

Перспективные технологии и материалы

«ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИИ И МАТЕРИАЛЫ»

МАТЕРИАЛЫ ВСЕРОССИЙСКОЙ НАУЧНО — ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ С МЕЖДУНАРОДНЫМ УЧАСТИЕМ

14-16 ОКТЯБРЯ 2020 г. СЕВАСТОПОЛЬ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«СЕВАСТОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

«ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИИ И МАТЕРИАЛЫ»

Материалы научно-практической конференции с международным участием г. Севастополь, 14–16 октября 2020 г.

ББК

30.3

30.3 Всероссийская научно-практическая конференция с международным участием «Перспективные технологии и материалы»: Материалы научно-практической конференции г. Севастополь, 14-16 октября 2020 г.— Севастополь: Севастопольский государственный университет, 2020 –222с.

Сборник материалов составлен по итогам Всероссийской научно-практической конференции с международным участием «Перспективные технологии и материалы», организованной ФГАОУ ВО «Севастопольский государственный университет» 14-16 октября 2020 г.

Ссборник содержит материалы научных исследований отечественных и зарубежных авторов, посвященные актуальным и перспективным технологиям и материалам в области нанотехнологий, аддитивных технологий, биотехнологий, экологических аспектов применения наноматериалов и нанотехнологий

ISBN 978-5-6044481-4-4

ЭЛЕКТРОКИНЕТИЧЕСКИЙ ПОТЕНЦИАЛ НИКЕЛЬ- И ЖЕЛЕЗОСОДЕРЖАЩИХ СТЕКЛООБРАЗНЫХ МАТЕРИАЛОВ

Кузнецова А.С.^{1,2}, Ермакова Л.Э.¹, Волкова А.В.¹, Анфимова И.Н.², Антропова Т.В.²

¹Санкт-Петербургский государственный университет,

¹Университетская наб., 7/9, Санкт-Петербург, 199034 Россия

²Институт химии силикатов им. И.В. Гребенщикова РАН,

²наб. Адмирала Макарова, 2, Санкт-Петербург, 199034 Россия

е-mail: a_kuznetsova95@mail.ru

Аннотация. Проведено измерение и сопоставление электрокинетического потенциала ζ^s , найденного методом лазерного доплеровского электрофореза, двухфазных натриевоборосиликатных (НБС) стекол: базового стекла 8В-НТ истекол, модифицированных оксидом железа (Fe 4-6) или оксидом никеля (Ni-1 и Ni-2), в 10^{-2} М растворах индифферентного электролита NaCl при различных значениях рН. Выявлено, что введение 5 мол. % Fe₂O₃ и 14 % NiO в состав базового НБС стекла приводят к смещению изоэлектрической точки в щелочную область, по сравнению с базовым стеклом, причем степень смещения возрастает в ряду Ni-1 <Ni-2 <Fe 4-6. В работе также исследована структура и химический состав двухфазных стекол.

Ключевые слова: натриевоборосиликатное стекло, магнитное стекло, никельсодержащее стекло, электрокинетический потенциал.

Разработка новых материалов с практически важными функциональными (магнитными, оптическими, электрическими) свойствами является современным приоритетным направлением развития химии, физики и биологии. Особый интерес представляют высококремнеземные стеклообразные материалы благодаря их низкой стоимости и наличию таких свойств, как химическая, термическая и механическая стабильность, а также невысокая кислотность поверхности, обусловленная силанольными и боранольными группами. В настоящей работе придание НБС стеклам новых функциональных свойств осуществлялось путем введения оксидов железа или никеля в шихту при варкебазового щелочноборосиликтного стекла.

Поскольку известно, что функциональные характеристики композиционных материалов в первую очередь связаны с их структурными параметрами и состоянием поверхности, то возникает необходимость изучить как меняются коллоидно - химические свойства синтезируемых композитов при модифицировании исходных материалов. В связи с этим представляло интерес провести исследование электрокинетических характеристик натриевоборосиликатныхстеклол, модифицированных оксидом железа или никеля, в растворах индифферентного электролита NaCl и сопоставить с характеристиками базового НБС стекла.

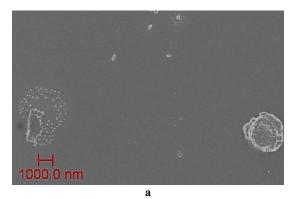

Двухфазные НБС стекла 8В-НТ и стекла, модифицированные оксидом железа Fe 4-6 и оксидом никеля Ni-1 и Ni-2, были синтезированы методом варки из шихты в лаборатории физической химии стекла ИХС РАН. Стекла были сварены в электрической печи при температуре1550 °C в воздушной атмосфере. Двухкаркасная структура стекол формировалась путем их термической обработки при 550 °C в течение 144 ч. Химический состав синтезированных стекол приведен в таблице 1.

Таблица 1	1 – Составыисследованных двухфа	азных стекол

Стекло	Состав стекла, мол.%							
	Na ₂ O	B_2O_3	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	NiO	
8B-HT	6.73	18.28	74.93	0.06	-	-	-	
Fe 4-6	5.19	14.32	70.23	-	5.20	5.06	-	
Ni-1	7.40	12.62	65.60	-	-	-	14.38	
Ni-2	7.28	19.97	58.14	-	-	-	14.61	

По данным элементного анализа стекол Ni-1 и Ni-2, который был проведен на пластинках размером $10\times10\times1$ мм³ до контакта с растворами NaCl методом энергодисперсионной рентгеновской спектроскопии (ЭДС), состав (мас. %) образца Ni-1: 56.21 O, 5.04Na, 14.33 Si, 24.41 Ni; образца Ni-2: 63.40 O, 4.18 Na, 12.42 Si, 20.00 Ni.

На рисунке 1 представлены фотографии полученные методом сканирующей электронной микроскопии (СЭМ, прибор CarlZeissMerlin), фронтальных поверхностейдвухфазного никельсодержащего стекла Ni-1 и микропористого (МИП) железосодержащего стекла Fe 4-6 [1]. Образец пористого стекла Fe 4-6 МИП был получен путем выщелачивания двухфазного стекла Fe 4-6 в растворе 3М HCl при $100\,^{\,0}$ С в течение 6 часов. Видно, что на поверхности образцов наблюдаются светлые участки агломератов частиц оксидов никеля и железа, соответственно.

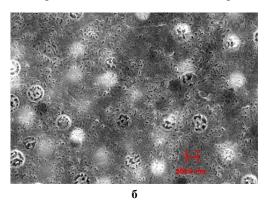


Рисунок 1 - СЭМ-изображение фронтальной поверхности пластины а) двухфазного стеклаNi-1, б) микропористого стекла Fe 4-6 [1]

Для изучения электрокинетиеских характеристик, двухфазные стекла перетирались в агатовой ступке до порошкообразного состояния. Измерения электрофоретической подвижности (Ue) частиц стёкол были проведены на фоне 0.01 M растворов NaCl в диапазоне pH от 1 до 9 на анализаторе ZetasizerNano ZS «Malvern». Электрокинетическийпотенциал $\zeta^{\rm S}$ рассчитывался из экспериментально найденных величин электрофоретической подвижности частиц по уравнению Смолуховского

$$\zeta^{\rm S} = \frac{\eta}{\varepsilon \varepsilon_0} U_{\rm e}$$

где η -вязкость жидкости, ϵ – диэлектрическая проницаемость среды; ϵ_0 - электрическая постоянная.

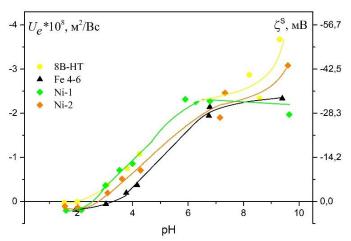


Рисунок 2 — Зависимости электрофоретической подвижности и электрокинетического потенциала двухфазногонатриевоборосиликатного стекла 8В-НТ и двухфазных стекол, модифицированных оксидами железа Fe 4-6 и никеля Ni-1 и Ni-2 в растворах 0.01 M NaCl от кислотности среды

На рисунке 2 видно, то зависимости ζ^S от pH для исследованных двухфазных стекол различного состава имеют сходный характер. Наблюдаются невысокие положительные значения электрокинетического потенциала в кислой области, затем, при смещении в щелочную область, кривые проходят через изоэлектрическую точку (ИЭТ, $\zeta^S=0$ мВ) и электрокинетический потенциал становится отрицательным. Модифицирование базового НБС стекла оксидами никеля и железа приводит к уменьшению величин $|\zeta^S|$ при фиксированном значении рН и к смещению ИЭТ в щелочную область на 0.7 и и 1.2 ед рН, соответственно.Причиной смещения ИЭТ, по-видимому, является мозаичный характер поверхности частиц — на отрицательно заряженном оксиде кремния присутствуют небольшие участки оксидов никеля и железа, которые в кислой области рН заряжены положительно.

Работа выполнена при поддержке РФФИ, проект 20-03-00544. Авторы выражают благодарность сотрудникам аналитической группы лаборатории физической химии стекла ИХС РАН за проведение химического анализа стекол(тема № 0097-2019-0015). Исследования проведены с использованием оборудования Междисциплинарного Ресурсного Центра по направлению «Нанотехнологии».

Литература:

1. Ermakova L.E., Kuznetsova A.S., Volkova A.V., Antropova T.V. Structural and electrosurface properties of iron-containing nanoporous glasses in KNO₃ solutions. *ColloidsandSurfacesA*, 2019, vol. 576, pp. 91–102.

ELECTROKINETIC POTENTIAL OF NICKEL- AND IRON-CONTAINING GLASSY MATERIALS

KuznetsovaA.S.^{1,2}, ErmakovaL.E.¹, VolkovaA.V.¹, AnfimovaI.N.², AntropovaT.V.²

¹St. PetersburgStateUniversity, St. Petersburg,

¹Universitetskaya Emb., 7-9, St. Petersburg, 199034 Russia

²Grebenshchikov Institute of Silicate Chemistry, RussianAcademy of Sciences,

²Emb. Admiral Makarov, 2,St. Petersburg, 199034 Russia

email: a_kuznetsova95@mail.ru

Abstract.The measurement and comparison of the electrokinetic potential ζ^S , obtained by laser Doppler electrophoresis, of two-phase sodium borosilicate (NBS) glasses:basicglass 8V-NT and glasses modified with iron oxide (Fe 4-6) or nickel oxide (Ni-1 and Ni -2) in 10^{-2} M indifferent NaCl electrolyte solutionsat various pH values have been carried out. was revealed that the introduction of 5 mol. % Fe₂O₃ and 14% mol. NiO in the composition of the basic NBS glass lead to a shift of the isoelectric point to the alkaline region, as compared to the basic glass 8V-NT, and the degree of shift increases in the order Ni-1 <Ni-2 <Fe 4-6. The structure and chemical composition of two-phase glassy materials have been investigated.

Keywords: sodium borosilicate glass, magnetic glass, nickel-containing glass, electrokinetic potential.