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Abstract. The free vibrations of cylindrical shells with rectangular cross-section are studied
in the work. The precision of Rayleigh method for various admissible functions and different
boundary conditions is evaluated. Using finite element method, the natural frequencies in the
case of deviation of the cross-section shape from square to rectangular are examined, and the
vibration frequencies and modes for the shell joined with the plate are studied for various
plate thicknesses. Additionally, fundamental frequency behavior is analyzed in the case of fixed
support, as one of the cross-section sides approaches zero.

1. Introduction
This paper research subject is the free vibrations of cylindrical shells with rectangular cross-
section. This kind of shell could serve as a model for a great variety of thin-walled box-shaped
constructions which are used in mechanical engineering, chemical industry, and other technical
areas. Different kinds of cabins (i.e. elevator cabins, sound booths, etc) belong to these
constructions as well.

This issue is the next step in further studying of the vibrations of cylindrical shells with
square cross-section which was considered in [1, 2]. Apart from that, the vibrations of the
cylindrical shells with rectangular cross-section and simply-supported edges were examined in
paper [3], meanwhile in [4] buckling of simply supported shell with square cross-section was
analyzed, and buckling of plates was deeply studied in [5, 6]. In the case of square cross-section
one can get approximate analytical solution by numerical solving of the transcendental equation
which is obtained after separation of variables in Germain-Lagrange equation. Moreover, if the
shell is simply supported, the exact formula for frequencies is known [1]. However, rectangular
cross-section case makes such calculations much more sophisticated. One can still use numerical
methods to look upon the shell’s vibrations, for instance, Rayleigh method and finite element
method (FEM). Step-by-step exposition how to apply the methods mentioned so as to deal with
this obstacle is what this article is dedicated to. Usage of approximate solutions is well-known
for similar problems. Numerical solution based on Bubnov-Galerkin method was obtained for
cylindrical shell’s frequencies in [7, 8].

In the present paper, vibrations of cylindrical shell with rectangular cross-section are
examined using said methods. Precision of the solutions obtained by Rayleigh method is
analyzed for various admissible functions under different boundary conditions. FEM is used
to investigate shell’s vibration frequencies and modes when cross-section shape deviates from
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square to rectangular. It is also applied to study vibration frequencies and modes for the shell
joined with the plate for various plate thicknesses. Additionally, fundamental frequency of the
shell with clamped edges, as one of the cross-section sides approaches zero, is analyzed.

2. Materials and methods
2.1. Formulation of the problem
We take the cylindrical shell with rectangular cross-section. Its four faces are rectangular plates
of width a or b and length c, as shown in figure 1.

Figure 1. Cylindrical shell with rectangular cross-section under different boundary conditions
(a, b, c are the shell sizes).

The differential equation for the deflection w(k) of the kth plate has the form [9]:

D∆∆w(k) − ρtw(k)ω2 = 0, k = 1, 4, (1)

where w(k) = w(k)(x, y) is deflection of kth plate, depending on local coordinates x and y of kth

plate (fig. 2), ∆w = wxx + wyy, D = Et3

12(1−ν2)
is bending stiffness; E is Young’s modulus, ν is

Poisson’s ratio, ρ is the plate mass density, t is the plate thickness, ω is the natural frequency.

Figure 2. Local coordinates of the shell’s surfaces (view from above).
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2.2. Imposing boundary conditions
We consider the problem under the following assumptions. First, we neglect the longitudinal
compression-stretching of the plates and suppress any rigid body motion of the shell. Then, we
suppose that the plates are rigidly joined on the line where they meet each other. Finally, we
assume that the bending moments on the line where the plates meet are equal to each other.
These assumptions result in the following boundary conditions for each plate:

w(k)(0, y) = w(k)(χ, y) = 0,

w
(k)
x (χ, y) = w

(k+1)
x (0, y),

w
(k)
xx (χ, y) = w

(k+1)
xx (0, y).

(2)

All index arithmetic is mod 4, i.e., for example, 4 + 1 = 1 (mod 4).
In the case of square cross-section, i. e. if a = b, the solution

w(k)(x, y) = (−1)kW (k)(y) sin
mπx

a
, (3)

where m = 1, 2, ... is a number of waves across the x coordinate of the kth plate, satisfies
conditions (2).

We suppose that y = 0 edge is clamped and edge y = c is joined with a plate. If the shell is
joined with a plate and its thickness differs significantly from the shell’s, then the plate can be
replaced by boundary conditions of clamped edge or simply supported edge. This allows us to
consider the shell’s vibrations and the plate’s vibrations separately from each other. Hereinafter
we refer to these conditions coupled with clamped edge y = 0 as ”clamped-clamped” and
”clamped-simple support”, respectively.

The ”clamped-clamped” boundary conditions are as follows:

W (k)(x, 0) = W (k)(x, c) = 0,
∂w(k)

∂y (x, 0) = ∂w(k)

∂y (x, c) = 0.
(4)

The ”clamped-simple support” boundary conditions are as follows:

w(k)(x, 0) = w(k)(x, c) = 0,
∂w(k)

∂y (x, 0) = ∂2w(k)

∂y2
(x, c) = 0.

(5)

For rectangular cross-section, separation of variables is not applicable. However, one still can
use Rayleigh method and finite element method (FEM) for approximate calculation of the shell’s
frequencies and modes. These methods are also used to study the vibrations of the shell joined
with the plate for various plate thicknesses, as well as to consider the frequencies’ behavior,
as one of the cross-section sides approaches zero. Hereinafter we use the frequency parameter

f = ν̃
√

ρt
D , where ν̃ = ω

2π .

To simplify further calculations, we limit our considerations to the shells of middle length,
therefore we take a limited set of sizes to illustrate obtained results. One can get similar outcome
for other sizes by scaling respective results.

2.3. Rayleigh method calculations
We demonstrate an approach, which involves use of the adjustment factor coupled with the
admissible functions. As a result, it allows us to find approximate formula for the fundamental
frequency of the shell in spite of absence of the symmetry.

When developing approximate formulae with Rayleigh method [10], one can consider just
two adjacent shell’s surfaces due to the symmetry. We use the following admissible functions:
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Wχi = Cχi
11
10 sin

πx

χi

(
1− cos

2πy

c

)
— for ”clamped-clamped” boundary conditions, (6)

Wχi = Cχi
5
4 sin

πx

χi

(
y4 − 2cy3 + c2y2

)
— for ”clamped-clamped” boundary conditions, (7)

Wχi = Cχi sin
πx

χi

(
y4 − 5c

2
y3 +

3c2

2
y2
)
— for ”clamped-simple support” boundary conditions,

(8)

Wχi = Cχi
5
4 sin

πx

χi

(
y4 − 5c

2
y3 +

3c2

2
y2
)
— for ”clamped-simple support” boundary conditions,

(9)
where χi

α is adjustment factor, i = 1, 2, χi = a if i = 1 and χi = b if i = 2. α was selected
in order to ensure minimal error.

Potential energy of strain and maximal kinetic energy are calculated upon the following
formulae:

Π =

∫ c

0

(∫ 0

−χi

Πχidx+

∫ χi+1

0
Πχi+1dx

)
dy, (10)

T =

∫ c

0

(∫ 0

−χi

Tχidx+

∫ χi+1

0
Tχi+1dx

)
dy, (11)

where

Πχi = D

((
d2Wχi

dx2
+

d2Wχi

dy2

)2

+ 2(1− ν)

((
d2Wχi

dxdy

)2

− d2Wχi

dx2
d2Wχi

dy2

))
, (12)

Tχi = ρtW 2
χi
, (13)

whereupon they are being substituted into the expression for the fundamental frequency:

f = ν̃

√
ρt

D
=

ω

2π

√
ρt

D
=

1

2π

√
2Π

T

ρt

D
. (14)

2.4. Finite-element method evalutaions
Finite-element method evalutaions were made using package ANSYS. The shell was modeled
with the partitioning of 400 elements SHELL63 per m2. The values of obtained frequencies were
rounded to the third place of the decimal point. The shell surfaces’ thicknesses were assumed
to be equal to t = 0,015 m.

FEM is used to study the frequencies’ and modes’ behavior both under ”clamped-clamped”
and ”clamped-simple support” boundary conditions when square cross-section is deviated from
its initial shape to rectangular preserving its perimeter. We also apply FEM to consider the
vibrations of the shell with one edge clamped and another one joined with plate of thickness tc
in order to compare its frequencies and modes with ones in ”clamped-clamped” and ”clamped-
simple support” cases at different values of tc.
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2.5. The case of b → 0
We can examine the frequency behavior as one of the cross-section sides approaches zero. For
the sake of brevity, we hereinafter assume b → 0.

Considering the value of the limit as b → 0, we study, for what values of b the frequency of
the shell with clamped edges is close to the frequency of the clamped plate.

Firstly, we use Rayleigh method to find approximate formula for the plate’s frequency, using

admissible function W = C
(
1− cos 2πx

a

) (
1− cos 2πy

c

)
:

f =
2π

3a2c2

√
3a4 + 3c4 + 2a2c2. (15)

Furthermore, assuming a and c to be fixed, we equate the frequencies obtained by formulae
(15) and (16), thereby we get an equation for the value of b, at which approximate value of the
shell’s frequency is equal to that of the plate.

3. Results and discussion
3.1. Results obtained with using Rayleigh method
Calculations using (10)-(14) were performed for each of the admissible functions (6)-(9) with
respect to the boundary conditions they satisfy.

We will use the relative error J = fR−fN
fN

100%, where fR is the frequency found via Rayleigh
method, and fN is the frequency found via FEM, to make conclusions on convenience of use for
each considered case.

The following approximate solutions were obtained:

• ”clamped-clamped” boundary conditions, admissible function (6):

f =
π
√
3

6a
2
5 b

2
5 c2

√
3a

4
5 c4 + 3b

4
5 c4 + 8a2b

4
5 c2 + 8a

4
5 b2c2 + 16a

4
5 b4 + 16a4b

4
5

a
16
5 + b

16
5

. (16)

For this solution J varies in the range from 2,1 % to 9,9 %.

• ”clamped-clamped” boundary conditions, admissible function (7):

f =
1

2π 4
√
abc2

√
−(A1 +A2)

B
(17)

where
A1 = π4c4 + 24a

3
2π2

√
bc2 − 24π2abc2 + 24b

3
2π2√ac2,

A2 = 504a
7
2

√
b+ 504a

5
2 b

3
2 − 504a3b− 504a2b2 − 504ab3 + 504a

3
2 b

5
2 + 504

√
ab

7
2 ,

B = a
5
2

√
b+ a

3
2 b

3
2 +

√
ab

5
2 − a3 − a2b− ab2 − b3.

For this solution J varies in the range from 0,1 % to 3,4 %.

• ”clamped-simple support” boundary conditions, admissible function (8):

f =

√
19

38πc2

√
19π4c4 + 432π2abc2 + 4536a3b− 4536a2b2 + 4536ab3

ab(a2 − ab+ b2)
. (18)

For this solution J varies in the range from 0,1 % to 15,7 %.

• ”clamped-simple support” boundary conditions, admissible function (9):
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f =

√
19

38π 4
√
abc2

√
−(A1 +A2)

B
, (19)

where
A1 = 19π4c4 + 432π2a

3
2

√
bc2 − 432π2abc2 + 432π2√ab

3
2 c2,

A2 = 4536a
7
2

√
b− 4536a3b+ 4536a

5
2 b

3
2 − 4536a2b2 + 4536a

3
2 b

5
2 − 4536ab3 + 4536

√
ab

7
2 ,

B = a
5
2

√
b+ a

3
2 b

3
2 +

√
ab

5
2 − a3 − a2b− ab2 − b3.

For this solution J varies in the range from 0,1 % to 3,7 %.

As follows from the results, selection of the admissible functions can affect both precision of
the solution and its usability. However, in all the cases J is minimal as the cross-section shape
tends to square.

One might notice that the polynom as a admissible function for ”clamped-clamped” boundary
conditions leads to more precise solution, although it appears to be cumbersome. Trigonometric
function, on the contrary, gives more usable yet more inaccurate result. Selection of the
adjustment factor has impact too, as shown in ”clamped-simple support” case with using
polynoms.

However, one can go beyond these cases to further examine influence of the adjustment factor
on obtained formulas and its accuracy.

3.2. Results obtained with using FEM
With simultaneous k-fold varying of a, b, c, t, the frequency f is changed inversely proportional
to changing of k (fig. 3). If also t is fixed, then dependency of f on k is close to inversely
quadratic.

Figure 3. Examples of dependency of f on k at initial sizes a = b = c = 2, t = 0,015.
Red plot corresponds to the increase of all sizes of the shell in k times, blue plot corresponds to
the increase of all sizes of the shell except for t in k times.

The analysis of higher frequencies shows that in the case of square cross-section second and
third frequency are multiple.
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When the cross-section shape deviates from square to rectangular having its perimeter
preserved, the frequency splits into two different frequencies. With growth of ε = M

m − 1, where
M and m are the maximum and the minimum of the cross-section sides’ lengths respectively, the
2nd frequency is decreasing and the 3rd one is increasing. For the vibration mode corresponding
to the 2nd frequency, the longer plates of the shell have one wave in x direction and deflect
codirectionally, meanwhile the shorter ones have two waves and smaller deflection compared to
the longer plates. The 3rd frequency vibration mode is similar, but shorter and longer plates
are swapped (fig. 4).

Figure 4. The 2nd and 3rd vibration modes at ε = 0.3.

Figure 5 represents examples of the frequency split at different values of ε parameter. Similar
phenomenon occurs, when the cross-section shape is deviated from square to rectangular having
its area preserved.

Figure 5. Frequency split as ε grows (a + b = const). Red dots correspond to the frequency
split for the shell at initial sizes a = 3, b = 3, c = 3, green — for the shell at initial sizes
a = 3, b = 3, c = 4.

Therefore, for the shell with square cross-section having small deviation from square to
rectangular, the 2nd and the 3rd frequencies are approximately equal.
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According to the plots, it can be suggested that for the shells with square cross-section there
exist such c1, c2, ε, that the 2nd frequency of the shell of length c1 is equal to the 3rd frequency
of the shell of length c2. However, explicit finding of them is not studied in this paper.

For the case of the joined plate, we will introduce several new denotements. Let tc is the plate
thickness, f1, f2, f3 are the first respective frequencies of the shell joined with plate, ffixed is
the frequency of the shell with clamped edges, fsimple is the frequency of the shell with clamped
and simply supported edges, and fc is the frequency of the plate with clamped edges calculated
by formula (15) using Rayleigh method with due regard for difference of the thicknesses of the
plate and the shell:

fc = f
tc
t
=

2π

3a2b2
tc
t

√
3a4 + 3b4 + 2a2b2. (20)

We will now compare specified frequencies at different values of tc. A numerical example at
a = 2, b = 3, c = 3 and t = 0,015 is presented in table 1.

Table 1. Frequencies of the shell joined with the plate of thickness tc.

tc 5t 2t t 0.5t 0.3t 0.2t

f1 0.542 0.531 0.492 0.444 0.315 0.213
f2 0.572 0.565 0.536 0.500 0.460 0.330
f3 0.789 0.784 0.766 0.526 0.491 0.456
fc 5.548 2.219 1.110 0.555 0.333 0.222
ffixed 0.543
fsimple 0.455

At tc = 5t (thick plate) the frequency f1 is close to the frequency ffixed = 0,543 of the shell
with clamped edges. At tc = 0,2t the frequency f1 differs slightly from the frequency fc =
0,222. One can also note closeness of the frequencies f2 with tc = 0,3t and f3 with tc = 0,2t
to the frequency fsimple = 0,455 of the shell having one edge clamped and another one simply
supported.

Similar behavior of frequencies is present for other shell sizes. This allows us to find
approximate value of the fundamental frequency f1 using variational formulae (16) or (17) in
the case of thick plate. For thin plate, the approximate variational formula (20) can be used to
find f1. Formulae (18) and (19) can be used for approximate calculation of frequencies of the
shell joined with the thin plate.

The first modes corresponding to different values of tc are presented in figure 6. In the case
of the thick plate, its deflection is negligible compared to deflections of the shell’s surfaces. For
the thin plate, on the contrary, the surfaces’ deflections are small compared to the plate’s.
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Figure 6. Alteration of the shell’s 1st mode as the plate’s thickness grows.

3.3. Results obtained for the case of b → 0
An equation for the value of b, at which the approximate value of the shell’s frequency is equal
to that of the plate, is as follows:

b4 −A1b
2 +A2b

4
5 −A3 = 0 (21)

where

A1 =
24a

24
5

D
,A2 =

39a4c2 + 8a6

D
,A3 =

9a
24
5 c2

D
,D = 48a

4
5 c2 + 32a

14
5 .

This equation can be solved numerically. Its roots at different values of a and c are presented
in table 2.

Table 2. Roots of the equation (21).

c

1 2 3 4

a
2 0.1525 0.2676 0.3243 0.3299
3 0.1562 0.2949 0.4015 0.4680
4 0.1576 0.3051 0.4334 0.5353

It’s seen that for considered range of values of a and c (approximately 6-8 times less than
minimum from a and c) the fundamental frequency of the shell is proximate to that of the plate.
Deflection of narrow surfaces of the shell is negligible compared to wide ones (fig. 7).

Figure 7. Vibration mode of the shell with two narrow surfaces (view from above).
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4. Conclusion
The free vibrations of cylindrical shells with rectangular cross-section are examined. By means
of finite element method, the split of 2nd and 3rd frequencies under deviation of the cross-section
shape from square to rectangular is investigated.

Precision of Rayleigh method for calculation of the fundamental frequency with using various
admissible functions is compared. It is shown that depending on the adjustment factor, precision
and convenience of use of approximate formula can change notably.

The vibration frequencies and modes for the shell joined with the plate are studied for various
plate thicknesses. For a shell joined with a plate of significantly different thickness compared to
the shell, the fundamental frequency may be found by using approximate variational formulae.

For the shell with clamped edges an equation is received, which allows to find out the width
of cross-section that makes the shell’s frequency close to that of the clamped plate.

The approach on developing method for approximate evaluation of the fundamental frequency
may be further considered in application to other cross-section shapes. Dependency of the
approximation’s precision and usability on the adjustment factor can be examined in future as
well.
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