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Abstract. In its original XVIII century form the classical Waring problem
consisted in finding for each natural k the smallest such s “ gpkq that all
natural numbers n can be written as sums of s non-negative k-th powers,
n “ xk

1 ` . . . ` xk
s . In the XIX century the problem was modified as the

quest of finding such minimal s “ Gpkq that almost all n can be expressed
in this form. In the XX century this problem was further specified, as for
finding such Gpkq and the precise list of exceptions. In the present talk I
sketch the key steps in the solution of this problem, with a special emphasis
on algebraic and computational aspects. I describe various connections of
this problem, and its modifications, such as the rational Waring problem, the
easier Waring problem, etc., with the current research in polynomial computer
algebra, especially with identities, symbolic polynomials, etc. and promote
several outstanding computational challenges.

Introduction

In this talk I plan to describe the status of the classical Waring problem, its
versions and variants. The XVIII century Waring problem has been mostly solved.
Not by Hilbert in 1909, of course, as many people misguidedly believe, but mostly
by Dickson in 1936 (the outstanding small cases k “ 6, 5, 4 were then settled in
1940, 1964 and 1984, respectively, see § 1 and § 6 for details). But already its
XIX century version suggested by Jacobi, not to say all other major XIX and XX
century variations, are widely open, as of today.

My objective is to attract attention to some algebraic and computational
aspects of the Waring problem in the spirit of reconnecting with the goddess
Namakkal, as described in [39]. Here I focus mostly on the related polynomial and
rational identities, conjectural answers, and explicit lists of exceptions, many more
details and further aspects can be found in [40, 41].
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1. Waring problem
Here we take a quick glance at some facets of what is known as the Waring problem.
There are many further aspects to be featured in a more systematic treatment,
as well as oodles of various generalisations and related problems, some of them
mentioned towards the end of the present abstract and discussed in [40, 41].

1.1. Original Waring problem
Guided by the analogy with Lagrange’s four square theorem and scarce numerical
evidence in 1770–1772 Waring and J. A. Euler (= Euler jr.) proposed what later
became known as the [classical] Waring problem, see [13].

‚ Waring problem. Find for each natural k the smallest s “ gpkq such that
every natural number n can be expressed as the sum of k-th powers of non-negative
integers

n “ xk1 ` . . .` x
k
s ,

with s summands.
Actually, Waring conjectured that gp3q “ 9 and gp4q “ 19, while J. A. Euler

made similar prediction for all values of gpkq:

gpkq “ 2k ` q ` 2,

where 3k “ q ¨ 2k ` r, 1 ď r ď 2k ´ 1, = the ideal Waring theorem.
In this form Waring problem was essentially solved in 1909–1984.
‚ In 1909 Wieferich [47] established that gp3q “ 9, gaps in his proof were

later filled up by Kempner [23] in 1912 and by Dickson in 1927.
‚ For k ě 7 the problem was solved by Dickson [14, 15] and Pillai in 1936,

modulo the Pillai conjecture that q` r ď 2k. They also compute the precise value
of gpkq when Pillai conjecture fails. But there is every reason to believe that Pillai
conjecture holds for all k. Firstly, it may fail at most for finitely many values of k.
Secondly, it holds for all k ă 5 ¨ 108. And there is much more compelling evidence
than that.

‚ The three remaining values gp6q “ 73, gp5q “ 37 and gp4q “ 19 were com-
puted by Pillai [27] in 1940, by Chen Jing-run [4] in 1964, and by Balasubramanian,
Deshouillers and Dress [1] in 1984, respectively.

1.2. Asymptotic Waring problem
However, in XIX–XX centuries this problem was remodeled as follows.

‚ Asymptotic Waring problem. Find for each natural k the smallest s such
that almost all natural numbers n can be expressed as the sum of k-th powers of
non-negative integers n “ xk1 ` . . .` x

k
s , with s summands.

Clearly, the specific purport of this problem depends on the precise meaning
of the expression almost all . The two most common interpretations are as follows:

‚ According to Jacobi as “all, except a finite number” = “all starting from a
certain value”. The corresponding minimal s is denoted by Gpkq.
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‚ According to Hardy—Littlewood in the sense of natural density . There
can be inifinitely many exceptions, but they become progressively more rare, their
number grows as opnq. The corresponding minimal s is denoted by G`pkq.
However apart from the case of squares G`p2q “ Gp2q “ gp2q “ 4 that was already
known to Lagrange, and a few more values such as Gp4q “ 16, as of today, the
asymptotic Waring problem is very far from being solved in either sense.

1.3. Algorithmic Waring problem
However, with the advent of computers this problem was reformulated once again
as something terribly much more ambitious.

‚ Waring problem, XX century version. Find Gpsq as above and the ex-
plicit list of exceptions. Construct an algorithm that for a given n finds a shortest
expression of n as the sum of k-th powers (or, preferably, all such expressions).

In this form the problem seems to be quite recalcitrant. The only non-trivial
case, for which Waring problem is fully solved in this form is that of biquadrates,
see § 6. The only other case, for which the problem is fully stated in this form is
that of cubes. However, for cubes we are nowhere near its solution and even the
statement itself required thumping calculations, see § 5. For fifth powers it seems
we are not even close to being able to state the problem in this form, see § 7.

1.4. Easier Waring problem
In the 1930-ies several mathematicians started to systematically consider the fol-
lowing version of Waring problem, which turned out to be much harder than the
original Waring problem and is still unsolved even today.

‚ Easier Waring problem. Find for each natural k the smallest s “ vpkq such
that all natural numbers n can be expressed as sums/differences of k-th powers of
integers

n “ ˘xm1 ˘ x
m
2 ˘ . . .˘ x

m
s .

This is what Hardy and Wright call “sums affected with signs” and what
Habsieger renamed signed Waring problem. They prove an obvious bound vpkq ď
2k ` pk!q{2, [20], Theorems 400 and 401. There is a much better upper bound
vpkq ď Gpkq ` 1, of course. However, the explicit value of vpkq is not known even
for k “ 3.

1.5. Rational Waring problem
Actually, there are further versions of Waring problem, also known since the early
XIX century.

‚ Rational Waring problem. Find for each natural k the smallest s “ ρpkq
such that every rational number x can be expressed as sums/differences of k-th
powers of rational numbers n “ xk1 ˘ . . .˘ x

k
s .

‚ Positive rational Waring problem. Find for each natural k the smallest s
such that every positive rational number x can be expressed as the sum of k-th
powers of non-negative rational numbers x “ xk1 ` . . .` x

k
s .
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These problems are closely related to another classical problem.
‚Waring problem at zero. Find for each natural k the smallest s “ θpkq such

that 0 can be non-trivially expressed as sums/differences of k-th powers of integers
˘xm1 ˘ x

m
2 ˘ . . .˘ x

m
s “ 0.

The existence of Pythagorean triples implies that θp2q “ 3. The great Fermat
theorem is the claim that θpkq ě 4 for all k ě 3. Using the geometry of elliptic
curves, Fermat and Euler have proven that indeed Fermat equation x3 ` y3 “ z3

has no non-trivial solutions, and thus θp3q “ 4. Euler even made a much stronger
claim that θpkq ě k ` 1, but that turned out to be both wrong and false. In
particular, already θp4q “ 4. Similarly, θp5q ď 5, but it is unknown, whether the
precise value is 4 or 5.

2. Polynomial identities in the classical Waring problem
Here we display some assorted classical identities used to estimate gpkq. In my
view, they deserve a serious further scrutiny, and with the tools of polynomial
computer algebra we can now start a systematic search for new such identities.

2.1. Tardy type identities
Already in Euclid’s “Elements” one can find the identity 4xy “ px`yq2´px´yq2,
later reproduced by Diophantus. Gauss generalised it to cubes

24xyz “ px` y ` zq3 ´ px` y ´ zq3 ´ px´ y ` zq3 ` px´ y ´ zq3.

In 1851 Tardy observed a similar identity for biquadrates

192xyzw “ px` y ` z ` wq4 ´ px` y ` z ´ wq4 ´ px` y ´ z ` wq4

´ px´ y ` z ` wq4 ` px` y ´ z ´ wq4 ` px´ y ` z ´ wq4

` px´ y ´ z ` wq4 ´ px´ y ´ z ´ wq4

and all further powers, and thus gave the first solution of the rational Waring
problem. This was clearly the starting point for Liouville and all subsequent de-
velopment (Tardy was his student in Paris). Tardy identities were then rediscovered
by Boutin in 1910.

2.2. Liouville type identities
The first non-trivial estimate for gpkq for any k ě 3 in Waring problem was
obtained by Liouville some time before 1859, who proved that gp4q ď 53. His
proof begins with the following identity. Let 2n “ x2 ` y2 ` z2 ` w2, then

6n2 “ x4 ` y4 ` z4 ` w4 `

´

px` y ` z ` wq{2
¯4

`

´

px` y ` z ´ wq{2
¯4

`

´

px` y ´ z ` wq{2
¯4

`

´

px` y ´ z ´ wq{2
¯4

`

´

px´ y ` z ` wq{2
¯4

`

´

px´ y ` z ´ wq{2
¯4

`

´

px´ y ´ z ` wq{2
¯4

`

´

px´ y ´ z ´ wq{2
¯4

.
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Later, Hurwitz and Venkov gave an interpretation of this identity in terms of
integral quaternions, whereas Lucas has rewritten it in the form

6
`

x21 ` x
2
2 ` x

2
3 ` x

2
4

˘2
“
ÿ

pxi ` xjq
4 `

ÿ

pxi ´ xjq
4,

where both sums in the right-hand-side are taken over all 1 ď i ă j ď 4. Clearly,
Lucas identity readily generalises:

6
`

x21 ` x
2
2 ` x

2
3 ` x

2
4 ` x

2
5

˘2
“
ÿ

pxi ` xjq
4 `

ÿ

pxi ´ xjq
4 ´ 2

ÿ

x4h,

6
`

x21 ` x
2
2 ` x

2
3 ` x

2
4 ` x

2
5 ` x

2
6

˘2
“
ÿ

pxi ` xjq
4 `

ÿ

pxi ´ xjq
4 ´ 4

ÿ

x4h,

and similarly for any m, where the sums are taken over 1 ď i ă j ď m, 1 ď h ď m.

2.3. Maillet and Wieferich identities
To give a first non-trivial estimate of gp3q Maiilet used the following identity:

6xpx2`y2`z2`w2q “ px`yq3`px´yq3`px`zq3`px´zq3`px`wq3`px´wq3.

He himself derived this identity differently, but retrospectively, it is simply the
derivative of the Liouville identity in Lucas form. Later, Linnik has used a more
general identity

4px31 ` y
3
1 ` x

3
2 ` y

3
2 ` x

3
3 ` y

3
3q “ px1 ` y1q

3 ` px2 ` y2q
3 ` px3 ` y4q

3`

3
`

px1 ` y1qpx1 ´ y1q
2 ` px2 ` y2qpx2 ´ y2q

2 ` px3 ` y3qpx3 ´ y3q
2
˘

.

in his proof of the seven cube theorem.
Later, Maillet obtained a similar estimate for fifth powers, and Wieferich [46]

explicitly produced the corresponding identity

2x
´

22 ¨ 3 ¨ 5p43x2 ` y2 ` z2 ` w2q2 ´ 22 ¨ 1579x4
¯

“

p8x` yq5 ` p8x´ yq5 ` p8x` zq5 ` p8x´ zq5 ` p8x` wq5 ` p8x´ wq5`

px` y ` z ` wq5 ` px` y ` z ´ wq5 ` px` y ´ z ` wq5 ` px´ y ` z ` wq5`

px` y ´ z ´ wq5 ` px´ y ` z ´ wq5 ` px´ y ´ z ` wq5 ` px´ y ´ z ´ wq5.

In the same paper Wieferich used also a similar identity for seventh powers, which
we do not reproduce here.

2.4. Fleck, Hurwitz and Schur identities
In 1907 Fleck came up with a similar identity for the 6-th powers,

60px2 ` y2 ` z2 ` w2q3 “ 36px6 ` y6 ` z6 ` w6q`

2
`

px` yq6 ` px´ yq6 ` . . .` pz ` wq6 ` pz ´ wq6
˘

`

px` y ` zq6 ` px´ y ` zq6 ` px` y ´ zq6 ` px´ y ´ zq6 ` . . .` py ´ z ´ wq6,

there are 12 summands in the second line (the choice of a pair, and a sign), and
16 summands in the third line (the choice of a triple and two independent choices
of signs), 32 summands in total.



6 Nikolai Vavilov

The same year Hurwitz has discovered the identity for 8-th powers,

5040px2 ` y2 ` z2 ` w2q4 “ 6
`

p2xq8 ` p2yq8 ` p2zq8 ` p2wq8
˘

`

60
`

px` yq8 ` px´ yq8 ` . . .` pz ` wq8 ` pz ´ wq8
˘

`

p2x`y`zq8`p2x´y`zq8`p2x`y´zq8`p2x´y´zq8` . . .`p´y´z`2wq10`

6
`

px` y ` z ` wq8 ` px` y ` z ´ wq8 ` . . .` px´ y ´ z ´ wq8
˘

.

and conjectured the existence of such similar identities expressing [some multiple
of] px2` y2` z2`w2qk as the sum of 2k-th powers of linear forms in x, y, z, w for
all k. The next such identity was indeed constructed the same year by Schur,

22680px2 ` y2 ` z2 ` w2q5 “ 9
`

p2xq10 ` p2yq10 ` p2zq10 ` p2wq10
˘

`

180
`

px` yq10 ` px´ yq10 ` . . .` pz ` wq10 ` pz ´ wq10
˘

`

p2x`y`zq10`p2x´y`zq10`p2x`y´zq10`p2x´y´zq10`. . .`p´y´z`2wq10`

9
`

px` y ` z ` wq10 ` px` y ` z ´ wq10 ` . . .` px´ y ´ z ´ wq10
˘

,

Observe that these identities have 12 summands in the second line (the choice of
a pair and a sign), 48 summands in the third line (the choice of one position out
of four for the coefficient 2, the choice of one of the three remaining positions for
the coefficient 0 and two independent choices of signs), and, finally, 8 summands
in the last line (three independent choices of signs for all positions other than the
first one), 72 summands in total.

2.5. Hilbert type identities
In 1909 Hilbert [21] solved a cheap version of the classical Waring problem =
mere finiteness of gpkq, without computing the actual value, or actually providing
any estimate of gpkq. As part of his solution, Hilbert verified the above Hurwitz
conjecture. In fact, he has proven that there exist identities expressing k-th power
of the sum of m squares as positive linear combinations of q “

`

2k`1
m

˘

expressions
which are p2kq-th powers of linear forms :

apx21 ` . . .` x
2
mq

k
“ a1pb11x1 ` . . .` b1mxmq

2k
` . . .`aqpbq1x1 ` . . .` bqmxmq

2k
,

where a, ai P N and bij P Z, for 1 ď i ď q, 1 ď j ď m.
Actually in his solution of the cheap Waring problem Hilbert only used the

identities for m “ 5, but his method is quite general and allows to prove the
existence of similar identities Hilbert identities for arbitrary m and k. His proof
is a pure existence proof and, in its original form, does not give any estimate on
the size of the coefficients.

A posteriori, many further such identities were explicitly written. Say, by
Kürschak [24] in 1911, for k “ 2 and m ” 1 pmod 3q:

60
`

x21 ` x
2
2 ` x

2
3 ` x

2
4 ` x

2
5 ` x

2
6 ` x

2
7

˘2
“
ÿ

pxi ˘ xj ˘ xhq
4,

672
`

x21 ` x
2
2 ` x

2
3 ` . . .` x

2
9 ` x

2
10

˘2
“
ÿ

pxi ˘ xj ˘ xh ˘ xlq
4,
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etc. By Kempner [23] in 1912, for m “ 4 and k “ 6, 7. Note also the next Fleck
identity

60
`

x21 ` x
2
2 ` x

2
3 ` x

2
4 ` x

2
5

˘3
“
ÿ

pxi ˘ xj ˘ xhq
6 ` 36

ÿ

x6l ,

and the like. Some estimates on the size of coefficients in Hilbert identities were
later produced by Rieger, Pollack and Nesterenko [34, 28, 26] in the process of
effectivisation of Hilbert’s proof, but they have not attempted to come up with
the actual coefficients.

The following problem seems to be extremely significant not just as a direct
mathematical and computational challenge, but also as a methodological, historical
and philosophical issue.

Problem 1. Can one solve the original Waring problem with Hilbert’s approach?

If mathematics is what we think it is, this should be possible. Personally, I
would feel very disappointed should Wieferich [47] proof of the equality gp3q “ 9
and the estimate gp4q ď 30 Dress [16] remain the best and only partial solutions
obtained along these lines.

However, it will be by no means easy.

Problem 2. Implement a systematic computer search of Hilbert type and similar
identities with small coefficients.

3. Polynomial identities in the easier and rational Waring problems
Identities that allow to give estimates of vpkq and ρpkq are shorter and [in a sense]
easier, but much less understood, than the identities used to estimate gpkq.

3.1. Richmond identity, Norrie identity, and beyond
Actually, Tardy identities and all such further uniform series of identities give
vastly exaggerated upper bounds for ρpkq in the rational Waring problem. So
far, getting the best possible estimate required separate clever identities in each
individual case.

Below we reproduce two such classical identities, stemming from 1920-ies,
Richmond identity for cubes

x “

ˆ

x3 ´ 36

32x2 ` 34x` 36

˙3

`

ˆ

´x3 ` 35x` 36

32x2 ` 34x` 36

˙3

`

ˆ

33x2 ` 35x

32x2 ` 34x` 36

˙3

and Norrie identity for biquadrates

x “

ˆ

a2pa8 ´ b8 ` 2xq

2pa8 ´ b8q

˙4

´

ˆ

a2pa8 ´ b8 ´ 2xq

2pa8 ´ b8q

˙4

`

ˆ

2a4x´ b4pa8 ´ b8q

2abpa8 ´ b8q

˙4

´

ˆ

2a4x` b4pa8 ´ b8q

2abpa8 ´ b8q

˙4

.



8 Nikolai Vavilov

There were similar identities for k “ 5, 6, 7, 8, 9, but they are constructed ad hoc,
and there is no clear pattern as to their shape. Compare, in particular, Choudhry
or Reynia [5, 6, 7, 32, 33].

3.2. Rao and Vaserstein identities, and beyond
However, the works by Habsieger [18, 19] give some hope. Imitating the classical
Rao identity for sixth powers,

12abcdpc4 ´ d4qpa24 ´ b24qx “

pa5c` bdxq6 ` pa5d´ bcxq6 ` pb5c´ adxq6 ` pb5d` acxq6

´ pa5c´ bdxq6 ´ pa5d` bcxq6 ´ pb5c` adxq6 ´ pb5d´ acxq6.

Vaserstein [37] discovered a similar identity for eighth powers. Habsieger [19] has
rewritten Vaserstein identity in the following more symmetric form:

16puvwq6pu48v64 ` v48w64 ` w48u64 ´ u48w64 ´ v48u64 ´ w48v64qy “

pu7v10 ` u5w6yq8 ` pu7w10 ´ u5v6yq8 ` pv7w10 ` v5u6yq8

` pu7u10 ´ v5w6yq8 ` pw7u10 ` w5v6yq8 ` pw7v10 ´ w5u6yq8

´ pu7v10 ´ u5w6yq8 ´ pu7w10 ` u5v6yq8 ´ pv7w10 ´ v5u6yq8

´ pu7u10 ` v5w6yq8 ´ pw7u10 ´ w5v6yq8 ´ pw7v10 ` w5u6yq8

At this point the link to the representation theory of finite groups becomes obvious,
and Habsieger [18, 19] is able to construct many similar symmetric identities.

Problem 3. Is it possible to construct series of rational identities of all degrees that
would give correct bound in the easier Waring problem and in the rational Waring
problem?

3.3. Becker type identities
In 1979 Eberhard Becker constructed analogues of Hilbert identities

pxl1 ` . . .` x
l
mq

k
“ f1px1, . . . , xmq

lk
` . . .` fqpx1, . . . , xmq

lk

for arbitrary k, l,m. However, for l ě 4 the fj ’s here have to be rational functions
rather than polynomials. I they had been polynomials, they are bound to be linear
forms, which immediately leads to a contradiction.

I plan to demonstrate some such explicit identities in my talk.

3.4. Frolov type identities
There are another type of identities that were used in the easier Waring problem,
which come from the solution of Prouhet—Tarry—Escott problem, and which
oftentimes lead to better bounds for vpkq, than the bounds obtained via the above
symmetric identities.
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Recall that, given natural numbers s and k, the Prouhet—Tarry—Escott
problem (or simply PTE for short) asks with s ą k, whether there are distinct
multisets of integers, say X “ rx1, . . . , xss and Y “ ry1, . . . , yss, such that

xi1 ` . . .` x
i
s “ yi1 ` . . .` y

i
s, j “ 1, . . . , k.

Hosts of special/partial solutions to this problem were constructed in the late XIX
century and in the early XX century.

The relevance of PTE resides in the fact that every such solution leads to the
corresponding Frolov identity

pt` x1q
k ` . . .` pt` xsq

k “ pt` y1q
k ` . . .` pt` ysq

k.

These and similar identities were extensively used by Demianenko, Revoy
[30, 31] and others to obtain sharper bounds in the easier Waring problem.

4. Vinogradov’s method
In the early 1920-ies Hardy and Littlewood considered the generating function

fk,N pzq “ 1` z1
k

` z2
k

` z3
k

` . . .

Then the coefficient rk,spnq of zn in the series

fk,N pzq
s “ 1`

8
ÿ

n“1

rk,spnqz
n

equals the number of representations of n as the sum of k-th powers of s non-
negative integers. In particular, the original Waring conjecture is equivalent to the
claim that r3,9pnq ‰ 0, that r4,19pnq ‰ 0, that r5,37pnq ‰ 0, etc., for all natural n.
Side remark. Actually, Hardy and Littlewood considered a slightly different gen-
erating function, namely

fk,N pzq “ 1` 2z1
k

` 2z2
k

` 2z3
k

` . . .

But this is pure fetishism, explained by the fact that for k “ 2 such a choice of the
generating function leads to the Jacobi theta-function, and explicit computation
of r2,spnq. We do not know, what could be a correct choice of the coefficients in
the generating function that would produce a similar theory for higher degrees.
If we do not attempt to calculate explicit values, but are interested only in the
asymptotic behaviour of rk,spnq, the specific choice of the generating function does
not play any role anyway.

As a function complex variable z P C this series converges inside the unit
disk, but the circle |z| “ 1 consists entirely of singular points. The idea of the
circle method is to use the Cauchy formula

rk,spnq “
1

2πi

ż

C

fkpzq
s

zn`1
dz,



10 Nikolai Vavilov

where C is the circle of radius 0 ă ρ ă 1, and then to estimate this integral when
ρ ÝÑ 1, using the character of singularities on the unit circle.

In the late 1920-ies Vinogradov proposed a radical simplification onf this
method. Namely, he noticed that if we are interested in the number of represen-
tations of a specific n as the sum of s non-negative k-th powers, then we do not
have to look at the whole generating function, as Hardy and Littlewood did. In
fact, the whole infinite tail of the generating function does not play any role, we
can limit ourselves with the polynomial

fk,N pzq “ 1` z1
k

` z2
k

` . . .` zN
k

.

Then the coefficient rNk,spnq of z
n in the polynomial

fk,N pzq
s “ 1`

sN
ÿ

n“1

rNk,spnqz
n

equals the number of representations of n as the sum of k-th powers of ď s integers
1 ď m ď N .

Clearly, the integers m such that mk ą n cannot occur in such a represen-
tation. Thus, for any N ě k

?
n one has rNk,spnq “ rk,spnq. Thus, in Vinogradov’s

method the passage to limits still occurs, but now we can from the onset assume
that ρ “ 1 and calculate the limit as N ÝÑ 8, which is a dramatic technical
simplification.

It was precisely this idea that allowed to improve bounds on Gpkq from ex-
ponential in k to polynomial in k (and, eventually, to almost linear in k). It was
precisely the huge gap between the expected exponential bound for gpkq and the
polynomial bound for Gpkq that allowed to apply Dickson’s ascent.

Problem 4. Can one solve the original Waring problem as a problem of polynomial
computer algebra by directly verifying that for any k and n and any N ě k

?
n there

exists an s such that rNk,spnq ‰ 0?

5. Algorithmic Waring problem for cubes
In 1909 Landau proved by the methods of elementary analytic number theory
that Gp3q ď 8, in other words, almost all positive integers are sums of ď 8 positive
cubes. Indeed, in 1939 Dickson established that the only positive integers that
require 9 cubes are 23 and 239. In 1943 Linnik proved his famous seven cubes
theorem asserting that Gp3q ď 7. A few years ago this result was made explicit.

5.1. Experimental evidence for cubes.
Based on extensive computer calculations, asymptotics in the Hardy—Littlewood
theory, and probabilistic trials Romani stated the following conjectures [35].

‚ Problem of seven cubes. There are exactly 15 natural numbers that can
be expressed as sums of eight , but not of seven non-negative cubes, the largest of
them being 454.
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‚ Problem of six cubes. There are exactly 121 natural numbers that can be
expressed as sums of seven, but not of six non-negative cubes, the largest of them
being 8042.

‚ Problem of five cubes. There are exactly 3922 natural numbers that can be
expressed as sums of six , but not of five non-negative cubes, the largest of them
being 1290740.

As a further evidence for that in 1999 Bertault, Ramaré and Zimmerman [2]
established that all integers between 1290740 and 3.375 ¨ 1012 can be expressed as
sums of five cubes, which by Dickson’s ascent implies that all 455 and 2.5 ¨ 1026

can be expressed as sums of seven cubes. The same year Deshouillers, Hennecart
and Landreau [10] extended these calculations to 1016.

The largest natural number known today that requires exactly five cubes
is 7373170279850. In 1999 Deshouillers, Hennecart and Landreau [10] stated the
ollowing conjecture (l. c., Conjectures 1 and 2):

‚ Problem of four cubes. There are exactly 113936676 natural numbers that
can be expressed as sums of five, but not of four non-negative cubes, the largest
of them being 7373170279850.

5.2. Problem of seven cubes.
In 2005 Ramaré published yet another effectivisation of Linnik’s theorem: all in-
tegers

n ě e205000 « 2.3377074809 ¨ 1089030.

can be expressed as sums of seven cubes. The improvement was based on the
Bombieri identity

2pu6v6 ` u6w6 ` v6w6qa3 ` 6au2v2w2px2 ` y2 ` z2q “

pu2v2a` wxq3 ` pu2v2a´ wxq3 ` pu2w2a` vyq3`

pu2w2a´ vyq3 ` pv2w2a` uzq3 ` pv2w2a´ uzq3,

In 2007 Ramaré [29] further dramatically improved the bound to

n ě e524 « 3.71799 ¨ 10227,

after which it became clear that a complete solution was close.
In 2008–2009 Boklan and Elkies [3] proved the seven cube conjecture for

numbers divisible by 4, and in 2010 Elkies [17] proved it for all even integers. These
results essentially used both the Ramare upper bound, and the Deshouillers—
Hennecart—Landreau lower bound. Finally, in 2015 Siksek announced a complete
solution of the problem, which was published in 2016 in [36]. The only numbers
which cannot be presented in such a form are

15, 22, 23, 50, 114, 167, 175, 186, 212, 231, 238, 239, 303, 364, 420, 428, 454.

Among other things, this work relies on dozens of thousands hours of computer
time.

However, the problems of six, five and four cubes are still wi[l]d[e]ly open!
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6. Algorithmic Waring problem for biquadrates
Dickson’s estimate gp4q ď 35 has not been improved for almost 40 years. How-
ever, in 1970–1971 Dress had a happy idea to return to the elementary approach
with new techniques. In particular, using new polynomial identities that occurred
in the solution of the easier Waring problem, and some computer calculations,
he improved the bound to gp4q ď 30 by elementary methods. After that things
accelerated, see [40] for a detailed description.

6.1. Nineteen biquadrates.
In 1985 Deshouillers announces a complete solution of the original Waring problem
in the last remaining case of biquadrates. Observe the ě 125 year gap between the
Liouville breakthrough (who proved not mere finiteness of gp4q, but established
a realistic estimate!), and the final solution of the Waring problem gp4q “ 19, as
stated by Waring himself.

In 1985 Balasubramanian, Deshouillers and Dress [1] announce the general
plan of such a solution. In [1] it is claimed that all integers n ě 10367 are sums of
19 biquadrates, the details were then published in [8]. Moreover in [1] the authors
describe a calculation that shows that all natural numbers n ď 10378 are also sums
of 19 biquadrates. Later in [9] this computation is even extended to n ď 10448.
Thus, the upper and lower domains overlap by 80 orders of magnitude!

6.2. Sixteen biquadrates.
In 1939 Davenport has proven that Gp4q “ 16. Now we know that 13792 is the
largest integer that requires more than 16 biquadrates, all n ě 13793 are in fact
sums of 16 biquadrates. This was shown in 1999–2005 by Deshouillers, Hennecart,
Kawada, Landreau and Wooley.

Namely, in [12] it is proven that all integers n ě 10216 not divisible by 16, are
sums of 16 biquadrates. The proof of this result uses new polynomial identities.
Also, the authors had to rework the estimates in and around the circle method
from scratch and with explicit constants. On the other hand, in 2000 Deshouillers,
Hennecart and Landreau [11] established that all 13793 ď n ď 10245. are sums of 16
biquadrates. Thus, again the upper and lower domains overlap and for biquadrates
we can give a complete answer to Waring problem. There are exactly 96 natural
numbers that are not sums of 16 biquadrates, here they are:

47, 62, 63, 77, 78, 79, 127, 142, 143, 157, 158, 159, 207, 222, 223, 237,

238, 239, 287, 302, 303, 317, 318, 319, 367, 382, 383, 397, 398, 399, 447,

462, 463, 477, 478, 479, 527, 542, 543, 557, 558, 559, 607, 622, 623, 687,

702, 703, 752, 767, 782, 783, 847, 862, 863, 927, 942, 943, 992, 1007, 1008,

1022, 1023, 1087, 1102, 1103, 1167, 1182, 1183, 1232, 1247, 1248, 1327,

1407, 1487, 1567, 1647, 1727, 1807, 2032, 2272, 2544, 3552, 3568, 3727,

3792, 3808, 4592, 4832, 6128, 6352, 6368, 7152, 8672, 10992, 13792



Waring Problem 13

for each one of them it is very easy to determine, whether it requires 17, 18 or 19
biquadrates.

7. The big computational challenge
As we’ve seen above, k “ 4 is the only case (apart from that of k “ 2, known to
Lagrange back in 1770), when Waring problem has been completely solved in the
XX century sense. Even in the case k “ 3 there is a huge uncertainty 4 ď Gp3q ď 7
as to the actual value of Gp3q — not to say the explicit list of exceptions!

To give some idea of the computational immensity of the problem, below
we reproduce the table of values of gpkq, 5 ď k ď 15, as confronted with the
conjectural values of Gpkq — with the known upper estimates of Gpkq, coming
mostly from the work of Vaughan and Wooley (see, for instance, [38]) somewhere
in between.

k 5 6 7 8 9 10 11 12 13 14 15
gpkq 37 73 143 279 548 1079 2132 4223 8384 16673 33203

Gpkq ď 17 24 33 42 50 59 67 76 84 92 100
Gpkq “ 6 9 8 32 13 12 12 16 14 15 16

Table 1. Conjectured values of Gpkq for 5 ď k ď 15

It would be a rather ambitious project simply to repeat with the use of
computers what Dickson has accomplished by hand back in the 1930-ies. But of
course, today we should set much higher goals, namely, to try to document the
explicit lists of exceptions that require more than Gpkq non-negative k-th powers.

Can we do this? Say for the cases 5 ď k ď 20, with which Dickson started?
For instance, gp5q “ 37, while Gp5q “ 6, as everybody believes, so that we have to
verify one by one all values s “ 37, 36, . . . , 7 and towards the end of this list the
possible exceptions are bound to occur well into 10hundreds. So here is the warm
up problem, which would show, where we are, as far as the computational power.

Problem 5. Compute for each s “ 37, . . . , 7 the explicit list of natural n which can
be expressed as sums of s non-negative fifth powers, and cannot be expressed as
shorter such sums.

If we can do this, about what I have some doubts, we could proceed to higher
powers, and see where we have to stop. It seems to me, that the XX century form
of Waring problem is well beyond our current grasp — or what’s the metaphor.

Conclusion
Poincaré used to say “Il n’y a pas de problèmes résolus, il n’y a que des problèmes
plus ou moins résolus”. Waring problem is certainly one of the kind. Despite the
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egregious efforts of many generations of mathematicians, even the XVIII century
Waring problem is only 99.9999% solved, and in the meantime we were able to
fully solve the XIX–XX century forms of the problem (with an explicit list of
exceptions) for a single new case, Gp4q “ 16.

Here are my principles — well, problems — if you don’t like them, I have
other[s]. One can ask the same questions for other fields and rings, in particular,
for number rings other than Z, for polynomial rings, fields of rational fractions,
etc. (compare the recent papers by Im Bo-Hae, Larsen, and Nguyen Dong Quan
Ngoc [22, 25] for a whole new look at Waring type problems, in the context of
algebraic groups). There are simultaneous sums of powers, Euler problem, taxicab
numbers, PTE and variants, etc. Not to say, the mixed Waring problems, the re-
stricted Waring problems, the Waring—Goldbach problems of all sorts, the Kamke
type problems, etc. And, of course, we are still not anywhere close to doing for
cubes what Jacobi has done for squares, the explicit formulas for the number of
representations.
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