= МИНЕРАЛЫ И ПАРАГЕНЕЗИСЫ МИНЕРАЛОВ =

БОГАТЫЙ ХАЛЬКОФИЛЬНЫМИ ЭЛЕМЕНТАМИ (Sb, Sn, Te) РУТИЛ И ВЫСОКОТИТАНИСТЫЕ РАЗНОВИДНОСТИ ТРИПУГИИТА И КАССИТЕРИТА ИЗ ВОЗГОНОВ АКТИВНЫХ ФУМАРОЛ ВУЛКАНА ТОЛБАЧИК (КАМЧАТКА, РОССИЯ)

© 2020 г. Ф. Д. Сандалов^{1, *}, д. чл. И. В. Пеков¹, Н. Н. Кошлякова¹, В. О. Япаскурт¹, А. А. Агаханов², д. чл. Е. Г. Сидоров³, С. Н. Бритвин⁴

> ¹Московский государственный университет, Геологический факультет, Воробьевы горы, Москва, 119991 Россия

> > ² Минералогический музей имени А.Е. Ферсмана РАН, Ленинский пр., 18-2, Москва, 119071 Россия

³Институт вулканологии и сейсмологии ДВО РАН, б-р Пийпа, 9, Петропавловск-Камчатский, 683006 Россия ⁴Санкт-Петербургский государственный университет, кафедра кристаллографии, Университетская наб., 7/9, Санкт-Петербург, 199034 Россия *e-mail: fyodor.sandalov@vandex.ru

> Поступила в редакцию 10.12.2019 г. После доработки 10.12.2019 г. Принята к публикации 13.12.2019 г.

В статье дана характеристика минералов группы рутила фумарольного происхождения — рутила, трипугиита и необычного высокотитанистого касситерита, найденных в отложениях активных фумарол вулкана Толбачик на Камчатке. В отличие от рутила из других геологических формаций, для фумарольного рутила оказались характерны примеси халькофильных элементов. В нем установлено (мас. %): Sb₂O₅ до 35, SnO₂ до 59, TeO₃ до 11.3, CuO до 1.9, ZnO до 0.4, а также Fe₂O₃ до 18. Такие высокие содержания Sn и Cu в рутиле ранее не отмечались, а примесь Te зафиксирована для этого минерала впервые. Новой является и высокотитанистая (19–23 мас. % TiO₂) разновидность касситерита. Te⁶⁺ входит в рутил совместно с трехвалентным железом: Te⁶⁺ + 2Fe³⁺ \rightarrow 3Ti⁴⁺. Изоструктурные рутил, трипугиит и касситерит образуют в фумаролах Толбачика тройную изоморфную систему с несколькими разрывами. Формирование этих минералов здесь происходило при температурах не ниже 350 °C, скорее всего в результате взаимодействия вулканического газа (источник халькофильных элементов) с базальтом (источник Ti).

Ключевые слова: рутил, трипугиит, касситерит, титан, олово, сурьма, теллур, изоморфизм, фумарола, вулкан Толбачик

DOI: 10.31857/S0869605520020070

ВВЕДЕНИЕ

Настоящая работа посвящена минералам изоморфной системы рутил—трипугиит касситерит, обнаруженным нами в отложениях активных фумарол, связанных с вулканом Толбачик на Камчатке. Эти оксиды оказались представлены здесь необычными по химическому составу разновидностями. Особенно своеобразен рутил, демонстрирующий аномально высокие содержания примесей халькофильных элементов, в том числе ранее для него неизвестных. Толбачинскому фумарольному касситериту была посвящена наша недавняя статья (Сандалов и др., 2019), однако уже после ее выхода мы обнаружили здесь же новую, необычно богатую титаном разновидность этого минерала. Данные о ней включены в настоящую работу.

Рутил является одним из главных, наиболее распространенных в природе минералов титана. Как правило, по составу он не очень сильно отличается от идеального TiO_2 , однако известен и целый ряд химических разновидностей этого минерала, содержащих существенные количества примесей. В наибольших количествах – до 10 мас. % (в пересчете на оксиды), а иногда и более – в рутиле отмечались Fe, Nb, Ta, W, V, Cr и Sb (Минералы, 1965; Haggerty 1983; Румянцева, Лапшин, 1986; Urban et al., 1992; Platt, Mitchell, 1996; Спиридонов и др., 1997; Černý et al., 1986, 2000; Scott et al., 2011; Uher et al., 2007; Резницкий и др., 2016; Harlaux, 2016; Иванова, Власов, 2018; Carocci et al., 2018 и др.; подробнее об этом см. в разделе Обсуждение результатов).

Трипугиит — малораспространенный минерал, встречающийся как в зоне окисления сурьмяных месторождений (с объектами этого типа связано большинство его находок), так и в эндогенных образованиях (Berlepsch et al., 2003; Leverett et al., 2012).

Впервые он был описан в 1897 г. как минерал с формулой $Fe_2^{2+}Sb_2^{5+}O_7$, и достаточно долго вопрос о химическом составе этого оксида оставался дискуссионным. Лишь относительно недавно было достоверно установлено, что трипугиит имеет состав $Fe^{3+}Sb^{5+}O_4$ и изоструктурен с рутилом (Berlepsch et al., 2003).

Оксиды титана отмечались в том числе и в отложениях активных вулканических фумарол: анатаз — на вулкане Элдфелль в Исландии, а рутил — на островах Милос и Нисирос в Греции (Balić-Žunić et al., 2016). Однако эти находки не были сколь-либо детально охарактеризованы, а химический состав фумарольных рутила и анатаза практически не изучался. Что же касается трипугиита и касситерита, то наши находки этих минералов в фумарольных эксгаляциях Толбачика являются первыми для данного генетического типа.

МЕТОДЫ ИССЛЕДОВАНИЙ

Изучение микроморфологии и химического состава минералов проводилось в Лаборатории локальных методов исследования вещества кафедры петрологии геологического факультета МГУ им. М.В. Ломоносова при помощи сканирующего электронного микроскопа Jeol JSM-6480LV с вольфрамовым термоэмиссионным катодом, оснащенного энергодисперсионным спектрометром INCA X-Maxⁿ (площадь активной зоны кристалла 50 мм², сверхтонкое окно АТW-2) с разрешением 124 эВ. Количественный энергодисперсионный анализ выполнялся на коллимированном детекторе при ускоряющем напряжении 20 кВ и силе тока электронного зонда 10 нА. Диаметр зонда составлял 3-5 мкм, а время накопления спектра (без учета "мертвого" времени) – 100 с. Для стандартизации и оптимизации профилей пиков эмиссионных линий использовались следующие стандарты: Mg - MgO, $Al - Al_2O_3$, Ti - Ti, $Cr - Cr_2O_3$, Fe - Fe, Cu - Cu, Zn - Zn, Sn – SnO₂, Sb – Sb₂S₃, Zr – Zr, Te – РbTe. Оптимизация условий получения стандартных спектров и последующих аналитических измерений производилась по K_{α} -пику металлического кобальта. Для большинства элементов анализировались линии К-серий, а для Zr, Sn, Sb и Те использовались линии L-серий. Содержания остальных элементов с атомными номерами выше, чем у кислорода, оказались ниже пределов обнаружения электронно-зондовым методом.

Монокристальное рентгеновское изучение рутила проведено на дифрактометре XCaliburS CCD на Мо K_{α} -излучении.

Порошковое рентгенографическое исследование рутила выполнено на дифрактометре Rigaku R-AXIS Rapid II с цилиндрическим image plate детектором (монохроматизированное Со K_{α} -излучение, 40 кВ, 15 мА, экспозиция 15 мин; геометрия ДебаяШеррера, *d* = 127.4 мм). Интегрирование исходных данных с цилиндрического детектора произведено с помощью программного пакета osc2tab (Бритвин и др., 2017).

УСЛОВИЯ НАХОЖДЕНИЯ И МИНЕРАЛЬНЫЕ АССОЦИАЦИИ

Описываемые минералы обнаружены нами в отложениях активных фумарол вулкана Толбачик, относящегося к Ключевской группе вулканов. Вулкан Толбачик — собирательное название, обычно применяемое в литературе для крупного вулканического массива, состоящего из потухшего стратовулкана Острый Толбачик, действующего вулкана гавайского типа Плоский Толбачик и Толбачинского Дола — обширной зоны активного ареального вулканизма. В пределах Толбачинского Дола располагаются многочисленные шлаковые конуса, которые представляют собой моногенные вулканы разного возраста, возвышающиеся на 200—300 м от земной поверхности.

Вулкан Толбачик стал широко известен после мощного извержения, которое происходило с 6 июля 1975 г. по 10 декабря 1976 г. и получило название Большого трещинного Толбачинского извержения (БТТИ). В процессе вулканической деятельности в Толбачинском Доле образовались шлаковые конуса Северного и Южного прорывов (СП и ЮП) БТТИ, к которым и приурочены фумарольные поля (Большое..., 1984). Активность фумарол окислительного типа на конусах СП и ЮП БТТИ сохраняется по настоящее время, и с ними связаны уникальные, не имеющие в мире аналогов проявления эксгаляционной минерализации. Наибольшим минеральным разнообразием отличаются фумаролы Второго конуса СП БТТИ (Вергасова, Филатов, 1993, 2016; наши данные).

В течение первого года после извержения в фумарольных газах на Втором конусе СП БТТИ фиксировались в существенных концентрациях H_2O , HF, HCl и CO_2 (Меняйлов и др., 1980). Сейчас состав газов здесь близок к атмосферному воздуху, а содержание кислотных компонентов в них составляет менее 0.1 об. % (Zelenski et al., 2011). Температура газов в разных фумаролах Второго конуса СП БТТИ, по данным наших измерений с помощью хромель-алюмелевой термопары, проводившихся регулярно во время полевых работ в период 2012–2018 гг., составляет от 200 до 500 °C.

Примечательно, что в возгонах фумарол БТТИ концентрируются многие халькофильные элементы – Zn, Pb, Sn, Se, а в наибольших количествах (на Втором конусе СП БТТИ) – Cu и As. Именно на примере крупных скоплений минералов меди, найденных в отложениях фумарол БТТИ, показана возможность значительного накопления халькофильных элементов эксгаляционным путем на современных наземных вулканах (Набоко, Главатских, 1980; Вергасова, Филатов, 1993).

Опубликованных данных о собственных минералах титана в фумаролах Толбачика до наших работ, по сути, не было. Нами установлено, что псевдобрукит и рутил являются характерными минералами в отложениях фумарол Арсенатной и Ядовитой, расположенных в пределах Главного фумарольного поля Второго конуса СП БТТИ, в его вершинной части.

Фумарола Арсенатная, открытая и достаточно детально изученная нашей исследовательской группой (Pekov et al., 2018а), является уникальным минералогическим объектом, который занимает сегодня первое место в мире по разнообразию эксгаляционных минералов. Она приурочена к крупной контракционной трещине, секущей вершину Второго конуса в субмеридиональном направлении, и состоит из системы разноразмерных камер — открытых полостей между блоками базальтового шлака и вулканическими бомбами, слагающими приповерхностную часть конуса. Стенки полостей во многих местах инкрустированы минеральными корками различного состава. В большинстве своем фумарольные камеры здесь представляют собой извилистые и разветвленные трещины не шире 10–15 см. Минералы возгонов находятся на поверхности шлака и бомб, а также заполняют небольшие трещины и поры в шлаке. Наиболее богато минерализованная зона фумаролы Арсенатной располагается на глубинах от 0.3 до 4 м от дневной поверхности и прослежена по длине на 15 м при ширине 1–1.5 м в южной части и 3–4 м в северной (Pekov et al., 2018а).

По сравнению с другими фумаролами Второго конуса БТТИ Арсенатная является одной из самых горячих. Данные наших замеров, проводившихся в период с 2012 по 2018 г. в различных полостях сразу же после их вскрытия, показывают, что температура здесь варьирует в пределах от 350 до 490 °C, в целом увеличиваясь с глубиной. Стоит отметить, что все эксгаляционные минералы из изученных нами активных фумарол Толбачика образовались в сильно окислительных условиях; на это указывают не только данные по составу газов (Zelenski et al., 2011), но и высоковалентные состояния целого ряда элементов, входящих в образующиеся здесь минералы: S⁶⁺, Mo⁶⁺, As⁵⁺, V⁵⁺, Fe³⁺ и др. (Pekov et al., 2014, 2018а). В распределении эксгаляционной минерализации в фумароле Арсенатной довольно четко проявлена вертикальная зональность, связанная в первую очередь с температурой отложения минералов. Характеристика этой минеральной зональности дана в работе (Pekov et al., 2018а). Все образцы рутила и высокотитанистого касситерита происходят из так называемой полиминеральной зоны, расположенной в северной части фумаролы на глубине около 1 м от дневной поверхности.

Фумарола Ядовитая также является одним из самых богатых в мире проявлений минерализации данного генетического типа. Она расположена всего в 20 м к западу от Арсенатной, но по составу возгонов эти две фумаролы заметно различаются. Фумарола Ядовитая представляет собой открытую полость шириной 1.5 м и глубиной около 2 м. Ее стенки покрыты толстыми минеральными корками, в верхней зоне частично измененных метеорными водами. Температура в глубине полости в настоящее время составляет 300–350 °С (Мурашко и др., 2012; наши данные 2015 г), хотя сразу после формирования Второго конуса СП БТТИ она достигала 450 °С (Вергасова, Филатов, 2016).

Нами изучено 52 образца с рутилом, трипугиитом и высокотитанистым касситеритом из Арсенатной и Ядовитой. Рутил обнаружен в материале из обеих фумарол, тогда как трипугиит встречен в только в образцах из Ядовитой, а касситерит — только из Арсенатной.

Эти оксиды входят в состав корок, нарастающих на в разной степени измененный фумарольными газами базальтовый шлак от светло-коричневого, местами почти белого до красно-бурого цвета. Температуры, измеренные нами в фумарольных камерах с описываемыми минералами (измерения проводились непосредственно после вскрытия камер), находились в пределах от 250 до 350 °C, и это позволяет предположить, что рутил, трипугиит и касситерит кристаллизовались при температуре не ниже 350 °C.

Минералы ряда рутил—трипугиит в фумароле Ядовитой образуют прерывистые мелкокристаллические корочки лимонно-желтого, густо-желтого или оранжевого цвета на гематитовых корках толщиной до 0.15 мм, покрывающих базальтовый шлак. На гематит вместе с рутилом и трипугиитом нарастают в значительных количествах ламмерит, образующий зеленые кристаллы размером до 1 мм и их сростки, и бесцветный до бледно-кремового лангбейнит. Также в состав этой ассоциации входят санидин (в т.ч. Аs-содержащий), тенорит, ламмерит-β, арсенаты ряда брадачекит—цинкобрадачекит, лионсит, псевдолионсит, макбернейит, борисенкоит, староваит, пийпит, алюмоключевскит, кальциолангбейнит, афтиталит, пальмиерит, купромолибдит и псевдобрукит.

В фумароле Арсенатной мелкокристаллические рутиловые корки желтого, желтооранжевого, ярко-оранжевого или медово-коричневого цвета с сильным блеском покрывают базальтовый шлак, занимая площадь до 6 см². На них местами нарастают одиночные таблитчатые кристаллы гематита, а чаще – агрегаты черных пластинчатых кристаллов тенорита (до 4 мм) и игольчатых фиолетовых кристаллов йохиллерита (до 2 мм). В некоторых образцах рутил зафиксирован в тесных срастаниях с тилазитом или же находится в ассоциации с богатыми медью шпинелидами — членами ряда термоаэрогенит CuAl₂O₄ — ганит (Pekov et al., 2018b). Из других ассоциирующих с таким рутилом минералов отметим лангбейнит, кальциолангбейнит, метатенардит, афтиталит, санидин, касситерит, псевдобрукит, никенихит, свабит, ламмерит, эриклаксманит. В других участках наблюдается тонкоигольчатый рутил, ассоциирующий с бадаловитом, ахирофанитом, кальциойохиллеритом, йохиллеритом, никенихитом, хреновитом, панснеритом, озероваитом, тилазитом, свабитом, санидином, ангидритом, афтиталитом, касситеритом и псевдобрукитом.

Обогащенные оловом и теллуром разновидности рутила находятся в несколько иных ассоциациях. Наиболее богатый оловом рутил и переходный к нему по составу высокотитанистый касситерит встречены вместе с As-содержащими калиевыми полевыми шпатами ряда санидин-филатовит (Shchipalkina et al., 2019), бадаловитом, катиарситом, юрмаринитом, панснеритом, озероваитом, гематитом, касситеритом и афтиталитом. В тесной ассоциации с Te-содержащим рутилом находятся обогащенный As санидин, арсмирандит, брадачекит, тенорит, афтиталит и сильвин.

В фумароле Арсенатной рутил иногда развивается за счет Тi-содержащих арсенатов. Вместе с арсенатротитанитом NaTiO(AsO₄) (Pekov et al., 2019) он замещает досковидные кристаллы неустановленного минерала, предположительно, ахирофанита $K_3(Fe_4^{3+}Ti)O_2(AsO_4)_5$ или же катиарсита KTiO(AsO₄), а также находится рядом с такими псевдоморфозами в виде ажурных агрегатов соломенно-желтых до почти бесцветных волосовидных кристаллов. С рутилом здесь ассоциируют сильвин, галит, тенорит, касситерит, арсмирандит, леманнит, брадачекит, йохиллерит.

МОРФОЛОГИЯ РУТИЛА И ТРИПУГИИТА И ИХ ОРИЕНТИРОВАННЫЕ СРАСТАНИЯ С ДРУГИМИ МИНЕРАЛАМИ

Морфология толбачинского фумарольного рутила разнообразна. Его кристаллы размером до 0.1 мм, редко до 1 мм, обычно имеют тетрагонально-призматический габитус – от короткопризматических, изометричных до длиннопризматических и игольчатых. Они чаще всего образованы гранями одной или двух тетрагональных призм и тетрагональной дипирамиды и собраны в субпараллельные агрегаты (рис. 1, a), незакономерные сростки (рис. 1, δ), корки. В фумароле Арсенатной, кроме того, встречаются очень тонкие, волосовидные кристаллы рутила длиной до 1 см, гибкие и упругие, дающие в т. ч. спутанноволокнистые (ажурные или более плотные, войлоковидные) скопления или же параллельно-волокнистые псевдоморфозы по кристаллам ахирофанита (?). Теллуросодержащий рутил найден в фумароле Арсенатной в виде короткостолбчатых кристаллов, образованных гранями двух тетрагональных призм и пинакоида (рис. 2). Кристаллы трипугиита обычно короткопризматические, с дипирамидальными голов-ками.

Нередко наблюдаются двойники рутила и трипугиита по (101), в т.ч. коленчатые (рис. 3, *a*) и звездообразные (рис. 3, *б*), одиночные или же собранные в компактные агрегаты размером до 0.1 мм. Кристаллы рутила и трипугиита в отложениях фумаролы Ядовитой зачастую ориентированно нарастают на гематит, в т.ч. образуя на нем сагенитовую решетку (рис. 1, e-e). Грань {100} кристаллов рутила или трипугиита в таких сростках параллельна (компланарна) грани {001} кристаллов гематита.

В фумароле Арсенатной встречены как эпитаксия (нарастание в параллельном положении) кристаллов касситерита (с низким содержанием Ti) на более крупных кристаллах изоструктурного ему рутила (рис. 3, e), так и незакономерные сростки этих двух минералов (рис. 3, e).

Наиболее богатая титаном разновидность касситерита, переходная по составу к высокооловянному рутилу, найдена в виде мелких (<0.05 мм) плохообразованных изо-

Рис 1. Рутил (Rt) и трипугиит (Tr) из активных фумарол Толбачика. a – агрегат кристаллов рутила, нарастающих на кристаллы пальмиерита вместе с одиночными таблитчатыми кристаллами гематита (Hem), фумарола Ядовитая. δ – сросток кристаллов рутила на санидине (Kfs) и псевдобруките (Psb), фумарола Арсенатная. e – сагенитовая решетка сдвойникованных кристаллов трипугиита на гематите, фумарола Ядовитая. e – трипугиит, обрастающий кристаллы гематита, фумарола Ядовитая. РЭМ-фото в отраженных электронах. Fig. 1. Rutile (Rt) and tripuhyite (Tr) from active fumaroles of the Tolbachik volcano. a – clusters of rutile crystals on palmierite crystals (Plm) with tabular crystals of hematite (Hem) from the Yadovitaya fumarole. e – sagenitic lattice of twinned tripuhyite crystals on hematite (Hem) from the Yadovitaya fumarole. SEM (BSE) images.

метричных индивидов. Морфология кристаллов и агрегатов касситерита с более низким содержанием титана из фумаролы Арсенатной детально охарактеризована в работе (Сандалов и др., 2019).

ХИМИЧЕСКИЙ СОСТАВ И РЕНТГЕНОДИФРАКЦИОННЫЕ ДАННЫЕ

Вариации химического состава рутила и трипугиита из толбачинских фумарол показаны в табл. 1–4. В табл. 3 приведены также анализы наиболее богатого Ті касситерита. Расчет эмпирических формул всех трех минералов произведен на сумму атомов металлов, сурьмы и теллура (ΣM), равную 1. В большинстве случаев суммарный положительный заряд у M оказывается немного меньше идеального значения 4, что связано с преимущественным замещением Ti⁴⁺ более низковалентными компонентами. По нашему предположению, баланс зарядов в таком случае, скорее всего, достигается за счет появления соответствующего количества вакансий в позициях O²⁻, что хорошо известно для синтетического аналога рутила (Третьяков, 1974). Именно поэтому мы выбрали катионный, а не анионный (на 2 атома O) способ расчета эмпирических фор-

Рис. 2. Хорошо ограненный кристалл Те-содержащего рутила с таблитчатыми и игольчатыми кристаллами санидина, фумарола Арсенатная. РЭМ-фото во вторичных электронах.

Fig. 2. Well-shaped crystal of Te-bearing rutile with tabular and acicular crystal of sanidine from the Arsenatnaya fumarole. SEM (SE) image.

Рис. 3. Рутил (Rt) из фумаролы Арсенатной и его взаимоотношения с низкотитанистым касситеритом (Cass). *a* – коленчатые двойники рутила. *δ* – звездообразные двойники рутила на санидине двух генераций. *в* – эпитаксия касситерита на рутиле. *ε* – незакономерные сростки кристаллов рутила и касситерита. *a*, *в*, *ε* – РЭМ-фото в отраженных электронах; *δ* – РЭМ-фото во вторичных электронах.

Fig 3. Rutile (Rt) from the Arsenatnaya fumarole and its relations with Ti-poor cassiterite (Cass). a – geniculated twins of rutile. δ – star-like twins of rutile on sanidine of two generations. a – rutile epitactically overgrown by cassiterite. e – randomly intergrown crystals of rutile and cassiterite. a, a, e – SEM (BSE) images; δ – SEM (SE) image.

Компонент	фум. Ядовитая		фум. Арсенатная	
мас. %, а.ф.*	мас. %	а.ф.	мас. %	а.ф.
MgO, Mg	0.1	0.01	_	_
CuO, Cu	1.9	0.02	0.3	< 0.01
ZnO, Zn	0.4	0.01	—	—
Al ₂ O ₃ , Al	1.9	0.04	1.9	0.40
Cr_2O_3 , Cr	0.3	< 0.01	2.1	0.02
Fe ₂ O ₃ , Fe	26.9	0.37	17.9	0.23
TiO ₂ , Ti	61.0	0.70	93.6	0.94
ZrO ₂ , Zr	—	-	0.8	0.01
SnO ₂ , Sn	11.8	0.08	59.0	0.45
Sb ₂ O ₅ , Sb	52.5	0.36	21.3	0.16
TeO ₃ , Te	—	-	11.3	0.06

Таблица 1. Максимальные количества главных и примесных компонентов, зафиксированные в

рутиле и трипугиите из А	Арсенатной и Ядовито	й фумарол, Толбачи	K	
Table 1. Maximum conter	nts of species-defining ar	nd admixed constituen	ts detected in rutile and tripuhy	<u>_</u>

Примечание: *а.ф. – количество атомов на формулу типа MO2.

ite from the Arsenatnaya and Yadovitaya fumaroles, Tolbachik

мул описываемых минералов. Все железо принято за трехвалентное по причине резко окислительной обстановки минералообразования в обсуждаемых фумаролах (Pekov et al., 2018a); кроме того, допущение, что железо двухвалентно, привело бы к сильному дисбалансу зарядов в эмпирических формулах минералов. Теллур принят за шестивалентный (см. Обсуждение результатов).

Граница между рутилом/касситеритом и трипугиитом определяется по соотношению миналов $M_{0.5}^{3+}M_{0.5}^{5+}O_2$ и $M^{4+}O_2$: к трипугииту относятся образцы с составами, в которых ($Fe^{3+} + Al + Cr^{3+} + Sb^{5+}$) > (Ti + Sn + Zr) в атомных количествах.

В эксгаляционном рутиле из фумаролы Ядовитой главными примесными элементами являются сопряженные друг с другом железо и сурьма (трипугиитовый компонент $Fe_{0.5}^{3+}Sb_{0.5}^{5+}O_2$); также зафиксированы примеси олова, магния, меди, цинка, алюминия, хрома. В рутиле из фумаролы Арсенатной содержание трипугиитового минала в целом меньше, зато здесь обнаружены образцы этого минерала с очень высокой концентрацией олова или же с существенной примесью теллура; из других примесных компонентов для рутила из Арсенатной сколь-либо значимы цирконий (зафиксирован только в Те-содержащих кристаллах), алюминий и хром (табл. 1).

Полученные на монокристалле параметры тетрагональной элементарной ячейки наиболее богатой Fe, Sn и Sb разновидности рутила (обр. 5683 из фумаролы Ядовитой – см. ан. 6 и 8 в табл. 2): *a* = 4.605(5), *c* = 2.980(6) Å, *V* = 63.2(2) Å³.

Порошковая рентгенограмма обогащенного Fe, Sn и Sb рутила (обр. 5678 из фумаролы Арсенатной – см. ан. 3 в табл. 2) хорошо соответствует этому минералу, только отличается несколько повышенными значениями межплоскостных расстояний по сравнению с порошкограммой чистого рутила (Meagher, Lager, 1979). Рассчитанные по ней параметры тетрагональной элементарной ячейки: a = 4.6084(1), c = 2.9814(1) Å, $V = 63.32(2) \text{ Å}^3$.

Таблица 2. Хим образнов)	ический соста	ав рутила ((ан. 1—8) и	трипугие	па (ан. 9–1	1) из фумар	ол Толбачик	а (представи	тельные ана	лизы наибол	е типичных
Table 2. Chemic	al composition	of rutile (1	(-8) and trij	puhyite (9	-11) from T	olbachik fur	naroles (repre	sentative analy	yses for the m	ost typical sar	nples)
		фум. Арсе.	натная		þ	фум. Ядовит	ая		фум. Я,	цовитая	
№ Анализа/ образца	1	2	3	4	5	9	2	8	6	10	II
	Tp-194_04	$T11_01$	5678_01	T11_02	Ox33_01	5683_02	Ox3-4_02	5683_05	Ox35_01	Ox35_03	Ox3-1_01
					Maco	cobble %					
CuO	0.32	0.3	I		1.85	0.17	0.67	0.20	Ι	1.55	Ι
Al_2O_3	Ι	0.17	Ι	0.21	0.72	1.20	1.04	1.33	0.51	0.91	0.38
Cr ₂ O ₃	Ι	0.63	1.54	0.64	Ι	Ι	Ι	0.30	Ι	Ι	0.18
Fe_2O_3	2.55	6.35	4.56	6.99	10.95	14.19	15.25	17.83	20.54	18.63	26.91
TiO ₂	93.55	76.76	74.45	73.2	60.99	44.56	42.07	43.56	29.98	28.84	16.71
SnO_2	5.85	2.11	7.59	2.96	3.36	6.87	8.35	4.06	11.66	9.00	4.37
Sb_2O_5	0.51	13.53	11.96	14.43	21.71	30.93	32.92	35.16	35.75	39.87	52.49
Сумма	102.78	99.85	100.11	98.43	99.59	98.34***	100.31	102.51***	98.45	98.80	101.04
	_	-	Формул	ьные коэ	ффициенть	ы, рассчита	нные на суми	Ay $M = 1$		_	
Cu	0.003	0.003	Ι		0.021	0.002	0.008	0.002	Ι	0.021	Ι
AI	Ι	0.003	Ι	0.004	0.013	0.023	0.02	0.025	0.011	0.019	0.008
Cr	Ι	0.005	0.014	0.006	Ι	Ι	Ι	0.003	Ι	Ι	0.002
Fe^{3+}	0.026	0.07	0.051	0.079	0.125	0.177	0.19	0.213	0.273	0.249	0.371
Ti	0.938	0.84	0.825	0.822	0.697	0.556	0.524	0.521	0.399	0.385	0.230
Sn	0.031	0.012	0.045	0.018	0.02	0.045	0.055	0.026	0.082	0.064	0.032
Sb^{5+}	0.002	0.066	0.066	0.072	0.123	0.191	0.203	0.208	0.235	0.263	0.357
0	1.985	1.958	2.000	1.956	1.971	1.988	1.988	1.979	1.975	1.977	1.988
O[vac]*	0.015	0.042	0.000	0.044	0.029	0.012	0.012	0.021	0.025	0.023	0.012
Fe+Sb**	0.028	0.136	0.117	0.151	0.248	0.368	0.393	0.421	0.508	0.512	0.728
Примечание. Зна * Предполагаем ** Соответствуел *** В сумму анали	чения ниже пре 10е содержание г содержанию тр 13а входит также	зделов обна кислородн рипугиитов с: 6 – 0.42 м	ружения отм ых вакансий ого минала] ас. % ZnO (=	иечены зна 1. Fe ³⁺ Sb ⁵⁺ =0.005 а. ф	ком "–". О <u>2</u> . · Žn), 8 – 0.0	7 mac. % Mg(О (=0.002 а.ф.	Mg).			

30

САНДАЛОВ и др.

№ анализа/образна	1	2	3	4	5
ле анализа/образца	TP211_04	Толб-6557_11	Толб-6557_46	Толб-6557_43	Толб-6557_27
		Macco	овые %		
Fe ₂ O ₃	17.87	5.70	10.81	8.17	3.42
TiO ₂	30.83	35.82	19.39	22.68	31.69
SnO ₂	42.79	48.42	48.17	54.74	58.99
Sb_2O_5	11.09	9.46	21.26	15.06	4.92
Сумма	102.58	99.40	99.63	100.65	99.02
	Формульны	ые коэффициент	гы, рассчитанны	е на $\Sigma M = 1$	
Fe ³⁺	0.233	0.079	0.163	0.121	0.050
Ti	0.401	0.499	0.293	0.337	0.461
Sn	0.295	0.357	0.385	0.432	0.454
Sb ⁵⁺	0.071	0.065	0.159	0.110	0.035
0	1.919	1.992	1.998	1.994	1.994
O[vac]*	0.081	0.008	0.002	0.006	0.006

Таблица 3. Химический состав промежуточных членов ряда рутил—касситерит из фумаролы Арсенатной

Table 3. Chemical composition of intermediate members of the rutile-cassiterite series from the Arsenatnava fumarole

Примечание. * Предполагаемое содержание кислородных вакансий.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Рутил, трипугиит и касситерит, найденные в активных фумаролах Толбачика, обладают рядом специфических черт, которые отсутствуют у этих минералов в других генетических типах. Прежде всего, интерес представляют вариации их химического состава.

Главные изоморфные примеси и схемы изоморфных замещений в рутиле из других геологических формаций

В рутиле из других геологических формаций (магматические породы, гранитные и сиенитовые пегматиты, связанные с кислыми и щелочными интрузивами метасоматиты и гидротермальные образования, метаморфические породы) главными примесными компонентами выступают Fe, Nb, Ta и W, а иногда также V и Cr, т.е. литофильные и сидерофильные металлы. В работе (Mienhold, 2010) сделан обзор, посвященный качественному характеру примесей в рутиле из различных формаций.

Железо, как трех-, так и двухвалентное, является самым распространенным примесным компонентом в рутиле (Минералы, 1965). Некоторые Fe-содержащие разновидности этого минерала даже имеют собственные названия — нигрин, ильменорутил (с Fe и Nb), стрюверит (с Fe и Ta). Особенно высокое содержание Fe³⁺ зафиксировано в рутиле, богатом сурьмой — до 15.5 мас. % Fe₂O₃: этот образец найден в гидротермально измененных метаморфитах в руднике Праборна (долина Аоста, Италия) (Smith, Perseil, 1997). Значительное содержание железа отмечено в рутиле из редкометальных гранитов Центрального Ивлана (Южная Норвегия): до 11 мас. % Fe₂O₃ (Černý et al., 2000). В обогащенном танталом рутиле (стрюверите) из пегматитового поля Таммела-Сомеро (C3 Финляндия) обнаружено до 14 мас. % FeO (Siivola, 1970).

Больше всего Nb фиксируется в составе ругила (ильменоругила) из редкометальных гранитных пегматитов. Для него типично содержание Nb₂O₅ до 20-26 мас. % (Černý et al.,

	1				
№ анализа/	1	2	3	4	5
образца	Толб-6376_03	Толб-6376_01	Толб-6376_05	Толб-6376_04	Толб-6376_07
		Macc	овые %		
Fe ₂ O ₃	3.08	4.92	8.88	9.24	10.45
TiO ₂	87.92	81.42	70.85	71.85	69.59
ZrO ₂	0.60	0.27	0.52	0.75	0.84
SnO ₂	5.68	6.72	9.27	8.59	8.05
Sb_2O_5	0.16	0.61	0.45	0.35	—
TeO ₃	3.51	5.10	9.39	9.61	11.31
Сумма	100.85	99.04	99.36	100.39	100.24
	Формульн	ые коэффициен	ты, рассчитаннь	ie на $\Sigma M = 1$	•
Fe ³⁺	0.032	0.053	0.099	0.102	0.116
Ti	0.915	0.879	0.792	0.793	0.774
Zr	0.004	0.002	0.004	0.005	0.006
Sn	0.031	0.038	0.055	0.050	0.047
Sb ⁵⁺	0.001	0.003	0.002	0.002	—
Te ⁶⁺	0.017	0.025	0.048	0.048	0.057
0	2.000	2.004	2.000	2.000	2.000

Таблица 4. Химический состав Те-содержащего рутила из фумаролы Арсенатной **Table 4.** Chemical composition of Te-bearing rutile from the Arsenatnaya fumarole

Примечание. Значение ниже предела обнаружения отмечено знаком "-".

1986, 2000), а иногда оно поднимается и выше, достигая 42.7 мас. % (гранитный пегматит балки Сапатой в Приазовье, Украина: Минералы, 1965). В рутиле из кимберлитов установлено до 21 мас. % Nb_2O_5 (Haggerty, 1983), из специфических пород Слюдянского метаморфического комплекса (ЮЗ Прибайкалье) – до 12 мас. % Nb_2O_5 (Резницкий и др., 2016), а из щелочных метасоматитов комплекса Дэдхорс Крик в Онтарио (Канада) – до 32 мас. % Nb_2O_5 (Platt, Mitchell, 1996; Potter, Mitchell, 2005).

Тантал обычно входит в рутил вместе с ниобием. Например, в некоторых норвежских гранитных пегматитах встречены зерна этого минерала, содержащие до 9.3 мас. % Ta_2O_5 при 25.6 мас. % Nb_2O_5 и 10.8 мас. % Fe_2O_3 , а в пегматитах из формации Грин Лэйк (Манитоба, Канада) тантал в рутиле (стрюверите) преобладает над ниобием — до 44.9 мас. % Ta_2O_5 при 6.0 мас. % Nb_2O_5 (Černý et al., 1986). В рутиле из аллювиальных отложений близ гранитных пегматитов Лимбаха (Словакия) отмечена подобная концентрация тантала — 44.3 мас. % Ta_2O_5 при 6.6 мас. % Nb_2O_5 (Uher et al., 2007).

Нередко в рутил входит и W^{6+} . Максимальное его содержание, упоминание о котором нам удалось найти в литературе, отмечено в рутиле из метаморфитов Слюдянского комплекса – до 12.4 мас. % WO₃ (Резницкий и др., 2016), чуть меньше – до 12.1 мас. % WO₃ – зафиксировано в рутиле из грейзенов Центрального массива во Франции (Harlaux, 2016). В рутиле из кварцевых жил в гумбеитах Урала содержится до 10.2 мас. % WO₃ (Спиридонов и др., 1997), из околорудных пород золоторудного месторождения Калгурли в Западной Австралии и из грейзенов оловянно-вольфрамового месторождения Панашкейра в Центральной Португалии – 9.5 мас. % WO₃ (Scott et al., 2011; Carocci et al., 2018), а из калиевополевошпат-кварцевых жил Западной Чукотки – 8.5 мас. % WO₃ (Иванова, Власов, 2018). Ниобий, тантал и вольфрам наиболее часто находятся в рутиле совместно с железом. Анализ литературных данных показывает, что при вхождении Nb и Ta в этот оксид, как правило, реализуется хорошо известная изоморфная схема с участием трехвалентного железа: (Nb, Ta)⁵⁺ + Fe³⁺ \rightarrow 2Ti⁴⁺. Ее можно назвать ильменорутиловой. Вхождение двухвалентного железа осуществляется по схеме, которую можно назвать тапиолитовой [тапиолит-(Fe) FeTa₂O₆ имеет рутилоподобную структуру (Zema et al., 2006)]: 2(Ta, Nb)⁵⁺ + Fe²⁺ \rightarrow 3Ti⁴⁺. В случае с вольфрамом наиболее характерна схема W⁶⁺ + 2Fe³⁺ \rightarrow 3Ti⁴⁺ (Спиридонов и др., 1997).

Ванадий является менее распространенным примесным элементом в рутиле, чем Fe, Nb, Ta или W, однако описаны образцы этого минерала с достаточно высокой концентрацией V. Tak, в рутиле из того же Слюдянского комплекса содержится до 15.4 мас. $%V_2O_3$ (Резницкий и др., 2016). До 14.1 мас. $%V_2O_3$ зафиксировано в титановом оксиде, видимо, рутиле, из щелочных метасоматитов комплекса Дэдхорс Крик (Potter, Mitchell, 2005). В рутиле из богатых Cr и V слюдитов Заонежского полуострова (Ю. Карелия) обнаружено до 10.7 мас. $%V_2O_3$ (Румянцева, Лапшин, 1986).

Относительно высокое содержание хрома отмечено для рутила из кимберлитов разных регионов мира – до 10 мас. % Cr_2O_3 (Соболев, 1974; Tollo, Haggerty, 1987), однако больше всего Cr найдено в обогащенном Nb рутиле из метаморфических пород Слюдянского комплекса – до 16 мас. % Cr_2O_3 (Резницкий и др., 2016). В последнем случае можно говорить об изоморфной схеме Nb⁵⁺ + Cr³⁺ \rightarrow 2Ti⁴⁺.

Из примесных халькофильных элементов в рутиле до настоящего времени в существенных количествах отмечалась только сурьма. Высокосурьмяный ругил встречается в природе нечасто. Такая разновидность этого минерала, образующая ряд твердых растворов с трипугиитом, известна в некоторых эндогенных рудных месторождениях, характеризующихся высокоокислительной обстановкой минералообразования. В уже упоминавшемся образце рутила из гидротермально измененных метаморфитов из рудника Праборна отмечено 33.8 мас. % Sb_2O_5 и 15.5 мас. % Fe_2O_3 (Smith, Perseil, 1997). Твердый раствор между рутилом и трипугиитом зафиксирован в образцах из кварцевых жил марганцевого месторождения Каджлидонгари в районе Джабуа в Центральной Индии (Cabella et al., 2003): здесь в рутиле установлено до 38.6 мас. % Sb₂O₅ и до 18.5 мас. % Fe₂O₃. В контактовых метасоматитах метаморфического комплекса близ села Нежилово (Северная Македония) найден минерал ряда рутил-трипугиит, в котором содержится 40.7-48.0 мас. % Sb₂O₅ и 19.4-22.2 мас. % Fe₂O₃, а также 0.9-1.5 мас. % Mn₂O₃ (Варламов и др., 2017). Во всех перечисленных случаях реализуется трипугиитовая схема изоморфизма, которая аналогична ильменорутиловой, только пятивалентным компонентом здесь выступает сурьма: $Sb^{5+} + Fe^{3+} \rightarrow 2Ti^{4+}$.

В рутиле из руд месторождения золота Эмло в Онтарио (Канада) наряду с сурьмой (до 8.0 мас. % Sb₂O₅) установлено до 6.1 мас. % V₂O₃ (Urban et al., 1992). Здесь замещение титана осуществляется по схеме Sb⁵⁺ + V³⁺ \rightarrow 2Ti⁴⁺.

Фумарольные рутил, трипугиит и касситерит: изоморфизм и система твердых растворов

В фумарольном толбачинском рутиле наибольшие содержания демонстрируют примеси Fe, Sb, Sn и Te; зафиксированы также примесные Cu и Zn (табл. 1), не отмечавшиеся в значимых количествах в рутиле из других геологических объектов. Таким образом, фумарольный рутил обладает отчетливо халькофильной спецификой состава элементов-примесей.

Наиболее типичны для рутила из фумарол Толбачика примеси железа и сурьмы, входящие совместно по гетеровалентной трипугиитовой схеме $Sb^{5+} + Fe^{3+} \rightarrow 2Ti^{4+}$. Здесь зафиксирован протяженный ряд твердых растворов от почти чистого рутила —

Рис. 4. Соотношения титана, железа и сурьмы в минералах ряда рутил—трипугиит из фумарол Арсенатной и Ядовитой, Толбачик. Тг – трипугиит, остальные точки – рутил.

Fig. 4. Ratios of Ti, Fe and Sb in minerals of the rutile—tripuhyite series from the Arsenatnaya and Yadovitaya fumaroles, Tolbachik. Tr - tripuhyite, other points – rutile.

TiO₂ до трипугиита с составом (Fe_{0.371}Sb_{0.357}Ti_{0.230}Sn_{0.032}Al_{0.008}Cr_{0.001})_{Σ1}O_{1.988} (табл. 1 и 2; рис. 4, 5), который содержит 52.5 мас. % Sb₂O₅ и 26.9 мас. % Fe₂O₃ при 16.7 мас. % TiO₂ (табл. 2). Отметим, что оксиды ряда рутил—трипугиит — это единственные зафиксированные на сегодня минералы-концентраторы сурьмы в отложениях фумарол Толбачика. Особенно богат сурьмой рутил из Ядовитой (рис. 4). В целом же Sb⁵⁺ выступает в толбачинском фумарольном рутиле главным компонентом, компенсирующим дисбаланс зарядов, возникающий при замещении Ti⁴⁺ любыми более низковалентными катионами — как трех-, так и двухвалентными. В общем виде схемы замещений с участием пятивалентной сурьмы в рутиле из фумарол Толбачика выглядят так: Sb⁵⁺ + $M^{3+} \rightarrow 2M^{4+}$ (главная) и 2Sb⁵⁺ + $M^{2+} \rightarrow 3M^{4+}$, где M^{4+} = Ti, Sn, M^{3+} = Fe, Al, Cr, a M^{2+} = Cu, Zn, Mg. Эти изоморфные схемы совмещаются в разных комбинациях между собой и с изовалентной схемой Sn⁴⁺ → Ti⁴⁺.

Важным примесным компонентом в рутиле из фумарол Толбачика выступает олово, входящее в этот минерал по простой изовалентной схеме $\operatorname{Sn}^{4+} \to \operatorname{Ti}^{4+}$. В подавляющем большинстве изученных нами образцов минералов ряда рутил—трипугиит содержание примесного олова существенно — не менее 2 мас. % SnO_2 (табл. 2). Особенно богат оловом рутил из Арсенатной, где, в частности, нами встречена его разновидность, переходная по величине отношения Sn : Ті к касситериту, а также зафиксирована высокотитанистая разновидность последнего (табл. 3). Таким образом, в фумарольных системах Толбачика реализуются, пусть и с разрывом, изоморфный ряд рутил—касситерит и тройная изоморфная система рутил—трипугиит—касситерит (рис. 5). Достоверных данных о природных высокооловянном рутиле или высокотитанистом касситерите в литературе найти не удалось, хотя среди синтетических соединений подобные оксиды известны (Padurov, 1956; Hirata, 2000). Впрочем, и в фумарольных отложениях Толба-

Рис. 5. Соотношения рутилового (Ti), касситеритового (Sn) и трипугиитового (Fe³⁺ + Sb⁵⁺) компонентов в оксидах со структурным типом рутила из Арсенатной и Ядовитой фумарол, Толбачик.

Fig. 5. Ratios of rutile (Ti), cassiterite (Sn) and tripuhyite $(Fe^{3+} + Sb^{5+})$ components in rutile-type oxides from the Arsenatnaya and Yadovitaya fumaroles, Tolbachik.

чика такие разновидности этих минералов (в частности, рутил, содержащий более 10 мас. % SnO₂) весьма редки. В то же время, в фумароле Арсенатной встречаются минеральные ассоциации, где рутил и низкотитанистый касситерит находятся вместе, в т.ч. образуя тесные срастания, закономерные (рис. 2, e) или же незакономерные (рис. 2, e).

Интересно, что в фумарольном толбачинском касситерите реализуются в основном другие по сравнению с изоструктурным ему рутилом схемы изоморфизма. Для касситерита из Арсенатной характерны в существенных количествах главным образом три примесных элемента: железо, алюминий и титан. В отличие от рутила, в толбачинском касситерите примесь сурьмы встречается гораздо реже, хотя в отдельных образцах ее содержание значительно – до 9.3 мас. % Sb₂O₅. Олово замещается титаном по изовалентной схеме (Ti⁴⁺ \rightarrow Sn⁴⁺), а железо и алюминий могут входить в фумарольный касситерит по схеме с участием кислородных вакансий ([vac]): 2(Fe, Al)³⁺ + [vac] \rightarrow 2Sn⁴⁺ + O²⁻ (см. Третьяков, 1974). Стоит отметить, что касситерит в отложениях фумарол Толбачика в целом заметно беднее железом (не более 5.8 мас. % Fe₂O₃: Сандалов и др., 2019), чем рутил (до 26.9 мас. % Fe₂O₃: табл. 1). Это, скорее всего, обусловлено разными схемами изоморфизма: видимо, замещения без участия кислородных вакансий реализуются легче.

Неожиданной оказалась находка в фумароле Арсенатной разновидности рутила, существенно обогащенной теллуром: до 11.3 мас. % TeO₃ (табл. 4). Эмпирическая формула самого богатого теллуром образца рутила такова: ($Ti_{0.774}Fe_{0.116}^{3+}Te_{0.057}^{6+}Sn_{0.047}Zr_{0.006}$)O₂. Несмотря на то, что существует, в т.ч. в природе, изоструктурная рутилу модификация $Te^{4+}O_2$ – парателлурит (Switzer, Swanson, 1960), мы считаем, что теллур входит в рутил не в четырех-, а в шестивалентной форме. Так, ионные радиусы (в октаэдрической координации) Ti^{4+} , Te^{6+} и Te^{4+} составляют, соответственно, 0.605, 0.56 и 0.97 Å (Shan-

Рис. 6. Соотношение между железом и теллуром в рутиле из фумаролы Арсенатной, Толбачик. **Fig. 6.** The Fe:Te ratio in rutile from the Arsenatnaya fumarole, Tolbachik.

поп, 1976): такая большая разница в размерах четырехвалентных титана и теллура должна резко затруднять изоморфизм между ними, тогда как Ti⁴⁺ и Te⁶⁺ близки по радиусам. Кроме того, величина отношения Te : Fe \approx 1 : 2 во всех изученных нами образцах теллуросодержащего рутила (табл. 4, рис. 6) четко указывает на схему замещений Te⁶⁺ + 2Fe³⁺ \rightarrow 3Ti⁴⁺, аналогичную схеме W⁶⁺ + 2Fe³⁺ \rightarrow 3Ti⁴⁺, хорошо известной для рутила с существенным содержанием другого шестивалентного примесного компонента – вольфрама (Urban et al., 1992; Спиридонов и др., 1997; Резницкий и др., 2016; Иванова и Власов, 2018; Carocci et al., 2018).

В литературе не удалось найти сведений о вхождении теллура в рутил. Интересно, что Те-содержащий рутил из Арсенатной несет еще и ощутимую примесь циркония (до 0.8 мас. % ZrO₂), которая не зафиксирована в других разновидностях минералов системы рутил-трипугиит-касситерит из фумарол Толбачика. Изоморфная схема $Te^{6+} + 2Fe^{3+} \rightarrow 3Ti^{4+}$ совмещается у Те-содержащего рутила с трипугиитовой схемой $Sb^{5+} + Fe^{3+} \rightarrow 2Ti^{4+}$ и изовалентной схемой (Sn, Zr)⁴⁺ \rightarrow Ti⁴⁺.

В фумаролах Толбачика изоструктурные трипугиит, касситерит и обогащенный Sb и/или Sn рутил визуально неразличимы: они морфологически в целом идентичны, обладают очень сильным жирным до алмазного блеском и обычно окрашены в желтый, оранжевый или медово-коричневый цвет разных оттенков. Интересно, что трипугиит в фумароле Ядовитой образует на гематите сагенитовую решетку (рис. 1, *в*), как и касситерит в фумароле Арсенатной (Сандалов и др., 2019). Такая форма эпитаксических сростков, в целом типичная для рутила, для этих двух минералов до наших толбачинских находок не отмечалась.

Учитывая низкую летучесть титана в вулканических газах даже при высоких температурах (Чураков и др., 2000), можно предположить, что наиболее вероятным источником этого элемента при минералообразовании в фумарольных системах Толбачика был окружающий базальт. В то же время, главным источником халькофильных элементов определенно выступили вулканические газы (Меняйлов и др., 1980; Набоко, Главатских, 1983), а источник железа мог быть смешанным. Таким образом, образование рутила и богатых Ті разновидностей трипугиита и касситерита в обсуждаемых фумаролах скорее всего происходило в результате процессов взаимодействия вулканического газа с базальтом (базальтовым шлаком), слагающим Второй конус СП БТТИ.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

В настоящей работе впервые охарактеризованы рутил и трипугиит фумарольного генезиса, а также касситерит с необычно высоким содержанием титана. Они найдены в возгонах активных фумарол Ядовитой (рутил и трипугиит) и Арсенатной (рутил и касситерит), расположенных на Втором шлаковом конусе Северного прорыва Большого трещинного Толбачинского извержения (Толбачинский Дол, Камчатка). Рутил является достаточно обычным минералом в высокотемпературных минеральных ассоциациях обеих этих фумарол окислительного типа, а трипугиит и высокотитанистая разновидность касситерита более редки.

Фумарольный рутил характеризуется очень своеобразным химическим составом. В отличие от рутила из других геологических формаций, в котором главными примесными компонентами выступают сидерофильные и литофильные металлы (Fe, Nb, Ta, W, V, Cr), а из халькофильных элементов – только Sb (и то достаточно редко), в рутиле из фумарол Толбачика преобладают примесные халькофильные элементы, а из прочих примесей существенную концентрацию демонстрирует только железо. Халькофильная специфика состава примесей в фумарольном рутиле выражается в первую очередь в высоких содержаниях сурьмы (до 35 мас. % Sb₂O₅), олова (до 59 мас. % SnO₂) и теллура (до 11.3 мас. % TeO₃); зафиксированы в нем также примеси меди (до 1.9 мас. % CuO) и цинка (до 0.4 мас. % ZnO). Сведений о находках этого минерала, содержащего теллур, медь или столь высокие концентрации олова, в литературе обнаружить не удалось. Таким образом, нами установлены две новых химических разновидности рутила — теллуровая и высокооловянная (содержание в толбачинском рутиле меди представляется не столь существенным, чтобы говорить о выделении особой разновидности минерала). Новой является и высокотитанистая (19–23 мас. % ТіО₂) разновидность касситерита, переходная по составу к рутилу.

Рутил в фумаролах Толбачика образует два протяженных ряда твердых растворов – с трипугиитом и с касситеритом. Ряд рутил—трипугиит прослеживается здесь от практически чистого TiO₂ до члена с составом (Fe_{0.371}Sb_{0.357}Ti_{0.230}Sn_{0.032}Al_{0.008}Cr_{0.002})_{Σ1}O_{1.988} (образец с 52.5 мас. % Sb₂O₅) и является практически непрерывным. Главная схема замещений в нем: Sb⁵⁺ + Fe³⁺ \rightarrow 2Ti⁴⁺. Ряд между рутилом и касситеритом (главная схема замещений Sn⁴⁺ \rightarrow Ti⁴⁺) практически непрерывен в поле составов касситерита, но имеет разрыв в поле рутила. В целом же можно говорить о реализации в фумаролах Толбачика тройной изоморфной системы рутил—трипугиит—касситерит, поскольку две упомянутых чуть выше схемы замещений могут сочетаться: встречены образцы с одновременно высокими (более 10 мас. % в пересчете на оксиды) содержаниями Ti, Sn, Sb и Fe.

Примеси двухвалентных металлов входят в минералы этой изоморфной системы вместе с сурьмой, скорее всего по схеме $2\text{Sb}^{5+} + M^{2+} \rightarrow 3M^{4+}$, где $M^{4+} = \text{Ti}$, Sn, a $M^{2+} = \text{Cu}$, Zn, Mg.

Члены изоморфной системы рутил—трипугиит—касситерит являются единственными значимыми концентраторами сурьмы в фумарольных системах Толбачика: других минералов, которые содержали бы более 0.5 мас. % Sb, здесь пока не обнаружено.

Примесный теллур входит в состав рутила в шестивалентной форме согласно схеме изоморфизма $Te^{6+} + 2Fe^{3+} \rightarrow 3Ti^{4+}$, ранее неизвестной. Эмпирическая формула самого богатого теллуром образца толбачинского рутила – $(Ti_{0.774}Fe^{3+}_{0.116}Te^{6+}_{0.057}Sn_{0.047}Zr_{0.006})O_2$.

Образование рутила и богатых Ті разновидностей трипутиита и касситерита в фумаролах Толбачика происходило при температурах не ниже 350 °C, скорее всего в результате процессов взаимодействия вулканического газа, выступившего в том числе источником халькофильных элементов, с базальтом – источником титана. Благодарности. Авторы благодарны В.Г. Кривовичеву за замечания, которые помогли улучшить статью. Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант 18-05-00051. Порошковое рентгенографическое изучение рутила осуществлено на оборудовании ресурсного центра "Рентгенодифракционные методы исследования" СПбГУ.

СПИСОК ЛИТЕРАТУРЫ

Большое трещинное Толбачинское извержение, Камчатка, 1975–1976 / Ред. Федотов С.А. М.: Наука, **1984.** 633 с.

Бритвин С.Н., Доливо-Добровольский Д.В., Кржижановская М.Г. Программный пакет для обработки рентгеновских порошковых данных, полученных с цилиндрического детектора дифрактометра Rigaku RAXIS Rapid II // ЗРМО. 2017. №. 3. С. 104–107.

Варламов Д.А., Ермолаева В.Н., Янчев С., Чуканов Н.В. Минералы надгруппы пирохлора из несульфидной эндогенной ассоциации Pb–Zn–Sb–As минералов в Пелагонийском массиве, Македония // ЗРМО. 2017. № 4. С. 65–78.

Вергасова Л.П., Филатов С.К. Минералы вулканических эксгаляций – особая генетическая группа (по материалам Толбачинского извержения 1975–1976 гг.) // ЗВМО. **1993**. № 4. С. 68–76.

Вергасова Л.П., Филатов С.К. Опыт изучения вулканогенно-эксгаляционной минерализации // Вулканология и сейсмология. 2016. № 2. С. 3–17.

Иванова Ю.А., Власов Е.А. Рутил калишпат-кварцевых жил верховья р. Двойная, Западная Чукотка // Новые данные о минералах. **2018.** Т. 52. Вып. 2. С. 40–42.

Меняйлов И.А., Никитина А.П., Шапарь В.Н. Геохимические особенности эксгаляций Большого трещинного Толбачинского извержения. М.: Наука, **1980.** 235 с.

Минералы. Справочник (под ред. Чухрова Ф.В. и Бонштедт-Куплетской Э.М.). Т. II. Вып. 2. Простые окислы. М.: Наука, **1965**. 342 с.

Мурашко М.Н., Пеков И.В., Кривовичев С.В., Чернятьева А.П., Япаскурт В.О., Задов А.Е., Зеленский М.Е. Стеклит KAl(SO₄)₂: находка на вулкане Толбачик (Камчатка, Россия), установление статуса минерального вида и кристаллическая структура // ЗРМО. **2012**. № 4. С. 36–44.

Набоко С.И., Главатских С.Ф. Постэруптивный метасоматоз и рудообразование. М.: Наука, **1983.** 164 с.

Резницкий Л.З., Скляров Е.В., Суворова Л.Ф., Бараш И.Г., Карманов Н.С. V–Сг–Nb–W-содержащий рутил из метаморфических пород Слюдянского комплекса (Южное Прибайкалье) // ЗРМО. **2016**. № 4. С. 60–79.

Румянцева Е.В., Лапшин С.Г. Минералогия и геохимия щелочно-амфиболовых пропилитов и хром-ванадиевых слюдитов Онежского прогиба // Использование новых достижений геолого-минерагенических исследований в изучении складчатых областей. Л.: ВСЕГЕИ, **1986.** С. 52–64.

Сандалов Ф.Д., Кошлякова Н.Н., Пеков И.В., Япаскурт В.О., Ханин Д.А., Сидоров Е.Г. Касситерит из фумарольных эксгаляций вулкана Толбачик (Камчатка): химический состав и морфогенетические особенности // Новые данные о минералах. **2019.** Т. 53. В. 3. С. 60–70.

Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, **1974.** 264 с.

Спиридонов Э.М., Бакшеев И.А., Середкин М.В., Куруленко Р.С., Прокофьев В.Ю., Устинов В.И., Прибавкин С.В., Филимонов С.В. Гумбентовая формация Урала. М.: МГУ, **1997.** 97 с.

Третьяков Ю.Д. Химия нестехиометрических окислов. М.: МГУ, 1974. 364 с.

Чураков С.В., Ткаченко С.И., Коржинский М.А., Бочарников Р.Е., Шмулович К.И. Термодинамическое моделирование эволюции состава высокотемпературных фумарольных газов на вулкане Кудрявый, Итуруп, Курилы // Геохимия. **2000**. № 5. С. 485–501.

RUTILE ENRICHED WITH CHALCOPHILE ELEMENTS (Sb, Sn, Te) AND TI-RICH VARIETIES OF TRIPUHYUTE AND CASSITERITE FROM SUBLIMATES OF ACTIVE FUMAROLES AT THE TOLBACHIK VOLCANO (KAMCHATKA, RUSSIA)

F. D. Sandalov^{*a*}, *, I. V. Pekov^{*a*}, N. N. Koshlyakova^{*a*}, V. O. Yapaskurt^{*a*}, A. A. Agakhanov^{*b*}, E. G. Sidorov^{*c*}, and S. N. Britvin^{*d*}

 ^a Faculty of Geology, Moscow State University, Moscow, Russia
^b Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia
^c Institute of Volcanology and Seismology, Far Eastern Branch RAS, Petropavlovsk-Kamchatski, Russia ^dDepartment of Crystallography, Saint Petersburg State University, Saint Petersburg, Russia *e-mail: fyodor.sandalov@yandex.ru

The paper contains data on rutile, tripuhyite and unusual Ti-rich cassiterite found in sublimates of active fumaroles at the Tolbachik volcano, Kamchatka, Russia. Unlike rutile from other geological formations, fumarolic rutile is enriched with admixed chalcophile elements. It contains (up to, wt %): Sb₂O₅ 35, SnO₂ 59, TeO₃ 11.3, CuO 1.9, and ZnO 0.4, as well as up to 18 wt % Fe₂O₃. So high contents of tin and copper were not reported for rutile in literature before, as well as the presence of tellurium in this mineral. Cassiterite with 19–23 wt % TiO₂ also represents a novel variety. Hexavalent tellurium occurs in rutile together with trivalent iron according to the substitution scheme Te⁶⁺ + 2Fe³⁺ \rightarrow 3Ti⁴⁺. Being isostructural minerals, rutile, tripuhyite and cassiterite form a ternary isomorphous system with several gaps in fumaroles of the Tolbachik volcano. These minerals were formed at temperatures not lower than 350 °C, most likely as a result of the interaction between hot volcanic gas (source of chalcophile elements) and basalt (source of Ti).

Keywords: rutile, tripuhyite, cassiterite, titanium, tin, antimony, tellurium, isomorphism, fumarole, Tolbachik volcano

REFERENCES

Balić-Žunić T., Garavelli A., Jakobsson S.P., Jonasson K., Katerinopoulos A., Kyriakopoulos K., Acquafredda P. Fumarolic minerals: an overview of active European volcanoes. Updates in Volcanology – From Volcano Modelling to Volcano Geology. 2016. P. 267–322.

Berlepsch P., Armbruster T., Brugger J., Criddle A.J, Graeser S. Tripuhyite, FeSbO₄, revisited. Miner. Mag. **2003**. Vol. 67. P. 31–46.

Britvin S.N., Dolivo-Dobrovolsky D.V., Krzhizhanovskaya M.G. Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO (Proc. Russian Miner. Soc.). 2017. N 3. P. 104–107 (in Russian).

Cabella R., Basso R., Lucchetti G., Marescotti P., Martinelli A., Nayak V.K. Squawcreekite-rutile solid solution from the Kajlidongri mine (India). Eur. J. Miner. 2003. Vol. 15. P. 427–433.

Carocci E., Marignac C., Cathelineau M., Truche L., Lecomte A., Pinto F. Rutile from Panasqueira (Central Portugal): an excellent pathfinder for wolframite deposition. *Minerals.* **2019.** Vol 9(1). P. 9. DOI 10.3390/min9010009

Černý P., Chapman R., Masau M. Two-stage exsolution of a titanian (Sc, Fe^{3+})(Nb, Ta)O₄ phase in niobian rutile from Southern Norway. *Canad. Miner.* **2000.** Vol. 38. P. 907–913.

Černý P., Goad B.E., Hawthome F.C., Chapman R. Fractionation trends of the Nb- and Ta-hearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, Southeastern Manitoba. *Amer. Miner.* **1986.** Vol. 71. P. 501–517.

Churakov S.V., Tkachenko S.I., Korzhinskii M.A., Bocharnikov R.E., Shmulovich K.I. Evolution of composition of high-temperature fumarolic gases from Kudryavy volcano, Iturup, Kuril Islands: the thermodynamic modelling. *Geochem.Int.* **2000**. Vol. 38. P. 436–451.

Haggerty S.E. The mineral chemistry of new titanates from the Jagersfontein kimberlite, South Africa: Implication for metasomatism in upper mantle. *Geochim. Cosmochim. Acta.* **1983.** Vol. 47. P. 1833–1854.

Harlaux M. Tungsten and Rare-Metal (Nb, Ta, Sn) Hydrothermal Metallogenic Systems in the Late Variscan Orogenic Context: Example of the French Massif Central. Ph.D. Thesis, Lorraine University, Lorraine, France. **2016.** P. 576.

Hirata T. Oxygen position, octahedral distortion, and bond-valence parameter from bond lengths in $Ti_{1-x}Sn_xO_2$ (0 < x < 1). *J. Am. Ceram. Soc.* **2000**. Vol. 83. N 12. P. 3205–3207.

Ivanova Yu.A., Vlasov E.A. Rutile potassium feldspar-quartz veins of the upper reaches of the Dvoynaya river, Western Chukotka. New Data on Minerals. 2018. Vol. 52. N 2. P. 40–42 (in Russian).

Leverett P., Reynolds J.K., Roper A.J., Williams P.A. Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment. *Miner. Mag.* **2012.** Vol. 76. P. 891–902.

Meagher E.P., Lager G.A. Polyhedral thermal expansion in the TiO₂ polymorphs: Refinement of the crystal structures of rutile and brookite at high temperature. *Canad. Miner.* **1979.** Vol. 17. P. 77–85.

Meinhold G. Rutile and its applications in Earth sciences. Earth-Sci. Rev. 2010. Vol. 102. P. 1–28. Meniaylov I.A., Nikitina L.P., Shapar' V.N. Geochemical Features of Exhalations of the Great Tolbachik Fissure Eruption. Moscow: Nauka, 1980. (in Russian).

Minerals. Reference book (eds. Chukhrov F.V. and Bonshtedt-Kupletskaya E.M.). Vol. II. Pt. 2. Simple Oxides. Moscow: Nauka, **1965**. (*in Russian*).

Murashko M.N., Pekov I.V., Krivovichev S.V., Chernyatieva A.P., Yapaskurt V.O., Zadov A.E. Steklite, the find at Tolbachik volcano (Kamchatka, Russia), validation as a mineral species and crystal structure. *Zapiski RMO (Proc. Russian Miner. Soc.).* **2012.** N 4. P. 36–44. (*in Russian*, English translation: Geol. Ore Deposits. **2013.** Vol. 55. P. 594–600).

Naboko S.I., Glavatskikh S.F. Post-Eruptive Metasomatism and Ore Genesis: Great Tolbachik Fissure Eruption of 1975–76 at Kamchatka. Moscow: Nauka, **1983**. (*in Russian*).

Padurov N.N. Miscibility in the system rutile-cassiterite. *Naturwissenschaften.* **1956**. Vol. 43. N 17. P. 395–396.

Pekov I.V., Zubkova N.V., Yapaskurt V.O., Belakovskiy D.I., Lykova I.S., Vigasina M.F., Sidorov E.G., Pushcharovsky D.Yu. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na₇(Fe³⁺, Mg, Cu)₄(AsO₄)₆. *Miner. Mag.* **2014.** Vol. 78. N 4. P. 905–917.

Pekov I.V., Koshlyakova N.N., Zubkova N.V., Lykova I.S., Britvin S.N., Yapaskurt V.O., Agakhanov A.A., Shchipalkina N.V., Turchkova A.G., Sidorov E.G. Fumarolic arsenates – a special type of arsenic mineralization. Eur. J. Miner. **2018a.** Vol. 30. P. 305–322.

Pekov I.V., Sandalov F.D., Koshlyakova N.N., Vigasina M.F., Polekhovsky Y.S., Britvin S.N., Sidorov E.G., Turchkova A.G. Copper in natural oxide spinels: the new mineral thermaerogenite CuAl₂O₄, cuprospinel and Cu-enriched varieties of other spinel-groupmembers from fumaroles of the Tolbachik volcano, Kamchatka, Russia. *Minerals.* **2018b.** Vol. 8(11). P. 498. DOI 10.3390/min8110498

Pekov I.V., Zubkova N.V., Agakhanov A.A., Belakovskiy D.I., Vigasina M.F., Yapaskurt V.O., Sidorov E.G., Britvin S.N., Pushcharovsky D.Y. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO₄). *Mineral. Mag.* **2019.** Vol. 83. N 3. P. 453–458.

Platt R.G., Mitchell R.H. Transition metal rutiles and titanates from the Deadhorse Creek diatreme complex, Northwestern Ontario, Canada. *Miner. Mag.* **1996.** Vol. 60. P. 403–413.

Potter E.G., Mitchell R.H. Mineralogy of the Deadhorse Creek volcanoclastic breccia complex, Northwestern Ontario, Canada. Contrib. Miner. Petrol. 2005. Vol. 150. P. 212–229.

Reznitsky L.Z., Sklyarov E.V., Suvorova L.F., Barash I G., Karmanov N.S. V-Cr-Nb-W-bearing rutile in metamorphic rocks of the Slyudyanka complex (South Baikal region). Zapiski RMO (Proc. Russian Miner. Soc.). 2016. N 4. P. 60–79 (in Russian).

Rumyantseva E.V., Lapshin S.G. Mineralogy and geochemistry of alkali amphibole propylites and chrome-vanadium mica-rich rocks of the Onega trough. *The Use of New Achievements of Geological and Mineragenic Research in the Study of Foldbelts.* Leningrad: VSEGEI, **1986.** P. 52–64 (*in Russian*).

Sandalov F.D., Koshlyakova N.N., Pekov I.V., Yapaskurt V.O., Khanin D.A., Sidorov E.G. Cassiterite from fumarolic exhalations of the Tolbachik volcano (Kamchatka): chemical composition and morphogenetic features. New Data on Minerals. **2019.** Vol. 53. N 3. P. 60–70 (*in Russian*).

Scott K.M.; Radford N., Hough R., Reddy S. Rutile compositions in the Kalgoorlie goldfields and their implications for exploration. Aust. J. Earth Sci. 2011. Vol. 58. P. 803–812.

Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. **1976**. Vol. A32. P. 751–767.

Shchipalkina N.V., Pekov I.V., Britvin S.N., Koshlyakova N.N., Sidorov E.G. Arsenic and phosphorus in feldspar framework: sanidine–filatovite solid-solution series from fumarolic exhalations of the Tolbachik volcano, Kamchatka, *Russia. Phys. Chem. Miner.* **2019.** DOI 10.1007/s00269-019-01067-5 (in press).

Siivola J. Ilmenorutile and struverite from Panikoja, Somero, SW Finland. *Bull. Geol. Soc., Finland*, **1970.** Vol. 42. P. 3–36.

Smith D.C., Perseil E.-A. Sb-rich rutile in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: petrology and crystal-chemistry. *Mineral. Mag.* **1997.** Vol. 61. P. 655–669.

Sobolev N.V. Mantle Inclusions in Kimberlites and the Problem of the Upper-Mantle Composition. Novosibirsk: *Nauka*, **1974.** 264 p. (*in Russian*).

Spiridonov E.M., Baksheev I.A., Seredkin M.V., Prokof'ev V.Yu., Ustinov V.I., Pribavkin S.V., Filimonov S.V. The Gumbeite Formation of the Urals. Moscow: MSU, **1997**. 100 p. (*in Russian*).

Switzer G., Swanson H.E. News and notes: paratellurite, a new mineral from Mexico. Amer. Miner. 1960. Vol. 45. P. 1272–1274.

The Great Tolbachik Fissure Eruption. Ed. by S.A. Fedotov & Y.K. Markhinin. New York: Cambridge University Press, **1983**. 341 p.

Tollo R.P., Haggerty S.E. Nb-Cr-rutile in the Orapa kimberlite, Botswana. *Canad. Miner.* **1987.** Vol. 25. P. 251–264.

Tret'yakov Yu.D. Chemistry of Non-Stoichiometric Oxides. Moscow: MSU, **1974**. 364 p. (*in Russian*).

Uher P., Žitňan P., Ozdín D. Pegmatitic Nb–Ta oxide minerals in alluvial placers from Limbach, Bratislava Massif, Western Carpathians, Slovakia: compositional variations and evolutionary trend. *J. Geosci.* **2007.** Vol. 52. P. 133–141.

Urban A.J., Hoskins B.F., Grey I.E. Characteristics of V–Sb–W rutile from the gold deposit Hemlo, Ontario. Canad. Miner. **1992.** Vol. 30. P. 319–326.

Varlamov D.A., Ermolaeva V.N., Jančev S., Chukanov N.V. Oxides of the pyrochlore supergroup from a nonsulfide endogenic assemblage of Pb–Zn–Sb–As minerals in the Pelagonian massif, Macedonia. *Geol. Ore Deposites.* **2018.** Vol. 60. N 8. P. 717–725.

Vergasova L.P., Filatov S.K. Minerals of volcanic exhalations – special genetic group (based on the Tolbachik eruption 1975–1976). *Zapiski VMO (Proc. Russian Miner. Soc.).* **1993.** N 4. P. 68–76.

Vergasova L.P., Filatov S.K. A study of volcanogenic exhalation mineralization. *J. Volcanol. Seismol.* **2016.** Vol. 10. P. 3–17.

Zelenski M.E., Zubkova N.V., Pekov I.V., Boldyreva M.M., Pushcharovsky D.Yu., Nekrasov A.N. Pseudolyonsite, Cu₃(VO₄)₂, a new mineral species from the Tolbachik volcano, Kamchatka Peninsula, Russia. *Eur. J. Miner.* **2011.** Vol. 23(3). P. 475–481.

Zema M., Tarantino S.C., Giorgiani A. Structural changes induced by cation ordering in ferrotapiolite. Miner. Mag. 2006. Vol. 70. P. 319–328.