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ABSTRACT: Deep eutectic solvents (DESs) formed by choline
chloride and urea or glycerol were tested for the separation of
azeotropic mixtures. The case study was the separation of ethanol—
ethyl propionate and n-propanol—n-propyl propionate. For this
aim, the experimental data of liquid—liquid equilibria (LLEs) were
obtained at temperature 293.15 K and atmospheric pressure.
Liquid—liquid tie lines were determined using NMR spectroscopy
and analyzed. The extraction performance of DESs was
characterized with distribution coeficients and values of selectivity
to alcohol. Comparison of selectivity values in systems containing
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alcohols and esters with another DES formed by choline chloride and malonic acid was carried out. The NRTL model for LLE data
correlation was used. The model is shown to give rather good estimates for the selectivity values.

B INTRODUCTION

Development of green chemistry (green technology) is an
important current issue aimed at reducing the negative impact
on the environment. In particular, much attention is paid to
the search of new solvents. Ionic liquids are their
representatives, but their “green” properties due to low
biodegradability and biocompatibility are in doubt recently."”
At the same time, deep eutectic solvents (DESs) are
considered one of the most promising environmentally friendly
and cost-effective alternatives to traditional volatile organic
solvents and ionic liquids.”* Typically, the DES is a liquid
system at room temperature consisting of a hydrogen bond
donor (HBD) and a hydrogen bond acceptor (HBA), which
have a higher melting point than the DES formed by them.’
Most DESs are easy to prepare, inexpensive, and biodegrad-
able. Application of DESs takes place in many fields of
chemistry, such as electrochemistry, organic reactions, and
enzymatic reactions, because of the green properties and
variety of DESs.” The areas of research where DESs are
successfully applied in recent studies are extraction and high-
purity separation,”’ for instance, aromatic hydrocarbons and
gas and biologically active compounds. Purification is of
particular importance for the use of biodiesel, as glycerol is an
undesirable byproduct and must be removed before biodiesel
based on esters can be used as a fuel because the viscosity of
glycerol contained in the mixture makes it difficult for the high-
pressure injection system of a modern diesel engine and can
cause damage.'’

The separation of azeotropic mixtures and systems of close-
boiling components is a crucial issue in chemical technology,
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particularly in ester production. Esters are used in various fields
of chemical industry and everyday life as solvents, aromatic
additives, and in other applications. Recent applications are
also related to the use in fuel technology; selected publications
on this issue are cited below. For example, esters are
considered promising candidates as components of second-
generation biofuels because of the simple production from
biomass waste.''~"® They can be also considered as fuel
additives for gasoline.'*"> The most common components for
the formation of DESs are choline chloride (ChCl) as HBAs
and glycerol and urea as HBDs. The effect of various DESs
based on ChCl and dimethylammonium chloride as HBAs and
thiourea, glycerol, malonic acid, and urea as HBDs on the
thermodynamic and transport properties in aqueous glucose
solutions has been studied.'® DESs composed of ChCl, urea,
and glycerol have been applied to separate a mixture of toluene
and heptane.'” Lee and Park have obtained LLE data in the
temperature range 298.2—313.2 K. Usage of the DES in the
extraction of aromatic hydrocarbons from reformer and
pyrolysis gasolines was investigated.'® Larriba et al.'® have
considered six DESs based on ChCl formed by ethylene glycol,
glycerol, levulinic acid, phenylacetic acid, malonic acid, and
urea in the study of dearomatization of gasolines. Zhekenov et
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Table 1. Information of the Chemicals

chemical name source initial mass fraction purity
ethanol Vekton 0.960
n-propanol Vekton 0.990
ethyl propionate Vekton 0.990
n-propylpropionate Vekton 0.990
glycerol Vekton 0.990
urea Vekton 0.980
choline chloride AppliChem 0.960

a

purification method

drying 0.990 Gc?
none

final mass fraction purity analysis method

none
none
none
none
drying 0.980 NMR*

“Standard uncertainty is estimated to be 0.002 mass fraction. *Gas—liquid chromatography. “Nuclear magnetic resonance spectroscopy.

al."” have performed molecular dynamics simulation on three
of the most commonly used DESs, which are composed of
urea, ethylene glycol, and glycerol with ChCl. The authors
describe the role of intermolecular and intramolecular
hydrogen bonds and energy in the formation of these DESs.
Zhang et al.*® have proposed new methods based on an
ultrasonically assisted deep eutectic solvent aqueous two-phase
system for the extraction of ursolic acid from Cynomorium
songaricum. For this aim, the authors have tested four DESs
based on ChCl with glucose, glycerol, ethylene glycol, and
urea. Baghlani and Sadeghi’' have studied vapor—liquid
equilibrium and LLE in the systems with DES based on
ChClI and urea, ethylene glycol, and glycerol in the absence
and presence of the water-soluble polymers polypropylene
glycol 400, polyethylene glycol 400, and polyethylene glycol
10,000 at different temperatures; they have evaluated the
ability of each DES component to form aqueous biphasic
systems with polypropylene glycol. Experimental data on the
density and dynamic viscosity of DESs consisting of ChCl and
urea in a molar ratio of 1:2 and its aqueous mixtures in the
temperature range from 293.15 to 363.15 K have been
reported.”” The effect of various DESs based on ChCl and
ethylammonium chloride, with three different HBDs (urea,
glycerol, and ethylene glycol), on the catalytic behavior and
structure of heme-dependent biocatalysts has been studied.” It
was found that these solvents can be promising media for
biocatalytic processes of industrial interest. Yi et al.** have
presented a new approach for extracting phenolic compounds
from coal liquefaction oil using a DES based on ChCI and
glycerol (1:1). It was found that this DES is able to extract up
to 98.5% of phenolic compounds. The possibility of using a
DES based on choline chloride and glycerol to separate the
alcohol—ester system (1-phenylethanol—1-phenylethanol-ac-
etate) has been demonstrated.”> Unfortunately, the authors
did not provide data on the phase equilibrium but indicated
that the equimolar composition of the alcohol—ester mixture
can be almost completely divided into four extraction
procedures (recovery ester> 80%).

The phase equilibrium is commonly studied using two
methods. Applying the isothermal titration together with the
cloud point technique,” the solubility is investigated and the
location of the binodal curve is determined, but in this case, it
is not possible to estimate the compositions of the coexisting
liquid phases. To determine LLE data (tie lines), various
analytical techniques are applied. For this aim, the following
experimental methods are most widely used: gas chromatog-
raphy,27 refractometry,28 volumetric method,” microfluidics,
and Raman microspectroscopy.”’ In this work, the NMR
spectroscopy method is used.”’

This article is a continuation of a series of studies devoted to
the research of the phase equilibrium and extraction properties

of deep eutectic solvents based on ChCl and various HBDs in
alcohol—ester systems.””*>~*° Now, we present the results of
exploring the degree of separation of mixtures of alcohols and
propionic acid esters (ethyl propionate and n-propyl
propionate), using a DES based on ChCl and glycerol/urea.
To correlate the experimental LLE data, the local composition
model NRTL was used.

B EXPERIMENTAL SECTION

Materials. Ethanol, n-propanol, ethyl propionate, n-propyl
propionate, glycerol, and urea were purchased from “Vekton”
(Russia). Choline chloride was obtained from AppliChem.
Molecular sieves with pore diameter 3 A are used to dry
ethanol. The purity of ethanol was checked before each
experimental study by gas chromatographic analysis. The
choline chloride was kept under vacuum with heating. All the
chemicals were used without further purification. All the
chemicals used in this work, purity, and source are listed in
Table 1.

Preparation of DESs. Choline chloride (0.7—0.8 g) was
placed in vials (10 mL) and then placed in a vacuum dryer.
The drying of choline chloride to remove water was carried out
under vacuum (10 Pa) with heating up to 70 °C during S h.
After drying, the mass of choline chloride was refined and
glycerol or urea was added to the vial in the molar ratio equal
to 1:2.%7 Substances were weighed on a Shinko VIBRA HT-
120CE analytical balance (Japan) with an accuracy of 0.001 g.
To obtain the DESs, vials were placed in a ultrasonic bath at a
temperature of 40 °C for 3 h. Finally, colorless transparent
DESs were prepared: DES (ChCl/Gl) and DES (ChCl/Ur).
The water content in DESs was controlled by the Karl Fischer
titration method. All samples of the DES were proved to
contain less than 0.1 wt % water.

Apparatus and Procedure. Mixtures of alcohol, ester, and
DESs of given compositions were placed in a thermostat at a
fixed temperature and stirred with a magnetic stirrer for 3—4 h.
Standard uncertainty of the temperature is 0.05 K. To reach
phase equilibrium and complete liquid-phase splitting, the
systems under the study were kept for 12 h. The compositions
of two coexisting phases were analyzed using 'H NMR
spectroscopy. NMR analysis has been described in detail in our
previous studies.’** ™" Figure 1 shows the 'H NMR spectra
of the studied DES. Peaks from protons in CH, and CHj
groups of each compound in the organic and DES-rich phase
were used for integration. Examples of 'H NMR spectra for
each phase of all studied systems are given in the Supporting
Information, Tables S1—S8. Standard uncertainty of the
composition determination was estimated to be 0.015 in
mass fraction.
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Figure 1. '"H NMR spectra of the DES in dimethyl sulfoxide: (a)
ChCl/Gl (1:2, mole ratio) and (b) ChCl/Ur (1:2, mole ratio).

B CALCULATION

NRTL Model. The experimental data were correlated by the
NRTL model.*' We used the NRTL equation for the activity
coefficients in the solution of n pseudo-components (DES was
considered as a component) is the following form

ln(y) _ Z} 1 ]}‘G]‘ + i xG z ZT:lerriGri
iji m
Z, 1xiGji j=1 Z, 1sz]1 ZizlxiGji
(1)
&~ g~-
_ i i —
Tji - RT eXP( ]1 ]1) ( ) (2)

where g; is the energy parameter, which characterizes the
interaction between the components j and i; x denotes the
mole fraction of the component, R is the gas constant, and T is
the temperature, K. The physical meaning of the parameter a;
is the nonrandomness of the system.

The objective function (OF) used to be minimized in this
work is

OF = z Z [(® — e )1 + (o = x;(al 121]
k=1 i=1 (3)

The parameters estimated by this procedure are presented in
Table 2.
The standard deviation ¢ was calculated using the equation

(%)
ex] cal\2 ex] al
= 100\/ Zk=lzz L = x4 (g — g O

2mn

(4)
where «x is the mole fraction of the component, the subscripts i
and k indicate components and tie lines, respectively, n is the
number of tie lines, m is the number of components; and I and
II denote organic and DES phases, respectively.

Table 2. Energy Parameter gj; Obtained by Regression of
Experimental Data on the LLE with NRTL Model

ij Ag; ] mol ™! Ag; J mol™! @
Ethanol (1)—Ethyl Propionate (2)—DES (ChCl/Gl) (3)
1-2 —20,306 —27,032 0.3
1-3 4311 —9731 0.3
2-3 10,847 10,391 03
o =045
n-Propanol (1)—n-Propyl Propionate (2)—DES (ChCl/Gl) (3)
1-2 -20,800 —13,184 0.3
1-3 6361 —8360 0.3
2-3 12,734 10,657 0.3
o =0.83
Ethanol (1)—Ethyl Propionate (2)—DES (ChCl/Ur) (3)
1-2 —25227 ~16,351 03
1-3 4872 -11,075 0.3
2-3 15,416 11,192 0.3
o =046
n-Propanol (1)—n-Propyl Propionate (2)—DES (ChCl/Ur) (3)
1-2 —18,428 —34,823 03
1-3 8760 11,266 0.3
2-3 16,071 12,872 03
c=042

The deviation did not exceed 0.83% (Table 2). The results
of NRTL modelling are in good agreement with experimental
data.

B RESULTS AND DISCUSSION

LLE experimental data in quaternary alcohol—ester—DES
(including ternary ester—DES subsystems) systems at 293.15
K and atmospheric pressure obtained using the 'H NMR
spectroscopy method are listed in Tables 3 and 4.

The molar ratio of the constituent components of the DES
in the DES-enriched phase was found to be constant. In the
organic phase, the ratio between the components becomes
close to the initial stoichiometry only as the alcohol content
increases. On the other hand, this is due to the low absolute
values of the concentration of choline chloride in the organic
phase that only leads to a high relative experimental
uncertainty (see the concentration of choline chloride in the
organic phase, Tables 3 and 4). Because the absolute value of
the concentration of the DES in the organic phase is minimal
(less 1.5%), this does not affect the DES phase, in which the
ratio of the forming components is maintained. Because
extraction occurs in the DES phase, this does not influence the
process of extraction of alcohols from the systems under study.
Accordingly, this makes it possible to accept the molar ratio of
the DES components to be constant and allows considering
the studied systems as pseudoternary ones; this simplifies the
presentation of experimental data and the analysis of the
topology of phase diagrams. As an example, a projection of 3D
tie lines in the composition tetrahedron on the triangle is
shown in Figure 2: the result is a ternary phase diagram with
the vertices which refer to alcohol, ester, and DES.

Phase diagrams for both pseudo-ternary systems are
presented in Figure 3.

The slope of tie lines increases both with increasing of chain
length of ester and with a change in the HBD in the DES
(from glycerol to urea). As can be seen from Figure 3, alkyl
chain lengthening in alcohol (ester) causes an increase in
heterogeneous area in the systems containing n-propanol and
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Table 3. Experimental LLE Data for the System Alcohol—Ester—DES (ChCl/GI 1:2) at 293.15 K and P = 101.3 kPa (w;, w,,
and w;—Mass Fractions of Alcohol, Ester, and Choline Chloride, Respectively”, f§ is the Distribution Coefficient, and S is the

Selectivity)
organic phase DES phase
E4 2% s 2 @ 7% Ptcohol Blosn S
Ethanol (1)—Ethyl Propionate (2)—Choline Chloride (3)—Glycerol (4)
0.000 0.998 0.000 0.000 0.007 0.425
0.051 0.945 0.000 0.041 0.010 0.412 0.803 0.011 75.8
0.108 0.883 0.001 0.075 0.013 0.386 0.701 0.014 48.6
0.164 0.820 0.002 0.101 0.017 0.373 0.615 0.020 30.5
0.226 0.744 0.007 0.128 0.018 0.365 0.565 0.025 22.8
0.288 0.657 0.018 0.152 0.022 0.354 0.529 0.033 16.0
0.339 0.564 0.038 0.190 0.049 0.325 0.562 0.086 6.5
0.379 0.466 0.067 0.240 0.072 0.302 0.632 0.155 4.1
n-Propanol (1)—n-Propyl Propionate (2)—Choline Chloride (3)—Glycerol (4)
0.000 0.999 0.000 0.000 0.006 0.426
0.084 0914 0.000 0.025 0.004 0.416 0.305 0.004 67.9
0.147 0.846 0.000 0.044 0.005 0.411 0.302 0.006 493
0.219 0.769 0.001 0.062 0.007 0.400 0.284 0.009 329
0.287 0.694 0.003 0.070 0.007 0.399 0.244 0.010 25.6
0.349 0.623 0.007 0.086 0.012 0.400 0.247 0.019 13.2
0.417 0.542 0.013 0.092 0.011 0.403 0.221 0.021 10.8
0.488 0.427 0.026 0.109 0.010 0.386 0.224 0.024 9.4
0.520 0.369 0.044 0.130 0.012 0.377 0.250 0.034 74
0.541 0.293 0.065 0.152 0.016 0.365 0.282 0.053 5.3
0.577 0.199 0.095 0.177 0.020 0.368 0.306 0.102 3.0
“Standard uncertainties: u(w) = 0.015, u(P) = 1.5 kPa, and u(T) = 0.05 K.
Table 4. Experimental LLE Data for the System Alcohol—Ester—DES (ChCl/Ur 1:2) at 293.15 K and at P = 101.3 kPa
(Denotations” are the Same as those in Table 3)
organic phase DES phase
2 2 w3 41 2 5 Patcobol Pester N
Ethanol (1)—Ethyl Propionate (2)—Choline Chloride (3)—Urea (4)
0.000 0.999 0.000 0.000 0.007 0.521
0.050 0.948 0.000 0.039 0.008 0.508 0.783 0.008 93.6
0.122 0.873 0.001 0.074 0.008 0.480 0.605 0.009 65.7
0.192 0.796 0.004 0.093 0.008 0.472 0.484 0.010 46.8
0.261 0.713 0.011 0.115 0.009 0.461 0.440 0.012 36.4
0.313 0.641 0.021 0.121 0.009 0.459 0.386 0.014 27.7
0.365 0.568 0.036 0.133 0.009 0.453 0.363 0.016 22.2
0.40S 0.502 0.050 0.145 0.013 0.453 0.357 0.025 14.2
0.434 0.44S 0.064 0.161 0.016 0.423 0.372 0.037 10.2
n-Propanol (1)—n-Propyl Propionate (2)—Choline Chloride (3)—Urea (4)
0.000 1.000 0.000 0.000 0.003 0.540
0.088 0.910 0.000 0.023 0.003 0.520 0.265 0.003 87.9
0.166 0.830 0.001 0.036 0.003 0.517 0.215 0.003 61.9
0.236 0.756 0.002 0.043 0.003 0.512 0.180 0.004 432
0.307 0.680 0.00S 0.056 0.004 0.502 0.181 0.006 28.7
0.369 0.609 0.010 0.063 0.006 0.498 0.171 0.009 18.7
0.523 0.417 0.033 0.085 0.012 0.482 0.164 0.030 5.5

“Standard uncertainties: u(w) = 0.015, u(P) = 1.5 kPa, and u(T) = 0.05 K.

n-n-propyl propionate in comparison with those including ) !

ethanol and ethyl propionate.

logw—lI =a+blogw—1H

The correlation of the experimental LLE data was carried W 3
out using the Othmer—Tobias equation®”

1 —

log —IW
wy

=a+ blog

the Hand equation™’

1 —uy

I and the Bachman equation™*
I 1
w. (%) 1 Wy
wy=a+bl—
w3

(6)

(7)
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Figure 2. Schematic representation of tie lines in the composition
tetrahedron in the ethanol—ethyl propionate—DES (ChCl/Gl) system
at 293.15 K and their projections on the composition triangle.

where w! is the mass fraction of alcohol and w} is the mass
fraction of ester in the organic phase, w} is the mass fraction of
alcohol and w¥ is the mass fraction of the DES in the DES-rich
phase, and a and b are adjustable parameters. Correlation
results by the Othmer—Tobias, Hand, and Bachman equations
(Table S) show a linear dependence with a high correlation
coefficient (R* > 0.98), which indicates a high internal
consistency of the experimental LLE data measured in our
work.

To estimate the efficiency of the alcohol extraction and
check the ability of the model to describe LLE data, the
distribution coefficient of the component (f;) and the
selectivity (S) were calculated, which are defined as follows

I 11
ﬂ _ Walcohol /)) _ Wester
alcohol — 1 ) ester 1
Walcohol Wester (8)

selectivity and distribution coefficients are presented in Tables
3 and 4.

The selectivities for the systems studied in this work in
comparison with the data for the systems with DES choline
chloride/malonic acid (DES ChCl/Mal)*” and several ionic
liquids (ILs) are shown in Figures 4 and S. As can be seen, the
selectivity values for the systems with DES ChCl/Mal are
much lower in comparison with those of DES ChCl/Gl and
DES ChCl/Ur.

Additionally, as an example, Figures 4 and S illustrate data
on the selectivity of alcohol extraction from azeotropic
mixtures ethanol—n-hexane and n-propanol—n-hexane using
some ILs.”* In both cases (for both alcohols), a high
selectivity value was found in the alcohol concentration range
of less than 0.1. With an increase in alcohol concentration, the
selectivity of ILs decreases significantly.

In the studied systems, in the case of DES ChCl/Ur, the
slope of the curve is steeper than that of DES ChCl/Gl. This
can be explained with the aid of the obtained distribution
coefficients of alcohol and ester (Figure 6). These coefficients
for alcohols do not significantly change in comparison with the
distribution coeflicients of esters. Thus, the change in the
distribution coefficient of ethanol in the system with DES
ChCl/Gl is higher than in the system with DES ChCl/Ur by
an average of 30%. At the same time, the change in the
distribution coefficient of the ester in the system with DES
ChCl/Gl is higher than in the system with DES ChCl/Ur by
an average of 2—2.5 times, despite the minimum absolute
values.

Ethanol

00 01 02 03 04 05 06 07 08 09 10
DES (ChCL:Gl)

n-Propanol

0

0.
00 01 02 03 04 05 06 07 08 09 1.0
DES (ChCI:Gl)

Ethyl propionate  DES (ChCl:Ur)

n-Propyl propionat  DES (ChCI:Ur)

00 01 02 03 04 05 06 07 08 09 10

Ethyl propionate

n-Propanol

d

0

0
0.0 01 02 03 04 05 06 07 08 09 10
n-Propyl propionat

Figure 3. Experimental tie lines for the pseudoternary systems: (a) ethanol—ethyl propionate—DES (ChCl/Gl), (b) ethanol—ethyl propionate—
DES (ChCl/Ur), (c) n-propanol—n-propyl propionate—DES (ChCl/Gl), and (d) n-propanol—n-propyl propionate—DES (ChCl/Ur) at 293.15 K

and atmospheric pressure.
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Table 5. Correlation Results Given by the Othmer—Tobias, Hand, and Bachman Equations for Describing LLE Data in the

Pseudo Ternary Systems

Othmer—Tobias Hand Bachman
DES a b R a b R a b R
Ethanol—Ethyl Propionate—DES
ChCl/Gl 0.6870 —0.4278 0.9900 0.7352 —0.4309 0.9931 1.4409 —0.5052 0.9955
ChCl/Ur 0.4734 —0.5991 0.9860 0.4454 —0.5083 0.9810 1.0274 —0.1329 0.9935
n-Propanol—n-Propyl Propionate—DES
ChCl/Gl 0.5311 —-0.9024 0.9824 0.5874 —0.9067 0.9852 1.0210 —0.0674 0.9982
ChCl/Ur 0.5471 —1.0497 0.9957 0.5573 —1.0741 0.9964 1.0454 —0.0697 0.9997
1000 I35 ¢ ChCl/GI (1:3).* The NOESY spectrum of the pure DES
> 80.0 4 showed the presence of strong interactions between the
2 60,0 protons of the methyl and OH groups of ChCl with the
£ 60.
S 00 - protons of the S)7H groups of glycerol ar}d ethyl.ene glycol.
wm T Wazeer et al.”’ have investigated the interaction of ethanol
200 1 with DES ChCI/EG (1:4). On adding 40% wt ethanol,
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Figure 4. Selectivity values vs alcohol mass fraction at 293.15 K and
101.3 kPa for the pseudo-ternary systems: ethanol—ethyl propionate—
DES [ChCl/Gl (®), ChCl/Ur (®), and ChCl/Mal (®).”” ethanol—
n-hexane—IL ([Hmim][BF4] O [MMIM][DMP] O [EMIM]-
[DEP] O* [BMIM][DBP] O0*).
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Figure 5. Selectivity values vs alcohol mass fraction at 293.15 K and
101.3 kPa for the pseudoternary systems: n-propanol—n-propyl
propionate—DES. [ChCl/Gl (®), DES ChCl/Ur (®) and DES
ChCl/Mal (®).”” n-propanol—n-hexane—IL [[Hmim][BF4] (O),*
and [Hmim][OTf] (O0).*

The dependence of the distribution coefficient of alcohol on
its concentration in the organic phase in the systems under
study has a local minimum. This is due to the slope of the tie
lines, which allows us to suggest that the maximum alcohol
concentration value does not refer to the plate point.

The use of IH NMR and various 2D-NMR analyses
(NOESY and HOESY) allowed us to study the nature of
intermolecular interactions in DES ChCl/EG (1:4)*” and DES

NOESY spectra showed strong interactions between OH
groups of ethanol and OH groups of both ChCl and EG and
weak interactions between methyl groups from ChCl and OH
groups from ethylene glycol. Ethanol is suggested to form new
hydrogen bonds between ChCl and EG, although the DES still
exists under this condition. Addition of 60 % wt ethanol leads
to interactions only between ethanol and ChCl and ethanol
and EG, and no interactions were observed between the DES
components.

The effect of water on intermolecular interactions in DES
ChCl/Gl (1:3) was investigated by Hadj-Kali and co-authors.**
They have obtained similar results that on adding 25% wt
water, the interaction between methyl groups from ChCl and
OH groups from glycerol weakened. Adding 50% wt water to
the DES destroyed the interactions between the DES
components.

These results indicate that DES ChCl/Gl (1:3) and DES
ChCI/EG (1:4) retain their structures; however, interactions
between DES components weaken.

The extraction alcohols from alcohol—ester systems using
the DES suggests that the DES can disrupt the interaction of
“alcohol—ester”, forming a new and strong interaction “DES—
alcohol”. However, an increase in the alcohol concentration
weakens the intermolecular interaction between the DES
components themselves. It can be assumed that a small part of
the choline chloride and HBD molecules interacting with
alcohol and ester in the organic phase are not able to interact
with each other, as a result of which the molar ratio of DES
differs from the initial value. This is especially evident at low
concentrations of alcohol in the organic phase. Increasing of
the concentration of the DES components in the organic phase
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Figure 6. Distribution coefficient vs alcohol mass fraction in the systems: (a) ethanol—ethyl propionate—DES, (b) n-propanol—n-propyl
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results in that they are capable of interacting with each other
again; finally, this leads to the initial molar ratio between
parent compounds of DESs (1 mol ChCl and 2 mol glycerol or
urea).

The molecular dynamic simulations on DESs based on
choline chloride have been recently studied.*” The obtained
results have demonstrated that anion—HBD interactions play
an important role and dominant interactions are depending on
the anion type. It can be assumed that the extraction ability of
DES ChCl/Gl is influenced by both the steric factor because of
the presence of three OH groups and the intermolecular
interactions between glycerol molecules. Perhaps, a more
compact urea molecule provides a stronger H bond with the
choline chloride molecule in DES ChCl/Ur.

B CONCLUSIONS

The experimental data on LLE for the systems ethanol—ethyl
propionate—DES (ChCl/Gl and ChCl/Ur) and n-propanol—n-
propyl propionate—DES (ChCl/Gl and ChCl/Ur) were
obtained at temperature 293.15 K and the atmospheric
pressure. To quantify the concentrations, the 'H NMR
analytical method was used. The values of distribution
coeflicients and selectivity values were calculated on the basis
of obtained data. A comparative analysis of the selectivity
together with literature data on the systems including the DES
formed by choline chloride and malonic acid was carried out.
The DESs ChCl/Gl and ChCl/Ur allow us to achieve higher
selectivity compared to the DES based on malonic acid. In the
studied systems, the selectivity is characterized with the
greatest value using DES ChCl/Ur. The correlation of
experimental LLE data with the NRTL model showed their
high consistency. The standard deviation did not exceed 0.83%
for all systems studied.
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