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1 Introduction

The development of computer technology and information technology has stimulated
the emergence of new mathematical models and numerical methods for solving
complex problems over the past 20-30 years. The ability to solve complex problems in
an increasingly complete and close to natural conditions formulation has led to the fact
that the mathematical models have reached such a high degree of adequacy that they
can often be used as a substitute for a physical experiment if the physics of the
investigated phenomenon is fully understood. In the vast majority of cases of modeling
and designing complex technical objects (ship, underwater vehicle, aircraft, automo-
bile, turbine, etc.) this situation can be considered fair. Carrying out such an experiment
using exclusively computer technology based on mathematical modeling can be con-
sidered as a virtual experiment, the cost of which is much lower than a physical
experiment, and the range of possible conditions for its implementation is incompa-
rably wider, since it allows the study of extreme and potentially dangerous situations in
natural conditions. Thus, the concept of a “virtual testbed” emerged as a problem-
oriented environment [1].

The emergence of this concept, in the first place, was associated with the need to
consider increasingly complex models to study the behavior of dynamic objects that
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require the use of high-performance computing. Currently, the use of such types of
computing tools requires the researcher to have more knowledge of the features of
modern computing technologies. In many ways, this fact becomes an obstacle to their
implementation, and as a result, a decrease in the effectiveness of research in various
subject areas. The strong gap between the high level of “hardware” and the low level of
its application has led to the emergence of a new concept for the use of information
technology [2, 3].

When considering the elements of a virtual testbed, the study of complex technical
objects requires the use of many models that describe various phenomena. Some of
them are independent, and some of them depend on each other. Often the very nature of
these applications precludes the possibility of their joint launch in a homogeneous
computing environment. In real time, the simulation of all processes of complex objects
that affect the final result of complex objects behavior cannot be organized on a single
computing node just because it requires the adequate use of various computer
resources, for example, high-performance computing, data processing, visualization,
etc. Thus, in certain situations, it is necessary to interact parallel computing applica-
tions of different complexity and nature, databases, information assimilation, visual-
ization of results, etc. So, the testbed is a complex of multi-level applications, which
requires a distributed computing environment [4, 5]. Therefore, in the general case, the
use of a heterogeneous computing environment is not the result of scientific experi-
ments, but the only possible tool for implementing of a problem-oriented environment.

This article summarizes the research conducted by the authors over the past 15
years towards the development of the concept of virtual testbed. The references contain
the main key works published in this direction.

2 Computational Aspects of Virtual Testbed

Under the accurate mathematical modeling (when nature of the phenomenon is well-
known) of the functioning of an object and the possibility of its detailed description,
modern computational tools make it possible to almost completely reproduce its
behavior. Such an approach allows, in the overwhelming number of situations, to
replace an expensive model experiment with a computational simulation. At the same
time, a computational experiment is free from such disadvantages as scale effects,
limited possibilities to reproduce external excitations, significant difficulties or the
impossibility to study complex critical situations in a model experiment, etc. However,
in order to computational experiment fully reproduces the real behavior of an object, it
is necessary to have good models of the object dynamics and the external environment.
These models include the fundamental laws of physics, such as the laws of conser-
vation and the closing relations. For example, for technical objects like ships, aircrafts,
cars, etc. we can consider just only three laws: conservation of mass, momentum and
energy [6].
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where q is density, V
!

is velocity,~f is force of potential nature per unit volume, Pij are
components of stress tensor, Et is total energy of unit volume, Q is heat dissipation of
external sources, ~r �~q is heat losses due to thermal conductivity through the control
surface per unit time. The third and fourth terms in the last equation correspond to the
work of mass and surface forces.

In fact, there is no need to implement these laws in a computational experiment in
the form of differential equations or other usual approaches. It is possible to use direct
computer simulation with the corresponding fundamental laws applied to all the ele-
mentary objects in the space under consideration. This approach requires high-
performance computer resources and mapping of the computational algorithms onto the
hardware architecture.

Such attempts have been made for a long time, since it became clear that computer
technology can really ensure the application of the Lagrange approach in describing the
behavior of a continuous medium [7]. The development of this idea over the past 50
years has formed a fairly wide area of CFD, both based on various approaches to
solving the Navier-Stokes equation (based on the second equation in (1)), and various
particle methods that reproduce the Lagrange approach [7–10]. Currently, one of the
most popular methods in this direction is SPH (smooth particle hydrodynamics) [9, 10].
However, all these approaches, ultimately, are based on the finite-difference repre-
sentation of conservation laws (1), which include derivatives of at least second order.
Due to the peculiarities of the conservation equations, their finite-difference analogues
are solved using implicit numerical schemes. Such an approach reduces the solution of
the problem to systems of linear equations of high dimension. It makes it possible to
ensure the stability of the numerical implementation, but it is difficult to parallelize and
does not provide step-by-step monitoring of each calculation cell.

At the same time, the development of continuum-particle methods based on the
“large particle method” [8] leads to computational models of tensor mathematics with
independent control of the state of each calculated cell-fluid particle, computational
algorithms and functional logic of the synthesis of physical phenomena and processes
for which is provided by parallel-running arithmetic-logic cores, which exactly cor-
responds to the development trends of computer technology at the request of graphic
visualization of three-dimensional space phenomena and dynamic processes with them.
It is the use of tensor algebra for direct modeling of physical phenomena and processes
as part of generalized tensor mathematics that allows us to efficiently synthesize the
hydrodynamic and geometric aspects of the computing process as a whole. This has
long been understood in field theory. Such a program was outlined and brilliantly
implemented for quantum gravity.
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This approach makes it possible to implement direct numerical modeling of
unsteady processes using explicit schemes [11–13]. It has an excellent historical ana-
logue in the form of the calculus of fluxes of Isaac Newton.

Geometrical construction of spatial problem includes scalar, vector and tensor
numerical objects. For description of large mobile elementary particles in a three-
dimensional space we introduce two coordinate systems: an absolute one and a mobile
local (associated with the particle) one (Fig. 1).

In this case, the continuum-corpuscular approach is constructed according to
numerical first-order schemes with sequential difference integration of the laws of
motion at conjugate stages with respect to the scalar argument - time. Separation of the
stages of computations according to the total physical processes allows for end-to-end
control and hybrid rearrangement of mathematical dependencies according to current
estimates of the state of the simulated continuous medium, taking into account the
intensity of the physical interaction of adjacent shell-cells as virtual numerical objects.

Fig. 1. Geometry of global space (X (with check)) and local basis (r (with hat)); i, j, k are
unitary vectors in connected reference systems [12]
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Fig. 2. Separation of calculation stages by physical processes.
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Such a separation of calculations by physical stages allows us to divide a com-
putational experiment into three successive stages [11–13]:

Stage 1 – Kinematic parameters are calculated for the centers of large fluid parti-
cles. For this purpose, the current source data at fixed nodes of Eulerian coordinates are
used.

Stage 2 – Lagrange or large deformable fluid particles are involved in free motion.
They redistribute the internal properties of the original Euler cells to adjacent space.

Stage 3 – Laws of conservation of mass and energy are consistent. This is achieved
by deformation of shifted fluid particles. The next step is re-interpolation of charac-
teristics of current in initial nodes of the fixed Euler computational mesh.

They are based on computational schemes of mixed Lagrange and Eulerian
approaches. Idea of mixing of these two approaches is not new [14]. Approach pro-
posed for the virtual testbed realization has advantages in combination with tensor
mathematics and effective realization in code.

The formal construction of physical objects and operations in tensor mathematics
leads to rigorous definitions for a kind of “model of the world” of computational
hydromechanics (Fig. 2):

1) the continuum-corpuscular computational model of the “large particles” method
in tensor notation reduces to a double linear difference interpolation of physical
fields (instead of integrating second-order equations of motion).
2) the movement and interaction of large fluid particles are constructed in the
operations of the multiplication, that is more consistent with the physics of spatial
processes (there are no restrictions on the smallness of differential approximations).
3) the use of explicit numerical schemes and discrete numerical fields increase the
efficiency of direct computational experiments, and do not exclude the possibility of
checking the correctness, and, if necessary, using hybrid meshes to achieve ade-
quate engineering results of direct numerical simulation.

3 Virtual Testbed as a Case for Big Data

As we considered in [15] a virtual testbed solves complex problems of modeling and
working with big amount of data. The main aspects of a virtual testbed are the
following:

• Computing machinery – hardware;
• Uniform information environment – GRID, middleware;
• Program repository – libraries;
• System integration – principles of testbed operation;
• Concept of real time systems.

Combining of all these components in one place makes it possible to organize such
system in which all the accumulated data are linked to each other and used when
necessary. For example, drawings of technical object created during design process are
used in the future to implement the simulators. Training results of
operators/navigators/pilots in simulator are used for modification of the object. The
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data obtained as a result of direct simulation are used to form knowledge base of on-
board intelligent system, etc. We see that this is a problem of Big Data.

However, the problem is the following. As we published earlier [16, 17], Big Data
has different nature. In accordance with CAP theorem we divided it in 6 different types
[16] (one of them is not implemented). In this classification [16, 17], our system
belongs to the type characterized not so much by volume, as by heterogeneity and
complex hierarchy. Here we are dealing with both data processing, and complex
computations. In the first case, we should consider the data as a whole, in the second
case, data are exchanged between different branches. At the same time, in the process
of modeling, for example, it must be done at least twice – in preprocessing and
postprocessing. As a result, we get a huge amount of heterogeneous data that change
the original state of knowledge. With this data and knowledge it is necessary to work
differently under different conditions.

The problem is that no software stack describes all classes. Analysis showed that
existing Hadoop systems do not cover even 40% of all cases. Our class belongs to this
exclusion and selecting tools for working with large amounts of data in this case is a
separate task for the development team. Not infrequently, the architecture had to be
drastically changed because of increased data loads and control of stored data was lost
and the collection of statistics became more and more difficult. There is a need for a
solution that allows not only to store all sorts of information with the ability to
download from different sources but also has a set of tools to analyze the collected
information. A data lake is a concept, an architectural approach to centralized storage
that allows you to store all structured and unstructured data with the possibility of
unlimited scaling. A data lake can store structured data from relational databases (rows
and columns), semi-structured data (CSV, journals, XML, JSON), unstructured data
(emails, documents, PDF files) and binary data (images, audio, video). Quite popular is
the approach in which incoming data is converted into metadata. This allows you to
store data in its original state, without special architecture or the need to know which
questions you may need to answer in the future, without the need to structure the data
and have various types of analytics - from dashboards and visualizations to big data
processing, real-time analytics and machine learning to make the right decisions.

As a result of the analysis of existing solutions, the following functional modules
were identified that are the most necessary and need to be developed in the universal
solution:

• Storage for all data with the ability to create separate storage for hot/cold data, for
ever-changing data or to handle fast streaming

• Security module
• Databases for structured data
• The module of tools for working with data (analysis, data engines, dashboards, etc.)
• Machine learning module
• Services for the development of add-ons, modifications and deployment of storage.

6 A. Bogdanov et al.
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4 Virtual Private Supercomputer as a Tool for Virtual
Testbed Organization

Handling massive amounts of data is commonplace for most modern scientific, engi-
neering, and business applications. The Virtual testbed is a good example of a complex
system encompassing a number of applications that represent its functional modules
listed in the previous section. As these applications need to target a number of big data
related challenges, while delivering expected results in a timely manner, they fre-
quently pose large computing power requirements. In this context, High Performance
Computing (HPC) becomes a key factor for speeding up data processing, while also
enabling faster time to market, lower capital expenditures, and higher valued innova-
tion. To this end, HPC solutions have traditionally taken advantage of cluster and
datacenter infrastructures for running applications having those computing power
requirements. In addition, practitioners have also been leveraging cloud computing
resources for meeting HPC demands when available resources do not suffice. In fact,
the pay-per-use cost model and resource elasticity makes cloud computing an inter-
esting environment for HPC, which can be provided with instant availability and
flexible scaling of resources, among other benefits.

In spite of the benefits of using cloud computing for HPC, a current approach has
been the allocation of physical infrastructures in dedicated mode for fast HPC provi-
sioning. Although convenient, it frequently leads to underutilized resources, e.g., an
application may not fully utilize provided CPU and/or network resources. It also
prevents dealing adequately with those applications whose resource demands grow
beyond available capacity. Traditional virtualization technologies can help solving the
problem but the overhead of both a) bootstrapping a virtual infrastructure for each
application and b) sharing physical resources among several virtual instances might be
significant. Boosting available physical resources by using cloud computing, in turn,
has been hampered because of limited support for shifting HPC applications to the
cloud. These issues hinder the wide adoption of cloud computing by the HPC com-
munity, thus becoming paramount to understand how one can perform smooth and
effective migration of HPC applications to the cloud.

Traditional cloud-based solutions are oriented towards long running stateful ser-
vices that are flexible in respect to consumed CPU and network load at a single
timeframe. In turn, HPC applications are in essence batch processes that have clear
input and output data requirements. Also, in most cases they are fine-tuned for stable
computational environment settings and size. Thus, they significantly differ from
cloud-based services in terms of possible management, i.e., their requirements can be
quantified. The solution that brings together the flexibility of virtualized cloud-based
computing environments and performance of traditional computing clusters is needed
to create an application-centric distributed system that provides each application with a
customized virtual environment with as much resources as the application needs or is
allowed to use.

The Virtual Private Supercomputer [4, 18] is a universal environment for moni-
toring and managing a high-performance computing cluster, in the structure of which
virtual elements are included. Virtual containers are application containers with various
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file systems, configuration of modules and software libraries. The tools for combining
these elements located on different nodes of the cluster, as well as non-virtualized
network equipment and other auxiliary devices and systems into a single system for
general-purpose calculations, are the core part of the virtual supercomputer. The virtual
supercomputer isolates the user from a number of technical limitations of computing
devices using virtualization technologies, allowing users to vary the characteristics of
computing elements and balance the workload. To create a personal computing envi-
ronment with the specified characteristics, lightweight virtualization technologies are
used primarily, which leads to minimal overhead, but allows users to create isolated
virtual computing systems. The developed tools for managing a virtual supercomputer
automate many processes, provide monitoring of node load and task execution, opti-
mally select the right amount of resources based on application requirements and
change it if necessary. The virtual supercomputer is designed to solve problems within
the time period established by an individual user agreement, which is achieved by
selecting and setting up an optimal set of middleware components for the task being
solved. In general, the concept of a virtual supercomputer allows users to consolidate
heterogeneous resources into a single complex that adapts to the solution of the
problem from a computational point of view, taking into account individual require-
ments determined by the user agreement.

One of the main parts of the virtual supercomputer is a task scheduler for batch
processing of data and a software interface to it, designed to develop distributed
applications and, in particular, programs for parallel computing and parallel data
processing. The scheduler ensures the smooth operation of such programs in the
conditions of unpredictable technical (hardware) failures of the cluster computing
nodes, by automatically re-executing parts of the task that were executed on failed
nodes, on the remaining nodes. The performance of programs written using the pro-
vided software interface is not inferior to traditional technologies of parallel computing
and running tasks on a cluster (MPI + PBS/SLURM), provided that the cluster nodes
do not fail during calculations. Otherwise, the performance significantly exceeds
analogues, since not the whole task is restarted, but only a small part of it.

To ensure fault tolerance, each task is divided into control objects - entities that
describe the program execution logic. These objects are combined in a hierarchy, which
is used to uniquely determine the restart point of the program without interrogating the
cluster nodes involved in the calculations. All nodes of the cluster are also combined in
a hierarchy used to evenly distribute the load. The calculations are carried out by
creating a large number of control objects (one for each logical part of the task) and
mapping their hierarchy to the hierarchy of cluster nodes. This mapping has an arbi-
trary form with the only condition that control objects directly connected to each other
are either on the same cluster node or directly connected to each other.

Another major component of the virtual supercomputer is the system for automatic
configuration of a distributed computing cluster based on virtualized resources in
accordance with application requirements and implementation of a user and software
interface to it [19]. One of the key parameters for launching tasks, for determining the
value of which the software launch system is responsible, is the amount of required
computing resources or cluster configuration. It includes the number of nodes, threads
in each node, memory and communication speed between nodes. The user who starts
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the task and even the programmer who developed it cannot always determine the
accuracy, which cluster configuration or the task will run faster or which configuration
uses unreasonably many resources. Within the framework of the virtual supercomputer,
a method for automated determination of the optimal cluster configuration, which is
used in the developed of a system to launch computing tasks on virtualized resources,
was designed and implemented [20, 21]. For users, a web interface is provided in
which they can select an application, select computing resources and send a task to be
performed. At the same time, all the details of creating and configuring computing
resources and performing tasks can be hidden from the user. After completing the task,
the software system will upload the output of the task to the user’s cloud storage.
Depending on the parameters of the task, the software system offers the user the
optimal configuration of computing resources (the number of nodes, threads and
memory) at which the task execution time will be minimal, or offers to explicitly enter
the desired configuration. An API has also been developed for launching tasks,
managing and monitoring cluster status based on open standard data exchange
protocols.

5 Applications of Virtual Testbed Concept

Let us briefly review applications of developed concept in different directions.

5.1 Marine Virtual Testbed

This application served as a starting point for the development of a general concept for
a virtual testbed. An attempt to create a modeling environment for marine objects in the
mid-90s based on mathematical models of the behavior of marine objects, the external
environment and their interaction, which were widespread at that time, was unsuc-
cessful. The reason for the failure was both the features of the models and the
inconsistency of approaches of specialists from various scientific fields: physics,
hydrometeorology, and engineering research. The mathematical models for describing
the behavior of marine objects were initially of a qualitative nature. This determined the
approach in describing external perturbations as a harmonic wave of a given amplitude
and frequency. Any complication of mathematical models, consisting in a more
accurate description of the disturbing forces, was based on these assumptions [22]. As a
result, the complexity of the mathematical description grew, it was no longer possible
to obtain solutions of new mathematical models in any form, and it was impossible to
use these complex models for direct simulation [23]. The latter is due, first of all, to the
fact that the real windwave surface, which is the source of the ship’s motion at sea,
could not be inserted into any of the serious models developed at that time. They were
all focused on the sine wave. On the other hand, there were also no models that could
adequately reproduce the spatio-temporal fields of wind waves, due to their irregularity.

To create an integrated modeling environment for marine objects, it was necessary:

1. To develop models of the objects themselves and the external environment that
allows direct simulation;
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2. To develop approaches to link these heterogeneous models with each other so
that the results of one model can serve as the initial data of another model;
3. To provide high performance collaboration of heterogeneous models in a dis-
tributed computing environment.

As these tasks were solved, the general concept of the virtual testbed was formed.

Initially, a model of wind-wave perturbations was developed [24, 25]etc. In its final
form, from the point of view of application to a virtual testbed, this model is given in
[26, 27]. A number of works were carried out to increase the computational efficiency
of this model [5, 28, 29] etc. This made it possible to develop models of direct
simulation of the behavior and interaction of marine objects in the sea. In its final form,
the marine virtual testbed is a highly efficient environment for modeling, studying
critical situations, planning operational scenarios [30], data assimilation and storage
[15] onto a database and a visualization system for results [31]. This virtual testbed
became the prototype of a fully functional simulator with elements of a decision
support system that provides the following functions:

• Collection and analysis of information about the current state of the facility and the
environment, remote monitoring.

• Evaluation and coordination of joint actions of the facility, based on current con-
ditions, with the goal of optimal solution of the general problem.

Workstations

Operation chiefs

Workstations
1 m 1 m

Operation chiefs

Workstation
of virtual
testbed

Decision
support
system

Modelling
system

Object
(situation)

Fig. 3. Functional diagram of complex environment organization
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• Centralized decision support system (DSS) of operators of control systems of
dynamic objects in non-standard situations, organization of information support for
the interaction of decision makers in the management of ongoing operations.

• Computer modeling of possible scenarios for the development of the situation in
order to choose the optimal strategy for managing the facilities of the complex.

• Centralized management of fully automated technical means.
• Document management and information accumulation in dynamic databases.

Schematically, these functions are shown in Fig. 3.

5.2 Knowledge Base Intelligence System Testing

The creation of a fully-functional marine virtual testbed makes it possible to conduct
experiments in conditions that are impossible or extremely dangerous in full-scale or
model experiments: extreme operating conditions and external influences, catastrophic
development of emergency situations (capsizing, avalanche flooding of compartments
with loss of buoyancy, etc.), tracking scenarios of joint actions of various technical
objects (landing of an airplane/helicopter on the flight deck, mooring and transfer of
cargo to the sea, etc.). The on-board decision support systems are called upon to make
safe the operation of technical facilities in various conditions and the skill level of the
crew. Any of these real-time systems are based on a complex of measuring equipment,
processing of dynamic processes, a subsystem of mathematical modeling and a system
of rules (knowledge base of an onboard intelligent system).

The formation of a hypothesis testing plan and the implementation of decisions in
DSS is carried out on the basis of mathematical modeling data for the vessel dynamics
scenarios in the considered extreme situation. The decision-making procedure includes
assessing the minimum time for the implementation of the decision with an acceptable
level of risk. Decision making is carried out in conditions of uncertainty and lack of
time. In this case, there is a risk of incorrect operator actions. For intelligent operator
support, fuzzy models are used in this situation. The specificity of such models consists
in the use of fuzzy estimates and graph interpretation, which makes it possible to
attribute the formation of operator actions to the number of combinatorial problems on
graphs [1].

Modeling situations in the face of uncertainties, testing the knowledge base, and
ensuring the fastest search for the optimal solution require a detailed recreation of the
picture of the interaction between the dynamics of the object and the environment. In
this sense, a virtual testbed can be considered as a tool for filling and testing the
knowledge base [32].

5.3 Virtual Particle Accelerator

A virtual accelerator reflects the other side of the concept of a virtual testbed. Ele-
mentary particle physics is still not fully known. It is for this purpose that various
accelerators are built. Each such installation costs a lot of money, requires a lot of
effort, but most importantly, after its creation it cannot be used outside the range of
parameters narrow enough for which it was designed. A striking example is the LHC.

Virtual Testbed: Concept and Applications 11
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Therefore, it is fundamentally important in the initial stages to conduct a compre-
hensive simulation of various components of the accelerator in order to create the
optimal design. In particle accelerator physics the problem is that we cannot see what is
going on inside the working machine. It is important to represent the space charge
forces of beam a software based on analytical models for space charge distributions.
For these purposes we need special algorithms for predictor-corrector method for beam
map evaluation scheme including the space charge forces. It allows us to evaluate the
map along the reference trajectory and to analyze beam envelope dynamics. Such
Virtual Accelerator provides a set of services and tools of modeling beam dynamics in
accelerators on distributed computing resources [33, 34].

5.4 Virtual Testbed for Financial Modeling

One of the typical spheres of “complex applications”, i.e. computational tasks that deal
with large amounts of significantly irregular information when the rate of input data
subject to processing in a reasonably limited time varies by several orders, is financial
mathematics. Finally, the end user to make a decision should have information in a
comprehensible form. Such applications are characterized by the following factors.

• Tremendous number of end users (brokers)
• Large variety of heterogeneous sources of information
• Unpredictable moments of sudden data volume “explosion”
• Necessity to keep in mind as long prehistory as possible to make the prognoses

more precise
• Limited time to make decisions, in practice in a real time manner

The current state and dynamics of changes in global financial system based on the
financial markets play nowadays a significant role in the life of the world economic
community. The financial markets are as active as never before. In modern electronic
markets, stock prices may change several times within a few milliseconds. Participating
traders (that can also be computers) have to evaluate the prices and react very quickly
in order to get the highest profit, which requires a lot of computational effort. Infor-
mation of huge volume received from a large variety of heterogeneous sources is then
to be processed using properly adequate mathematical tools.

Over the years, increasingly sophisticated mathematical models and derivative
pricing strategies have been developed, but their credibility was violated by the
financial crisis of 2007–2010. Contemporary practice of mathematical finance has been
subjected to criticism from such a notable figures within the field, as Nassim Nicholas
Taleb in his book “The Black Swan” [35]. The book focuses on the extreme impact of
certain kinds of rare and unpredictable events and humans’ tendency to find simplistic
explanations for these events retrospectively. Taleb claims that the prices of financial
assets cannot be characterized by the simple models currently in use, rendering much of
current practice at best irrelevant, and, at worst, dangerously misleading. Many
mathematicians and applied fields scientists are now attempting to establish more
effective theories and methods.

Generally speaking, the fundamental computational problem for adequate providing
activity of the army of brokers consists in huge amount and large variety of input
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heterogeneous sources of information still drastically enlarged by archives’ stored data,
limited time to make decisions, in practice in a real time manner, and in unpredictable
moments of sudden data volume “explosion”. Just the case for a virtual testbed [36, 37].

6 Conclusion

Thus, the approach proposed for modeling wind and wave impacts on marine objects
turned out to be amazingly effective for a wide range of problems of modeling complex
technological and natural systems. It turns out that it is well suited for working with
modern hybrid GPU-based calculators, as well as multi-threaded processors. New
opportunities for it are opened by the Virtual Private Supercomputer paradigm
described above and the approach to classification of Big Data. The combination of
these tools allows you to create a flexible toolkit for creating virtual repositories ori-
ented to work with a wide range of applied tasks.
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