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Abstract—This paper discusses twice continuously differen-
tiable and three times continuously differentiable approximations
with polynomial and non-polynomial splines. To construct the
approximation, a polynomial and non-polynomial local basis of
the second level and the sixth order approximation is constructed.
We call the approximation a second level approximation because
it uses the first and the second derivatives of the function. The
non-polynomial approximation has the properties of polynomial
and trigonometric functions. Here we have also constructed
a non-polynomial interpolating spline which has the first, the
second and the third continuous derivative. This approximation
uses the values of the function at the nodes, the values of the
first derivative of the function at the nodes and the values of
the second derivative of the function at the ends of the interval
[a, b]. The theorems of the approximations are given. Numerical
examples are given.

Index Terms—smooth polynomial splines, smooth non-
polynomial splines

I. INTRODUCTION
It is noted in paper [1] that spline functions are a developing

field of the function approximation and digital analysis theory.
Much attention is paid to the construction of smooth splines

in the papers by prof. Y.K.Demjanovich (see [2], [3]).
Hermite splines are often used to solve various problems

(see [4]–[7]) Currently, there is an increasing interest not
only in the use of Hermite-type splines, but also in the
design of such splines with new additional properties. Hermite
interpolation conditions are used to construct plane curves in
paper [8]. Cubic Hermitian splines are widely known and often
used. Cubic Hermite curves are adopted in conjunction with
the level set method to represent curved interfaces in paper
[9]. The third-order Hermite interpolation is used in [10].

In paper [11] the authors construct spline interpolation with
the property of monotonicity and convexity preservation, using
two types of splines: the Cubic Spline (CS), and the Hermite
Cubic Rational polynomial Spline (CRS). Both curves are
based on the shape preserving the Hermite Variable Degree
Spline (VDS).

Of particular interest are monotonicity-preserving inter-
polants. They are used in engineering or computer aided design
applications. Some new methods to design the monotone cubic
Hermite interpolants for uniform and non-uniform grids are
presented and analyzed (see Aràndiga (2013)). These methods
consist of calculating the derivative values, introducing the
weighted harmonic mean and a non-linear variation. With

these changes, the methods obtained are third-order accurate,
except in extreme situations. In paper [12] a new general mean
is used and a third-order interpolant for all cases is gained.

In 1964 Schoenberg introduced trigonometric spline func-
tions and proved the existence of locally supported trigonomet-
ric spline and B-spline functions [13]. In some cases, the use
of trigonometric splines is preferable to the use of polynomial
splines.

This paper continues the series of papers on approximation
with local polynomial and non-polynomial splines (see [14]–
[18]). The proposed paper offers non-polynomial splines of the
Hermite type with the sixth order approximation of the second
level (height), as well as smooth non-polynomial splines.
The construction of these splines uses the functions of the
Chebyshev system. These non-polynomial splines solve the
Hermite interpolation problem.

These local basis functions can be used in solving problems
of the mean-square approximation, solving boundary value
problems by the variational-difference method, and solving
integral equations.

II. SIXTH-ORDER SPLINE APPROXIMATION

Let n be a positive number, n > 3, and a, b real numbers.
Let function u(x) be such that u ∈ C6([a, b]). The nodes
xj ∈ [a, b], j = 0, . . . , n, such that a ≤ . . . < xj−1 <
xj < xj+1 < . . . ≤ b. The formulas of the basis splines
of the second level and the sixth order of approximation
wj,0(x), wj+1,0(x), wj,1(x), wj+1,1(x), wj,2(x), wj+1,2(x)
on an interval [xj , xj+1] are obtained by solving the following
system of equations:

ϕi(xj)wj,0(x) + ϕi(xj+1)wj+1,0(x) + ϕ′i(xj)wj,1(x)+

ϕ′i(xj+1)wj+1,1(x)+ϕ
′′
i (xj)wj,2(x)+ϕ

′′
i (xj+1)wj+1,2(x) =

ϕi(x), i = 0, 1, 2, 3, 4, 5. (1)

The system of functions ϕi should be the Chebyshev system
on the interval [α, β], where α, β are real numbers, β > α.
Based on different systems ϕi we will obtain different basis
functions wj,0(x), wj+1,0(x), wj,1(x), wj+1,1(x), wj,2(x),
wj+1,2(x). We construct the approximation of function u(x)
with these splines on the interval [xj , xj+1] in the form:

U(x) = u(xj)wj,0(x) + u(xj+1)wj+1,0(x)+
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u′(xj)wj,1(x) + u′(xj+1)wj+1,1(x)

+u′′(xj)wj,2(x) + u′′(xj+1)wj+1,2(x). (2)

The following theorem is valid if ϕi(x) = xi, i =
0, 1, 2, 3, 4, 5.

Theorem 1. Let function u(x) be such that u ∈ C6([a, b]),
ϕi(x) = xi, i = 0, 1, 2, 3, 4, 5. Suppose the ordered distinct
nodes {xk} are xj+1 − xj = h. Then for x ∈ [xj , xj+1] we
have

| u(x)− U(x) | ≤ K1h
6‖uV I‖[xj ,xj+1], K1 ≈ 0.015625/6!.

Proof. On the interval [xj , xj+1] we have the following
relations U(xj) = u(xj), U ′(xj) = u′(xj), U ′′(xj) = u′′(xj),
U(xj+1) = u(xj+1), U ′(xj+1) = u′(xj+1), U ′′(xj+1) =
u′′(xj+1). Thus, we can construct the Hermite interpolation
polynomial U(x) on the interval [xj , xj+1] using (2) with the
basis functions: wj,0(xj + th) = −(6t2 + 3t + 1)(t − 1)3,
wj+1,0(xj + th) = t3(10 − 15t + 6t2), wj,1(xj + th) =
−th(3t+1)(t− 1)3, wj+1,1(xj + th) = −ht3(t− 1)(3t− 4).
wj,2(xj + th) = −(1/2)t2h2(t − 1)3, wj+1,2(xj + th) =
(1/2)h2t3(t − 1)2. These basis functions can be obtained
from (1) when ϕi(x) = xi and x = xi + th, t ∈ [0, 1].
Using the theorem of the error of Hermite interpolation we
get that the error of the interpolation will be the following:
U(x)− u(x) = uV I(ξ)

6! (x− xj)3(x− xj+1)
3. Here ξ = ξ(x),

ξ ∈ [xj , xj+1]. If we put x = xj + th, t ∈ [0, 1], we obtain
(x − xj)

3(x − xj+1)
3 = h6t3(t − 1)3. It is easy to obtain

max
t∈[0,1]

|t3(t− 1)3| = 0.015625. The proof is complete.

Remark. Note that the system of equations (1) is ill-posed.
The condition number increases rapidly with decreasing dis-
tance between grid nodes. For example, let M be the matrix of
the system (1). Simple calculations give the following values
for the polynomial case when j = 0:

1) when h = 1, ConditionNumber(M) = 832;
2) when h = 0.01 we have ConditionNumber(M) =

0.247 · 1012;
3) when h = 0.00001 we have ConditionNumber(M) =

0.240 · 1027.
Let us take the non-polynomial functions as follows:

ϕs(x) = cos(sx), s = 0, 1, 2, ϕ2+s(x) = sin(sx), s = 1, 2,
ϕ5(x) = x. Simple calculations give the following values for
this case when j = 1:

1) when h = 1 we have ConditionNumber(M) =
7033.562;

2) when h = 0.01, we have ConditionNumber(M) =
0.462 · 1014;

3) when h = 0.001 we have ConditionNumber(M) =
0.451 · 1019.

We will now find the basis splines formulas in symbolic
form. Nevertheless, in some cases, it is necessary to apply
this approximation with an increased number of characters in
the mantissa when solving various problems with a small step.

It is easy to see that the Vronsky determinant (for the system
ϕs(x) = cos(sx), s = 0, 1, 2, ϕ2+s(x) = sin(sx), s = 1, 2,
ϕ5(x) = x) is nonzero:

∣∣∣∣∣∣∣∣∣∣∣

1 sin(x) cos(x) sin(2x) cos(2x) x
0 cos(x) − sin(x) 2 cos(2x) −2 sin(2x) 1
0 − sin(x) − cos(x) −4 sin(2x) −4 cos(2x) 0
0 − cos(x) sin(x) −8 cos(2x) 8 sin(2x) 0
0 sin(x) cos(x) 16 sin(2x) 16 cos(2x) 0
0 cos(x) − sin(x) 32 cos(2x) −32 sin(2x) 0

∣∣∣∣∣∣∣∣∣∣∣
=

=288.
It follows that the considered non-polynomial system is the

Chebyshev system on any interval of the entire real axis.
Using the Maple package we will find formulas for basis

functions w̃j,i. The simplest form they have when xj+1 =
xj + h, x = xj + th, t ∈ [0, 1]:
w̃j,0(xj + th) = (15 sin(h) + 18h cos(h) + 3 sin(3h) −

18 cos(h)th + 16th − 8 sin(th) − 2h cos(3h) − 4 sin(2th) +
sin(−3h+ 2th) + 12 sin(th+ h)− 8 sin(th− h) + sin(2th+
h) + 6 sin(2th − h) − 4 sin(2th − 2h) − 4 sin(2h + th) +
12 sin(−2h + th) + 2th cos(3h) − 4 sin(th − 3h) − 16h −
12 sin(2h))/(30 sin(h)+18h cos(h)−2h cos(3h)+6 sin(3h)−
16h− 24 sin(2h));
w̃j+1,0(xj + th) = (15 sin(h) + 4 sin(2th − 2h) −

sin(2th+h)−6 sin(2th−h)+4 sin(2h+ th)−12 sin(−2h+
th) + 18 cos(h)th − sin(−3h + 2th) + 4 sin(th − 3h) −
16th + 8 sin(th) + 4 sin(2th) − 12 sin(th + h) + 8 sin(th −
h) − 2th cos(3h) + 3 sin(3h) − 12 sin(2h))/(30 sin(h) +
18h cos(h)− 2h cos(3h) + 6 sin(3h)− 16h− 24 sin(2h));
w̃j,1(xj+th) = (9 cos(h)−3 cos(−3h+2th)+6 cos(2th−

h)−3 cos(2th+h)+2h sin(−3h+2th)−12 cos(−2h+th)+
12 cos(2h + th) + 6th sin(3h) − 24th sin(2h) − 12 cos(th +
h) + 24h sin(th+ h)− 8h sin(th− 3h) + 6h sin(2th− h)−
18h sin(h) − 16h sin(th) + 12 cos(th − 3h) − 6h sin(3h) −
9 cos(3h) − 8h sin(2th) + 30th sin(h))/(60 sin(h) +
36h cos(h)− 4h cos(3h) + 12 sin(3h)− 32h− 48 sin(2h));
w̃j+1,1(xj + th) = (−9 cos(h)+ 9 cos(3h)+ 6th sin(3h)−

8h sin(2th−2h)−24th sin(2h)+12 cos(th+h)+12 cos(−2h+
th)− 12 cos(2h+ th)+ 3 cos(−3h+2th)+ 3 cos(2th+ h)−
6 cos(2th−h)−12 cos(th−3h)+2h sin(2th+h)+6h sin(2th−
h)+30th sin(h)−16h sin(th−h)+24h sin(2h)−12h sin(h)+
24h sin(−2h+th)−8h sin(2h+th))/(60 sin(h)+36h cos(h)−
4h cos(3h) + 12 sin(3h)− 32h− 48 sin(2h));
w̃j,2(xj + th) = (21 sin(h) + 18h cos(h) + 2h cos(3h) −

3 sin(3h) − 30 cos(h)th + 20th − 2 sin(2th) − 16 sin(th) +
5 sin(−3h + 2th) + 8 sin(th − h) − sin(2th + h) +
12 sin(2th − h) − 14 sin(2th − 2h) + 4 sin(2h + th) +
12 sin(−2h + th) − 8 sin(th − 3h) − 2th cos(3h) +
16 cos(th)h + 4 cos(2th)h + 12th cos(2h) + 2h cos(−3h +
2th) − 6h cos(2th − h) − 12h cos(th + h) − 4h cos(th −
3h)−20h−6 sin(2h))/(60 sin(h)+36h cos(h)−4h cos(3h)+
12 sin(3h)− 32h− 48 sin(2h));
w̃j+1,2(xj + th) = (21 sin(h) − 12h cos(h) − 3 sin(3h) +

4h cos(2th − 2h) − 12h cos(−2h + th) − 4h cos(2h + th) +
16h cos(th − h) + 2h cos(2th + h) + 30 cos(h)th − 20th +
14 sin(2th) − 8 sin(th) + sin(−3h + 2th) − 12 sin(th +
h) + 16 sin(th − h) − 5 sin(2th + h) − 12 sin(2th −
h) + 2 sin(2th − 2h) + 8 sin(2h + th) − 4 sin(th − 3h) +
2th cos(3h)−12th cos(2h)−6h cos(2th−h)+12h cos(2h)−
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6 sin(2h))/(60 sin(h)+36h cos(h)−4h cos(3h)+12 sin(3h)−
32h− 48 sin(2h)).

The following theorem is valid if ϕs(x) = cos(sx), s =
0, 1, 2, ϕ2+s(x) = sin(sx), s = 1, 2, ϕ5(x) = x. Let x ∈
[xj , xj+1]. Using (1) we construct the approximation in the
form (2).

Theorem 2. Let function u(x) be such that u ∈ C6([a, b]).
Suppose the ordered distinct nodes {xk} are xj+1 − xj = h,
h < 1.5. Then for x ∈ [xj , xj+1] we have

| u(x)−U(x) | ≤ K2h
6‖5uIV +uV I+4u′′‖[xj ,xj+1],K2 > 0.

Proof. In the non-polynomial case when x ∈ [xj , xj+1] we
have wj,i which are given above. The method for finding the
estimate is described in detail in [14]. Here we briefly dwell
on the main points of the proof. Decomposing the determinant
Lu =∣∣∣∣∣∣∣∣∣∣∣∣∣

1 sin(x) cos(x) sin(2x) cos(2x) x u
0 cos(x) − sin(x) 2 cos(2x) −2 sin(2x) 1 u′

0 − sin(x) − cos(x) −4 sin(2x) −4 cos(2x) 0 u′′

0 − cos(x) sin(x) −8 cos(2x) 8 sin(2x) 0 u′′′

0 sin(x) cos(x) 16 sin(2x) 16 cos(2x) 0 uIV

0 cos(x) − sin(x) 32 cos(2x) −32 sin(2x) 0 uV

0 − sin(x) − cos(x) −32 sin(2x) −32 cos(2x) 0 uV I

∣∣∣∣∣∣∣∣∣∣∣∣∣
into elements of the last column, we obtain Lu = 5uIV +
uV I + 4u′′. Thus we have found a homogeneous equation
Lu = 5uIV +uV I+4u′′ = 0. Now we need to find a solution
to the inhomogeneous equation Lu = f(x) by the method of
varying arbitrary constants.

Let u(x) =
∑6

1 Ci(x)ϕi(x). To determine the coefficients
Ci, we should solve a system of linear algebraic equations:

6∑
1

C ′i(x)ϕi(x) = 0,

6∑
1

C ′i(x)ϕ
(k)
i (x) = 0, k = 1, . . . , 4,

6∑
1

C ′i(x)ϕ
(5)
i (x) = f(x).

Solving this system of equations, we obtain

C ′i(x) =W6,i(x)f(x)/W (x).

Here W6,i is the algebraic complement of the elements of the
i-th column of the 7-th row of the determinant W .

Using the results from paper [14] we get u(x) =∫ x
xj
(5uIV (t) + uV I(t) + 4u′′(t))(− sin(t − x)/3 + sin(2t −

2x)/24+(t−x)/4)dt+c1+c2 sin(x)+c3 cos(x)+c4 sin(2x)+
c5 cos(2x) + c6x, where ci, i = 1, 2, 3, 4, 5, 6, are some
arbitrary constants. Using the expression u(x) and derivative
of it, expression (2) with the w̃j,i written above, we receive
the estimation of the error of the approximation with the non-
polynomial splines. The proof is complete.

Remark 2. It can be obtain, that when h→ 0
w̃j,0(xj + th) = −(6t2 + 3t+ 1)(t− 1)3 +O(h),
w̃j+1,0(xj + th) = t3(10− 15t+ 6t2) +O(h),
w̃j,1(xj + th) = −th(3t+ 1)(t− 1)3 +O(h2),

w̃j+1,1(xj + th) = −ht3(t− 1)(3t− 4) +O(h2),
w̃j,2(xj + th) = −t2h2(t− 1)3/2 +O(h3),
w̃j+1,2(xj + th) = h2t3(t− 1)2/2 +O(h3).
We have obtained the function U(x), x ∈ [xj , xj+1], such

that u(xj) = U(xj), u′(xj) = U ′(xj), u′′(xj) = U ′′(xj)
u(xj+1) = U(xj+1), u′(xj+1) = U ′(xj+1), u′′(xj+1) =
U ′′(xj+1), using formula
U(x) = u(xj)w̃j,0(x) + u(xj+1)w̃j+1,0(x) +

u′(xj)w̃j,1(x) + u′(xj+1)w̃j+1,1(x) + u′′(xj)w̃j,2(x) +
u′′(xj+1)w̃j+1,2(x)
on every interval [xj , xj+1]. Now we can construct the piece-
wise function Ũ(x), x ∈ [a, b], such that Ũ(x) = U(x) for
x ∈ [xj , xj+1]. This piecewise function Ũ(x) interpolates
the function u and u′, u′′ at the nodes. Thus, Ũ(x) is a
continuous function and its the first and the second derivatives
are also continuous ones. Our aim is to construct a piecewise
function ˜̃U(x) so that it will not only have the first and
the second continuous derivative but also the third continu-
ous derivative. Moreover, it will interpolate the function u
in the nodes xj . The way of constructing such piecewise
functions in a polynomial case is known (see, for exam-
ple, papers of Kvasov B.I., Zavyalov Yu.S., Miroshnichenko
V.L). We shall construct a piecewise function ˜̃U(x), x ∈
[a, b], which is equal to u(xj)w̃j,0(x) + u(xj+1)w̃j+1,0(x) +
u′(xj)w̃j,1(x)+u

′(xj)w̃j+1,1(x)+cjw̃j,2(x)+cj+1w̃j+1,2(x)
on every [xj , xj+1]. The parameters cj , cj+1 are defined by
the condition that the third derivative of ˜̃U(x) is continuous.

The piecewise approximation ˜̃U(x) will be such that it
is continuous and the first two derivatives of the piecewise
interpolation will also be continuous. Let cj−1, cj , cj+1 be
some parameters to be determined, and x = xj+th, t ∈ [0, 1].
On every interval [xj , xj+1], j = 0, . . . , n − 1, we construct
the approximation in the form:

V (t) = cjw̃j,2(t) + cj+1w̃j+1,2(t) + u(xj)w̃j,0(t)+

u(xj+1)w̃j+1,0(t) + u′(xj)w̃j,1(t) + u′(xj+1)w̃j+1,1(t). (3)

We differentiate three times this expression and the similar one
when x ∈ [xj−1, xj ]. After that, set them equal to each other
in the common node xj , j = 1, . . . , n− 1. Thus we construct
the equation:

cj−1w̃
′′′
j−1,2(1) + cjw̃

′′′
j,2(1) + u(xj−1)w̃

′′′
j−1,0(1)+

u(xj+1)w̃
′′′
j,0(1) + u′(xj−1)w̃

′′′
j−1,1(1) + u′(xj+1)w̃

′′′
j,1(1)

= cjw
′′′
j,1(0) + cj+1w

′′′
j+1,1(0) + u(xj)w

′′′
j,0(0)+

u(xj+1)w
′′′
j+1,0(0) + u′(xj)w

′′′
j,1(0) + u′(xj+1)w

′′′
j+1,1(0),

where w̃j−1,2(1) = w̃j−1,2(xj−1+h), w̃j,2(1) = w̃j,2(xj−1+
h), w̃j−1,1(1) = w̃j−1,1(xj−1+h), w̃j,1(1) = w̃j,1(xj−1+h),
w̃j−1,0(1) = w̃j−1,0(xj−1 + h), w̃j,0(1) = w̃j,0(xj−1 + h)
constructed when xj−1 + th = x ∈ [xj−1, xj ]. We need
two extra conditions at the ends of the interval [a, b]. Let
V ′′(a)=u′′(a) and V ′′(b)=u′′(b). Taking into account the in-
terpolation conditions V (xj) = u(xj), V ′(xj) = u′(xj),
j = 0, . . . , n, and the boundary conditions V ′′(xj)=u′′(xj),
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j = 0, n, we construct the piecewise function ˜̃U(x). This
function and its first two derivatives will be continuous. It
interpolates the function u in the nodes xj , j = 0, . . . , n.
So we need the expressions for the third derivative of the
basis functions w̃j,i. The third derivative of the basis functions
w̃j,i(x) can be easily obtained.

Thus we have to solve the system of algebraic equations
GC = F , where the square matrix G = {gij}n−1i,j=1, G ∈
R(n−1)×(n−1), and the vector F ∈ Rn−1, F = {f}j . We
have gj,j = Cj , gj,j+1 = Cj+1, gj−1,j = Cj−1,

f1 = −(u(x1)Uj + u(x2)Uj+1 + u(x0)Uj−1 + u′(x1)U
1
j +

u′(x2)U
1
j+1 + u′(x0)U

1
j−1)− u′′(x0)Cj+1,

fn−1 = −(u(xn−1)Uj + u(xn)Uj+1 + u(xn−2)Uj−1 +
u′(xn−1)U

1
j + u′(xn)U

1
j+1 + u′(xn−2)U

1
j−1)− u′′(xn)Cj+1,

fj = −(u(xj)Uj + u(xj+1)Uj+1 + u(xj−1)Uj−1 + u′(xj)U
1
j +

u′(xj+1)U
1
j+1 + u′(xj−1)U

1
j−1), j = 2, . . . , n− 2,

We obtain the following expressions for the non-polynomial
case with equidistant nodes:

Uj−1 = −h(4 cos(h) − 2 cos2(h) − 2)/(4(h cos2(h) −
3 sin(h) cos(h) + h cos(h)− 2h+ 3 sin(h))),

Uj = −h(−8 cos(h) + 4 cos2(h) + 4)/(4(h cos2(h) −
3 sin(h) cos(h) + h cos(h)− 2h+ 3 sin(h)),

Uj+1 = −h(4 cos(h) − 2 cos2(h) − 2)/(4(h cos2(h) −
3 sin(h) cos(h) + h cos(h)− 2h+ 3 sin(h))),

U1
j+1 = −h(6 sin(h) − 3h − 6h cos(h) +

3 sin(h) cos(h))/(4(h cos2(h) − 3 sin(h) cos(h) + h cos(h) −
2h+ 3 sin(h))),

U1
j−1 = −h(3h − 6 sin(h) + 6h cos(h) −

3 sin(h) cos(h))/(4(h cos2(h) − 3 sin(h) cos(h) + h cos(h) −
2h+ 3 sin(h))),

Cj = −h(16 cos2(h)−8 cos(h)+6h sin(h) cos(h)+6h sin(h)−
8)/(4(h cos2(h)− 3 sin(h) cos(h) + h cos(h)− 2h+ 3 sin(h))),

Cj+1 = −h(4 cos(h)+cos2(h)+3h sin(h)−5)/(4(h cos2(h)−
3 sin(h) cos(h) + h cos(h)− 2h+ 3 sin(h))),

Cj−1 = −h(4 cos(h)+cos2(h)+3h sin(h)−5)/(4(h cos2(h)−
3 sin(h) cos(h) + h cos(h)− 2h+ 3 sin(h))).

TABLE I
THE ACTUAL ERRORS OF THE SMOOTH POLYNOMIAL AND

NON-POLYNOMIAL APPROXIMATIONS, h = 0.4, [a, b] = [−1, 1].

Function u(x) Polynomial splines Non-polynomial splines
sin(3x) 0.772 · 10−4 0.387 · 10−4

sin(7x)− cos(9x) 0.249 · 10−1 0.236 · 10−1

x7 − x9 0.110 · 10−2 0.121 · 10−2

1/(1 + 25x2) 0.358 · 10−1 0.361 · 10−1
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Fig. 1. Plots of the error of the approximation of the function sin(3x) with
the polynomial splines and with the smooth polynomial splines (left), and
with the non-polynomial splines and with the smooth non-polynomial splines
(right).

Expressions for the polynomial case can be found in a
similar way. We do not give them here. The actual errors

of the constructed smooth polynomial and non-polynomial
approximations, when h = 0.4, [a, b] = [−1, 1] are given in
Table 1. Plots of the error of the approximation of the function
sin(3x) with the polynomial splines and smooth polynomial
splines (thick black line) are given in Fig. 1 (left). Plots of the
error of the approximation of the function sin(3x) with the
non-polynomial splines and smooth non-polynomial splines
(thick black line) are given in Fig. 1 (right).
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