕНТНЫЕ ЭФФЕКТЫ

ОТЛИЧИЯ ОТ НИКЕЛЯ И КОБАЛЬТА

? «КРЫЛЬЯ БАБОЧКИ»

С.В. Григорьев *и др.*, **Письма в ЖЭТФ**, т. 94, в. 8, с. 678-684 (2011)

Российский научный фонд

АХМЕД Елмекави

ЕКАТЕРИНА Яшина

илья Дубицкий

СПАСИБО ЗА ВНИМАНИЕ!

СТЕПАН Сотничук

КИРИЛЛ Напольский

Санкт-Петербургский Государственный Университет

Научный Парк