
Genetic Stochastic Algorithm Application in
Beam Dynamics Optimization Problem

Liudmila Vladimirova, Anastasiia Zhdanova, Irina Rubtsova and Nikolai
Edamenko

Abstract The article discusses the application of the genetic global search algorithm
to the problem of beam dynamics optimization. The algorithm uses normal distri-
bution to form new generations and provides covariance matrix adaptation during
random search. The method is easy to use because does not require calculation of
the covariance matrix. The algorithm is applied to global extremum search of the
functional characterizing beam dynamics quality in linear accelerator. The extremal
problem under study has a large number of variables; the objective function is multi-
extreme. Therefore, the use of the stochastic method is preferred way to achieve
the goal. The algorithm quickly converges and can be successfully used in solving
multidimensional optimization problems, including its combination with directed
methods. The optimization results are presented and discussed.

1 Genetic Stochastic Algorithm with Covariance Matrix
Evolution

Genetic algorithms realize an iterative approach; each iteration deals with a gen-
eration of points (individuals). General scheme of stochastic methods of global
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optimization includes initial generation design and the way of transition to next
generation. A goal is to provide the convergence of generation sequence to global
extremum point. The various genetic algorithms are developed and widely used,
among them covariance matrix adaptation evolution strategy (CMA-ES) [4, 14] and
simulated annealing method [7], both providing convergence of generation sequence
to global extremum point with probability 1.

This paper deals with genetic algorithm [5] belonging to the set of methods al-
lowing covariance matrix evolution in the course of random search. The next genera-
tion is modeled using normal distribution of random test points. The special method
of new generation modeling permits not to calculate covariance matrix.

Genetic algorithm with covariance matrix evolution
Consider the problem of global minimum search of the function F(X) in the

domain D of n-dimensional Euclidean space En:

minX∈D F(X).

Let l be the number of gereration, ε be the prescribed accuracy.

A. Initial generation: l = 0.

1. Modeling M random points Xi, i = 1,M using uniform distribution in the
domain D.

2. F(0)
min = mini=1,...,M F(Xi), X (0)

min = argmini=1,...,M F(Xi).

B. Transition to next generation.

1. Selection of m “the best” points Y1, . . . ,Ym among the poits X1, . . . ,XM .
2. Introduction of new points

X j =
1
m ∑m

i=1 η(i)
j

(
Yi −X (l)

min

)
+X (l)

min, j = 1,M,

where η(i)
j , i = 1,m, j = 1,M are independent standard normal random

variables.
l := l +1.

3. F(l)
min = mini=1,...,M F(Xi), X (l)

min = argmini=1,...,M F(Xi).

4. If F(l−1)
min −F(l)

min

F(l−1)
min

< ε , then go to Exit, else goto B.

Exit.

The convergence of this algorithm for unimodal function is proved in [5]. Main
features of the method are as follows:

• Since random variables η(i)
j are included in the expressions for vectors X j, the

covariance matrix varies from generation to generation and allows one to concen-
trate the sample in the region of the scattering ellipsoid with center X (l)

min. Thus,
test points (individuals) more often appear in the vicinity of the best population
found at the previous generation.
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Genetic Stochastic Algorithm Application in Beam Dynamics Optimization Problem 3

• When finding random normally distributed sampling points, it is not necessary
to calculate the covariance matrix and use it in the simulation. This is especially
important when the search space dimension is large.

2 Beam Dynamics Model and Optimization Problem

Beam dynamics optimization presents a class of specific complex problems, and the
approaches to their solving are varied. Directed methods are widely used if mathe-
matical optimization model is smooth [9, 10, 11]. These methods may be success-
fully combined with global search algorithms; widely known example of stochastic
one is Particle Swarm Optimization [8]; some applications are given in [1, 12, 16]. If
there are several different optimization goals, a multiobjective approach is effective
[3, 7, 13]. A number of researchers use genetic algorithms of global search [2, 3, 6].
However, the genetic algorithm described above with adaptation of the covariance
matrix was not applied to the problem of beam dynamics optimization prior to our
research [15].

Let us investigate longitudinal dynamics of relativistic beam in linear waveguide
accelerator. Beam evolution is considered to be a complex of synchronous parti-
cle motion and the motion of particles of a beam [16]. The synchronous phase is
supposed to change along the structure. This approach opens up additional opportu-
nities for optimization of beam evolution [9, 11, 12, 16]. Beam dynamics equations
without considering Coulomb forces are as follows:

dξs

dτ
=

(βγ)s√
1+(βγ)2

s
,

d(βγ)s

dτ
=−α(ξs,u1)sin(ϕs(ξs,u2)),

dξ
dτ

=
(βγ)√

1+(βγ)2
,

d(βγ)
dτ

=−α(ξ ,u1)sin(ϕ̂ +ϕs(ξ ,u2)),

dϕ̂
dτ

= 2π

(
βγ
√

1+(βγ)2
s

(βγ)s
√

1+(βγ)2
−1

)
(1)

with initial conditions

ξs(0) = ξs0, (βγ)s(0) = (βγ)s0, ξ (0) = ξ0, (βγ)(0) = (βγ)0,

ϕ̂(0) =
2πξ0

√
1+(βγ)2

s0

(βγ)s0
.

(2)

Here τ is reduced time; ξ , βγ , β , γ are reduced values of particle coordinate, im-
pulse, velocity and energy correspondingly; index s marks the characteristics of a
synchronous particle; the functions α and ϕs are accordingly the dimensionless am-
plitude of accelerating wave and synchronous phase; u1 and u2 are the vectors of
control parameters; ϕ̂ is particle phase deviation from synchronous phase.
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The independent variable is introduced to be time analogue for convenient ac-
count of Coulomb field in future research.

Hamilton equations describing longitudinal oscillations of particles near the syn-
chronous one [11] with dynamic variables presenting the differences between asyn-
chronous and synchronous phases (ψ = ϕ −ϕs) and reduced energies (pψ = γ − γs)
are as follows:

pψ

dξ
=−∂H(ξ ,ψ, pψ)

∂ψ
,

dψ
dξ

=
∂H(ξ ,ψ, pψ)

∂ pψ
,

where

H(ξ ,ψ, pψ) = π(γ2
s −1)−3/2 p2

ψ +V (ξ ,ψ),

V (ξ ,ψ) =−α(ξ ,u1)(cos(ψ +ϕs(ξ ,u2))+ψ sin(ϕs(ξ ,u2))) .

Under the assumption of adiabatic variation of the functions α(ξ ,u1), ϕs(ξ ,u2),
(γ2

s −1)−3/2 along the structure we have an equation for the separatrix that restricts
the region of particle capture into acceleration mode [11]:

pψ =±
√

(1/π)(γ2
s −1)3/2

√
V (ξ ,−π −2ϕs(ξ ,u2))−V (ξ ,ψ). (3)

Consider the problem of beam dynamics optimization by control parameters u =
(u1,u2) to provide high quality of bunching and accelerating of particle beam. Let
us present the optimization objectives and corresponding quality criteria taking into
account the experience [9, 11, 12].

1. The first objective is to provide the synchronous particle output reduced en-
ergy in the required interval [γ1,γ2]. The corresponding quality criterion is

K1(u) =





(γs(L)− γ1)
2, γs(L)< γ1,

0, γs(L) ∈ [γ1,γ2],

(γs(L)− γ2)
2, γs(L)> γ2,

where L is device exit reduced coordinate.
2. The goal of minimizing beam energy spread at accelerator exit may be

achieved by minimizing the criterion

K2(u) = |Na|−1 ∑
n∈Na

(
γn(L)− γs(L)

)2
,

where Na is a set of numbers of model particles captured in acceleration mode, |Na|
is the total number of captured particles, n is model particle number.

3. For output phase spread minimizing at device exit the following criterion is
introduced:

K3(u) = |Na|−1 ∑
n∈Na

(
ϕ̂n(L)−ϕ(L)

)2
,
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where ϕ is the average deviation of particle phase from synchronous one.
4. The value of criterion K4(u) is a total penalty imposed on particles that have

left their bunch or are outside the separatrix (3) at any cross-section of the structure.
5. It is advisable to minimize the defocusing factor influence at the stage of

longitudinal motion optimization [9]. To realize this idea we introduce the functional
K5(u) imposing a penalty when the value of defocusing factor exceeds the specified
limit.

6. To provide monotonous bunching we impose the requirement of negative
rate dG(ξ )/dξ of variation along the structure of the mean square spread of parti-
cle phases [9]. To satisfy the stated requirement, we minimize the criterion K6(u)
presenting the accumulated penalty introduced for each point where dG(ξ )/dξ > 0.

The resulting beam quality criterion is as follows:

K(u) =
6

∑
j=1

b j K j(u), (4)

where b j, j = 1,6 are the weight constants. So beam dynamics optimization prob-
lem is formulated as a problem of criterion (4) minimization by control u. Note that
this is a problem of joint optimization of program motion (of synchronous particle)
and the ensemble of beam particle motions [9, 11, 12].

3 Numerical Results

Numerical simulation and optimization of longitudinal beam dynamics are per-
formed for electron waveguide accelerator with accelerating wave length 10cm,
structure length 80cm, channel radius 0.04m and average beam current 0.25A. Due
to the low injection energy (80keV ) initial energy spread influence is not taken into
account. The effect of Coulomb repulsion can also be neglected.

The functions α(ξ ) and ϕs(ξ ) are modeled by trigonometric polynomials, the
components of the vectors u1 and u2 are the values of the derivatives of polynomials
at grid points and the values α(0), ϕs(0). This allows one to obtain smooth functions
α(ξ ) and ϕs(ξ ). The functions used before optimization are presented in Fig. 1
(dotted lines).

Beam dynamics optimization problem is reduced to criterion (4) minimization by
control parameters (the components of u1 and u2). This extremal problem is treated
using genetic stochastic algorithm with covariance matrix evolution. To apply the
algorithm presented above assume X be the vector of control parameters (dim(X) =
84), F(X) = K(u). So, the search is carried out in multidimensional domain D ∈
E84. Numerical optimization experience shows that the objective function has many
closely spaced extrema. Therefore, to implement the algorithm, a sufficiently large
number M of random vectors is necessary. The parameters of method are chosen as
follows: M = 1000, m = 50.
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The optimization performed provided significant decrease of objective functional
value and appropriate beam dynamics improving. It took only 6 generations to
achieve the required accuracy (ε = 0.01) of finding the extremum (see Table 1).

Table 1 Criterion decrease during optimization

Generation 1 2 3 4 5 6

K(u) 15.463 6.303 4.940 4.742 4.678 4.674

Regarding beam characteristics at device output, the optimization allowed to re-
duce the phase spread from 1.63 to 0.98 (radian), to reduce the relative energy spread
from 0.36 to 0.31 and to increase the number of particles within the separatrix from
94% to 98%. Capture coefficient remained constant during optimization and is equal
96%. Synchronous particle reduced energy changed from 11.93 to 11.37 and after
optimization belongs the demanded interval (11.3; 11.7). So the optimization pro-
vided beam quality improvement.

The functions α(ξ ) and ϕs(ξ ) obtained after optimization are shown in Fig. 1
(solid lines). The plots presenting beam dynamics (for particles in acceleration
mode) before optimization (left) and after optimization (right) are given in Fig. 2–4.
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Fig. 1 The functions α(ξ ) and ϕs(ξ ) before optimization (dashed line) and after opti-
mization (solid line)

It should be noted that the genetic algorithm used is simple to implement, effi-
cient and enables high performance. Comparative experiments have shown that the
time spent for one iteration processing is two times less than the corresponding time
for Particle Swarm Optimization.
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Fig. 2 Phase deviation of particles from synchronous one
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Fig. 3 Reduced energy of particles
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Fig. 4 Separatrix and phase-energy distribution of particles at accelerator exit

4 Conclusion

The paper presents an approbation of a genetic stochastic algorithm with adapta-
tion of a covariance matrix on a multi-extreme large-dimensional problem, namely,
the problem of beam dynamics optimization in linear accelerator. The practice of
numerical experiments and the results obtained indicate the simplicity, convenience
and effectiveness of this method. The results of successive optimization show beam
quality improvement.
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