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Abstract: The Fock space relativistic coupled cluster method (FS-RCC) is one of the most promising
tools of electronic structure modeling for atomic and molecular systems containing heavy nuclei.
Until recently, capabilities of the FS-RCC method were severely restricted by the fact that only single
and double excitations in the exponential parametrization of the wave operator were considered.
We report the design and the first computer implementation of FS-RCC schemes with full and
simplified non-perturbative account for triple excitations in the cluster operator. Numerical stability
of the new computational scheme and thus its applicability to a wide variety of molecular electronic
states is ensured using the dynamic shift technique combined with the extrapolation to zero-shift
limit. Pilot applications to atomic (Tl, Pb) and molecular (TlH) systems reported in the paper indicate
that the breakthrough in accuracy and predictive power of the electronic structure calculations
for heavy-element compounds can be achieved. Moreover, the described approach can provide
a firm basis for high-precision modeling of heavy molecular systems with several open shells,
including actinide compounds.

Keywords: relativistic coupled cluster method; excited states; heavy-element compounds;
high-precision electronic structure modeling

1. Introduction

The ultimate goal of modern relativistic quantum chemistry is the development of highly accurate
ab initio methods of electronic structure modeling for studying atomic and molecular electronic
structure, being applicable to systems with general geometry and shell structure, with emphasis
on species containing heavy or super-heavy elements. In such systems relativistic and electron
correlation effects are often not only of the same order of magnitude, but also non-additive and
substantially intertwined. Systems which also possess strong quasi-degenerate or multi-reference
character, i.e., cannot be described approximately by a single Slater determinant, are considerably
more difficult for modeling, and conventional single-reference methods implemented in most common
off-the-shelf packages are not always applicable. Some well-known atomic examples are Ni, Pd and
Pt atoms, where the d8s2, d9s and d10 electronic configurations are very close in energy to each
other, and their intermixing presents serious problems to computational approaches and thus
requires special treatment. A notable molecular example is U2, for which standard methods give
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unsatisfactory accuracy [1]. The first-principles-based methods aimed at high-precision modeling
of such systems should not only ensure a balanced treatment of the dynamic and non-dynamic
(e.g., caused by quasi-degeneracies) correlation effects, but also include relativistic and in many
cases also Breit interaction and quantum electrodynamic (QED) effects on equal footing from the
outset simultaneously to high order. Special relativity is fundamental for understanding chemical
behavior of heavy elements [2,3], and the non-relativistic Hamiltonian can no longer serve as a
good model for description of electronic subsystem and has to be replaced by other models derived
from the relativistic consideration of particle motion, e.g., those based on the Dirac-Coulomb or
Dirac-Coulomb-Breit Hamiltonians [4]. The most natural way to treat a manifold of quasi-degenerate
problems such as excited states and bond breaking one should use multi-reference (MR) approaches,
providing the flexibility needed to describe wavefunctions in such challenging cases [5]. For this reason,
considerable efforts have been made to formulate MR methods and provide their implementations as
general-purpose computer codes.

Ideally, these approaches should satisfy most or all of the following requirements:
(i) size extensivity and size consistency; (ii) ability to handle various types of electronic shells;
(iii) numerical stability in a wide range of molecular geometries; (iv) balanced treatment of all
electronic states under consideration and predictable accuracy in all regions of potential energy surfaces;
(v) acceptable computational cost. In addition the development of high-precision electronic structure
methods is directed towards (i) improving the approximation of the Hamiltonian by inclusion of
high-order relativistic and QED effects; (ii) improving the dynamic correlation treatment by increasing
the excitation rank of cluster operators (in case of coupled cluster methods) or the perturbation theory
(PT) order; and/or (iii) improving the non-dynamic correlation treatment by increasing size of the
active valence or model (P) space, (iv) converging basis set to completeness.

Extensive studies over the past few decades have demonstrated that one of the most accurate
(and thus appropriate for high-precision modeling of quasi-degenerate systems) method is the
state-of-the-art “all orders” multi-reference CC (MRCC) method [6–8]. Some formulations of this
method indeed meet all the requirements listed above. Genuine MRCC approaches can be divided
into two main types, namely Fock space (FS) [9,10] and Hilbert space (HS) [11–16] approaches.
Both types of MRCC formulations are based on the concept of multidimensional model space P,
in which the effective Hamiltonian Heff is to be found by solving the generalized Bloch equation
and then diagonalized [17,18]. Electron correlation is treated in two stages: dynamic correlation
is described by virtual excitations to complementary Q-space determinants via the wave or cluster
operator, while non-dynamic correlation is taken into account at the step of the Heff diagonalization.
The distinction between these two kinds of correlation is rather arbitrary. The effective Hamiltonian
MRCC approaches work very well in quasi-degenerate cases, but normally suffer from the convergence
problems due to single or multiple intruder states. The intermediate Hamiltonian (IH) generalization
of the effective Hamiltonian concept, which could be regarded as a good solution of the intruder
state problem, was initially introduced by Malrieu et al. in the framework of degenerate PT [19].
This technique is very general, efficient and dramatically increases accuracy and area of applicability of
the MR approach. Thus, the IH often becomes the method of choice for many challenging applications
in the field of modeling of complicated atomic and molecular spectra within the both Fock space [20–29]
and Hilbert space [15,16,30,31] MRCC approaches. Another efficient and rather universal way of
avoiding the intruder state problem, related in a sense to the IH technique and perfectly fitting the
FS-RCC framework, consists of using dynamic denominator shifts and extrapolated projected effective
Hamiltonians [32,33].

Exploration of the multi-reference Hilbert space CC, which is generally more flexible than the
FS-CC approach in the composing of model spaces for complex open shell electronic configurations,
is still being rather limited due to the frequently occurring symmetry breaking problems (demanding
additional non-trivial technical handling). The advantages of the Fock space MRCC method which
led to its much more frequent use for solving real practical problems have roots in the fact that all
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excitation operators are defined with respect to the common vacuum vector. Unlike all HS MRCC
approaches based on the Jeziorski–Monkhorst Ansatz, FS MRCC by construction do not suffer from
the problem of redundancy of cluster amplitudes and hence preserves transparent physical picture
intrinsic for the single-reference coupled cluster method as well as relative simplicity of computer
implementation [34,35].

During recent decades the relativistic Fock Space CC approach in both effective and intermediate
Hamiltonian formulations proved its efficiency and high accuracy in challenging calculations of
heavy atomic and molecular systems with dense spectra, especially in cases when both d and f
atomic orbitals become valence (see also recent reviews [26,29,36]). In the non-relativistic realm
the pilot implementation of the FS-CC method accounting for triple excitations and allowing the
treatment of up to six valence electrons sectors was pioneered by Hughes and Kaldor in earlier
1990s; they reported calculations of electronic states of light atoms in rather modest basis sets [37–39].
Later the more advanced non-relativistic implementation of the IH-based full FS-CCSDT approach
(and some its effective approximations) to excitation spectra of some light atomic and molecular
systems has been published by Musiał and co-authors [24,25,40]. However, to the authors’ knowledge
till now all the relativistic implementations of the FS-CC approach are limited to single and double
excitations (i.e., CCSD approximation) and to the Fock space sectors with no more than two valence
quasiparticles. It is to be mentioned that unlike its non-relativistic counterpart the FS-RCC approach
has become one of the most widely used tools for relativistic electronic structure modeling. The list of
fundamental research assisted by the FS-RCC predictions includes first experiments on laser resonance
ionization spectroscopy of short-lived radioactive atoms and molecules [41–43] and searches for the
electron electric dipole moment and related problems [44–46]. However, as was mentioned above,
the accuracy and predictive power of FS-RCC was limited by the implementation of only the singles
and doubles (CCSD) model up to the date [34]. High-precision atomic FS-RCCSD calculations have
shown that even in the case of very extended basis sets and model spaces errors of order up to
several hundreds of cm−1 remain for some complicated atomic cases and can be attributed only to the
neglecting of higher rank excitations in the cluster operator [47]. Thus, the breakthrough in accuracy
of high-precision electronic structure modeling can be achieved by systematic development of models
including these contributions. Similar to the case of well-established non-relativistic single-reference
coupled cluster theory, the development and applications of such the CC models to real problems
are nearly impossible without efficient algorithms and computer codes due to the considerably high
time complexity. Furthermore, any schemes of accounting for triples in some approximate manner
(including calculations with truncated basis sets and spinor spaces) are also highly desirable, at least at
the current state of hardware capabilities.

In this paper, we present the formulation of the relativistic Fock space coupled cluster method with
iterative triples and its first program implementation allowing both atomic and molecular FS-RCCSDT
calculations. Theoretical considerations are discussed in Section 2, and the pilot applications are
reported in Section 3. Please note that not only energy calculations were conducted and reported
(Sections 3.1 and 3.2), but also potential benefits for high-precision calculations of properties are
revealed on the example of static dipole polarizability (Section 3.3).

2. Theory

We start with the conventional formulation of the FS-RCC approach described in details
elsewhere [9,48]. This formulation implies the use of complete model spaces defined unambiguously
by the choice of “active” (variable-occupancy) spinors and the universal exponential wave operator Ω
normal-ordered with respect to the closed-shell Fermi vacuum state:

Ω = {exp(T)}N . (1)
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The cluster operator T is a linear combination of excitation operators êK,

T = ∑
K

tK êK, (2)

where K stands for the list of normal-ordered creation/annihilation operators forming the excitation.
Electronic states energies and model-space parts of the corresponding wavefunctions are obtained
through constructing and diagonalizing the effective Hamiltonian

H̃ =
(

H Ω
)

Cl , (3)

where H is the chosen approximation for the many-electron relativistic Hamiltonian, the subscript Cl
marks the closed part of an operator and the overbar denotes its connected part. The coefficients tK
(cluster amplitudes) should satisfy the equations which are usually written in the form

tK =
1

DK

(
V Ω−Ω

(
V Ω

)
Cl

)
K

, V = H − H0, (4)

where H0 denotes the diagonal part of the Fock operator for the Fermi vacuum state. The entities
DK (energy denominators) are the negatives of the differences of H0 eigenvalues associated with the
excitations K.

It is convenient to partition the cluster operator T according to the number of valence holes (nh)
and valence particles (np) to be created/destroyed (i.e., related to (nhh,np p) sectors of the Fock space):

T = ∑
nhnp

T(nhh,np p) (5)

According to the “subsystem embedding condition” [18], in order to describe the electronic states
in the (Nhh,Np p) sector of the Fock space, one needs to determine only T(nhh,np p) with nh ≤ Nh and
np ≤ Np. Therefore the system of coupled Equation (4) is split into subsystems, which can be solved
consecutively. The T(nhh,np p) operator at the CCSDT level of approximation includes connected single,
double and triple excitations,

T(nhh,np p) = T
(nhh,np p)
1 + T

(nhh,np p)
2 + T

(nhh,np p)
3 . (6)

Please note that the T(0h,0p) operator is actually the same that is used in the conventional
single-reference CC theory. Diagrams representing cluster operators for the (0h,0p), (0h,1p) and
(0h,2p) Fock space sectors are shown on Figure 1. The corresponding diagrams for other sectors are
obtained in a straightforward manner by “turning down” valence lines. Please note that throughout
the paper Hugenholtz–Brandow (antisymmetrized) diagrams are used (details of the formalism can be
found elsewhere [49]).
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Figure 1. Diagrammatic representation of cluster operators in the (0h,0p), (0h,1p) and (0h,2p) Fock
space sectors at the CCSDT level of theory. Double arrows refer to active (valence) lines. Cluster

amplitudes with all valence indices are excluded for the T(0h,1p)
1 and T(0h,2p)

2 diagrams to ensure these
operators to be open regarding model space.

The well-known computational bottleneck of all CC models fully accounting for the triple
excitations arises from the presence of the diagrams with contractions over four particle indices.
These diagrams cause the N8 scaling for compact systems where no advantages can be taken from
localization techniques [50] (N is the number of one-electron basis functions). These diagrams
for the (0p, 0h), (0p, 1h), and (0p, 2h) Fock space sectors are presented on Figure 2. Numerous
approximate techniques reducing the overall computational cost of the CCSDT model have been
proposed during recent decades, both within the single-reference [51–55] and multi-reference
CC frameworks [37,40,56–62]. The most widely used approximations are CCSD(T) and CCSDT-1,
the former is often referred as the “gold standard” of quantum chemistry [63]. Here we generally follow
the consideration proposed by A. Haque, S. Hughes and U. Kaldor [37,56,57] for the non-relativistic
FS-CC to define various FS-RCC models accounting for triples.

Figure 2. Diagrams of the most time-consuming terms in the CCSDT amplitudes equations for
the (0h,0p), (0h,1p) and (0h,2p) Fock space sectors. Time complexities of the corresponding tensor
contractions are given, N is the total number of spinors, A stands for the number of active
(valence) spinors.

The general idea is to avoid the costly N8 diagrams; a way for reaching this goal can be provided
by the simple analysis based on many-body perturbation theory (PT) arguments. Since the T2 operator
arises in the first order of PT, the simplest estimate of the T3 operator,

T3 ∼ VT2 + folded terms, (7)

is at least of the second order in perturbation V (see Figure 3). According to the Equation (3) for
the effective Hamiltonian, triples will contribute in energy at least in the third PT order. If we
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evaluate triples amplitudes using the Equation (7) with singles and doubles amplitudes taken from
converged FS-CCSD calculation, we arrive at the FS-CCSD+T(3) approximation which resembles the
conventional CCSD(T) approach. However, despite its conceptual simplicity and low computational
cost, the FS-CCSD+T(3) approach was shown to yield unpredictable results with worse accuracy than
FS-CCSD [58,60,64]. The earlier conclusions by U. Kaldor and co-workers concerning the satisfactory
performance of the FS-CCSD+T(3) scheme [56,57] were drawn from the direct comparison of the FS-CC
excitation energy estimates, calculated with very small basis sets and thus necessarily unreliable,
with their experimental counterparts.

A straightforward improvement of this scheme consists of accounting for contributions from triple
excitations in the r.h.s. of Equation (4) for single and double excitations amplitudes. Triples amplitudes
should be re-calculated at each step of the iterative solution, resulting in increased computational
cost, though the time complexity of the algorithms employed is actually the same (N7) as in the
FS-CCSD+T(3) scheme. This approximation introduced in [51,52] for the single-reference CC theory
is referred to as the CCSDT-1 model (more precisely, the CCSDT-1b model). Again, it was extended
to the non-relativistic multi-reference domain by U. Kaldor and co-workers and has shown rather
promising results [37]; however, due to limitations caused by the high computational cost the features
of the model were not well understood. Two other CCSDT-n models which are quite popular in the
conventional CC theory, namely CCSDT-2 and CCSDT-3 [53], have never been generalized to the
Fock space CC case. However, the generalization is straightforward: new diagrams corresponding to
Ω ≈ eT2 (FS-CCSDT-2) or Ω ≈ eT1+T2 (FS-CCSDT-3) arise in the triples equations [49]. No PT-based
restriction on diagrams is imposed, but the N8 terms are avoided by simply prohibiting the diagrams
with the triples amplitudes in the triples equations.

Figure 3. Leading terms in the right-hand side of amplitude Equation (4) for the (0h1p) and (0h2p)
sectors used to estimate the triple amplitudes within the FS-CCSDT-1 approximation.

The approximate treatment of the folded terms in the FS-CCSDT-n models requires special
attention. The list of the folded diagrams arising in the full FS-CCSDT model is presented on the
Figure 4. For consistency reasons only the terms appearing in the second PT order are to be retained
within the FS-CCSDT-1 model. All such terms are represented by the (b) diagram arising in the (0h,2p)
sector. We shall call the corresponding model FS-CCSDT-1′. Furthermore, taking into account the
choice of the “direct” terms used in the T3 amplitude equations within the FS-CCSDT-1 approximation
(see Figure 3), it seems quite logical to retain only the leading (undressed) part of interaction in
Figure 4b. In the latter case we arrive at a somewhat different model which will be referred to as
FS-CCSDT-1 (to be consistent with the earlier work of U. Kaldor and co-authors).

To formulate the Fock space CCSDT-2,3 models, we should not use the PT arguments in order to
be consistent with the single-reference counterparts, and the list of diagrams contributing to the triples
equations should not include those ones containing any contractions with triples. As a result, only the
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(b) (for FS-CCSDT-2) and (b), (c) (for FS-CCSDT-3) diagrams contributing to the equations for T(0h,2p)
3

are to be retained.

Figure 4. Folded diagrams contributing to the equations for triple amplitudes within the FS-CCSDT
approximation in the (0h, 1p) (a) and (0h, 2p) (b–e) Fock space sectors. Empty rectangular blocks
correspond to the effective interactions, H̃ − H0.

The use of intermediate Hamiltonian-like [22] FS-RCC formulations or the dynamic denominator
shift techniques [32,33] offers the possibility to extend model spaces without encountering numerical
instabilities caused by intruder states [65]. Thus, a partial incorporation of the contributions from
the excitations normally considered to be triples is possible even within the CCSD model. However,
significant deviations of resulting molecular property values from the experimental ones [47] or from
full configuration interaction calculations [25,40] remain, indicating that some important excitations
are missed even in the cases when large model (and/or intermediate) spaces are employed. Indeed, in
the case of the (0h,1p) sector the most important triples amplitudes correspond to the determinants
with two core holes which are doubly excited with respect to the model space (so-called spectator
amplitudes). In the frame of the FS-RCCSD model these determinants are generated only by
(disconnected) products of cluster operator terms inherited from the vacuum sector, so that the
effect of differential correlation in the presence of the one electron added to the vacuum state is
neglected. Similar problems are most pronounced for hole sectors, e.g., (1h,0p) [66]. For particle sectors
the problem becomes even more severe in the case of (0h,2p) sector, thus we can expect the contribution
of triples to be much more significant there.

All the electronic structure models discussed above were implemented in the EXP-T program
package [35,67].

3. Pilot Applications

Here the pilot applications of the developed coupled cluster models are reported. Due to the
high computational complexity of the schemes described above we employed a two-stage approach to
achieve high accuracy sufficient for the direct comparison of calculated values with the experimental
ones. At the first stage, FS-RCCSD calculations were performed using large flexible basis sets
(denoted as LB) guaranteeing the smallness of the basis set incompleteness errors compared to the
contribution from the triple excitations to the property under study; the calculations accounting for
triples using such large basis sets are not feasible to the moment. At the second stage, the FS-RCCSD
and the FS-RCCSDT-n/CCSDT calculations were performed within somewhat smaller basis (SB)
in order to estimate the triples contribution to the desired quantity (excitation energy or other
property). Obviously, model spaces employed in the LB and SB calculations were chosen consistently.
Final estimates for the total energies were obtained as

ECCSDT = ECCSD,LB + (ECCSDT,SB − ECCSD,SB) (8)

This naturally leads to similar estimates of transition energies and other properties considered in
the present paper. The use of combined schemes like Equation (8) is a common and successful
practice that has been used for different applications before [68–72]. High-order contributions
calculated in such a way were shown earlier to be quite stable with respect to the choice of basis
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set and approximation to the relativistic Hamiltonian [69]. The functions of “small” basis sets were
normally constructed (if not stated otherwise) from those of “large” ones as averaged atomic natural
orbitals [73,74] obtained in scalar-relativistic CCSD calculations performed with the CFOUR program
package [75]. Further details concerning the basis sets employed are provided in the corresponding
subsections below; all basis set parameters are available online [76]. “Small-core” shape-consistent
semilocal relativistic pseudopotentials by N. S. Mosyagin et al. [76–78] leaving both valence and
sub-valence electrons of heavy atoms were used throughout. All explicitly treated electrons of heavy
atoms as well as all electrons of light atoms were correlated.

Molecular integrals transformed to the basis of molecular spinors were calculated within the
DIRAC package [79] and then imported to EXP-T.

3.1. Atomic Energy Levels of Thallium and Lead

High-precision calculations of atomic energy levels are of great importance for modern physics
of super-heavy elements, e.g., for future spectroscopic experiments on atoms and elucidation of
periodicity in their physical and possible chemical properties via revealing the nature of their ground
and low-lying excited electronic states. To assess the accuracy of the model employed, calculations
on lighter homologues are typically performed [47,80]. In particular, it was found that the errors
in the FS-RCCSD predictions of atomic transition energies for thallium (∼80 cm−1 [80]) and lead
(∼200–600 cm−1 [47]) can be attributed only to the neglect of higher excitations. Similar level of
accuracy was also demonstrated recently by the MR CCSD-like approach of Dzuba and Flambaum [81].
We performed the series of FS-RCC calculations aimed at clarification of the role of higher excitations
in the aforementioned problems.

High symmetry of atomic systems makes feasible calculations with very extended basis sets.
Thus, the basis set limit in FS-RCCSD calculation can be nearly reached and the remaining error
can be clearly attributed to the neglect of higher excitations. The FS-RCCSD calculations with the
Dirac-Coulomb-Breit Hamiltonian were performed using the Tel Aviv Relativistic Atomic Fock Space
coupled cluster code (TRAFS-3C) based on the radial symmetry, written by E. Eliav, U. Kaldor and Y.
Ishikawa. The uncontracted universal basis set [82] used as the LB basis consists of even-tempered
Gaussian type orbitals, with exponential parameters ζ given by the geometric series ζn = αβn−1, α =

106, 111, 395.371615, β = 0.486752256286. The basis set used for both elements consists of 37s (n =

1− 37), 32p (n = 5− 36), 24d (n = 13− 36), 21 f (n = 15− 35), 12g (n = 21− 32), 10h (n = 22− 31),
and 9i (n = 22− 30) functions. All electrons were correlated, and virtual orbitals with energies above
300 a.u. were omitted. To account for the QED corrections to the energies we applied the model Lamb
shift operator (MLSO) of Shabaev and co-workers [83]. The contributions from triples amplitudes
to ionization potentials and excitation energies were calculated within the EXP-T program. Smaller
contracted Gaussian basis sets (SB) [6s7p5d5 f 4g3h2i] (Tl) and [6s6p5d5 f 4g3h2i] (Pb) obtained by the
ANO-type contraction procedure outlined above were employed for triples calculations; 60 core
electrons of Tl and Pb were substituted by relativistic pseudopotentials as was described above.

The closed-shell 6s2 configurations states of Tl+ and Pb2+ were taken as the reference for the Fock
space sequences

Tl+ (0h, 0p)→ Tl0 (0h, 1p) (9)

Pb2+ (0h, 0p)→ Pb+ (0h, 1p)→ Pb0 (0h, 2p) (10)

We restricted our attention to the electronic states described by the 6s26p1 (Tl) and 6s26p2 (Pb)
leading configurations, thus the active spaces in both LB and SB calculations comprised 6p-orbitals only.

The ionization potentials (IP) and low excitation energies (EE) of Tl, Pb and the Pb+ cation are
reported and compared with the experimental data in Table 1.
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Table 1. Deviations of the calculated ionization potentials (IP) and excitation energies (EE) of neutral
thallium and lead and lead cation (cm−1) from the experimental values. FS-RCCSD/LB+T/SB stands
for the combined scheme (8).

State Exptl IH-FS- FS- FS-RCCSD/LB + T/SB
[84] RCCSD [47] RCCSD/LB SDT-1 SDT-1’ SDT-2 SDT-3 SDT

Tl, ground state 6s26p 2P1/2

IP 49,266 −56 −38 −38 −204 −151 −32
EE 6s26p 2P3/2 7793 −112 23 23 1 9 −31

Pb+, ground state 6s26p 2P1/2

IP 121,245 −168 −143 −28 −28 −190 −158 −59
EE 6s26p 2P3/2 14,081 −196 −136 25 25 12 14 −42

Pb, ground state 6s26p2 3P0

IP 59,819 −543 364 −44 −285 −347 −336 7
EE 6s26p2 3P1 7819 −288 −302 76 5 −4 −3 −28

3P2 10,650 −343 −235 130 129 97 102 13
1D2 21,458 −605 −394 215 203 158 167 5
1S0 29,467 −208 414 170 248 293 302 173

One can state that even combined schemes with FS-RCCSDT-1 and FS-RCCSDT with minimal
model spaces greatly outperforms the IH-FS-RCCSD model with large main and intermediate model
spaces used for Pb [47]. This fact confirms the impossibility to recover the effects of all triples via
extending model spaces in FS-RCCSD calculations. Moreover, in effectively single-reference problems
like thallium atom model space enlargement does not lead to any improvement.

The largest deviation from the experimental excitation energy for the FS-RCCSDT model was
obtained for the rather high-lying 1S0 state of the Pb atom (174 cm−1). This can be explained by a
strong interaction with the 6s26p7p configurations which were not included into the model space in
current calculations. The remaining systematic errors for other electronic states are less than 30 cm−1

and can be caused by imperfection of the additive scheme (8) used and by the neglect of quadruple and
higher excitations in the cluster operator. However, the present results are to our knowledge the most
accurate ab initio data for heavy non-alkali atoms. Thus, the technique described seems to provide
the basis for the long-awaited breakthrough in accuracy at least in the domain of atomic electronic
structure calculations.

3.2. Electronic States of TlH

The TlH molecule provides a good test case for the performance of relativistic electronic structure
methods, because even qualitative description of its electronic states is impossible without careful
treatment of the spin-orbit coupling. For this reason, the TlH molecule was often used for the
benchmarking of new electronic structure models (see [85] and references therein). Low-lying electronic
states of TlH converge to the Tl(2Po

1/2) + H(2S1/2) and Tl(2Po
3/2) + H(2S1/2) dissociation limits, and two

of them (B1 and (1)0−) corresponding to the former limit are unstable. Reliable experimental data are
available for the A0+ state [86,87].

Due to the relativistic stabilization of the 6s shell of thallium it seems natural to describe the
electronic states of TlH in a wide range of internuclear separations in the (0h,2p) FS-RCC sector,
considering the TlH2+ ion as the Fermi vacuum. However, the optimal choice of active set of spinors is
quite complicated. The most natural choice at large internuclear distances is the active space comprised
of 4 lowest lying Kramers pairs of virtual spinors, corresponding to the 6p and 1s spinors of Tl and
H atoms, respectively. However, at the internuclear distance comparable with the bond lengths
(R ∼ 1.9 Å) the fourth pair of spinors becomes purely antibonding and appears very close in energy
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to higher one-electron states. As a result, no stable physically reasonable solutions of the FS-RCC
equations can be obtained for this range of R. Another possible way is to include additional virtual
spinors to the active space. However, the one-electron spectrum of TlH2+ is very dense, with a complex
dependence on the internuclear separation (numerous crossings and avoided crossings). To ensure a
regular behavior of computed potential curves, one would need to include several dozens of Kramers
pairs into the active space and, hence, relatively large values of denominator shifts [32] would be
required to achieve stable solutions. This strategy leads to quite a blurry physical picture and to an
unavoidable increase of extrapolation error for large shift amplitudes. Specifically for this problem the
simplest solution is to restrict attention only to the “bonding” region and to choose only the 3 lowest
virtual Kramers pairs as active; contributions of the determinants missed in the case of such a modest
active space can be retained within the FS-RCCSDT model.

The scheme (8) was again employed to account for connected triple excitations.
The [6s7p5d5 f 4g3h2i] (Tl) and aug-cc-pVTZ [88] (H) contracted basis sets were used in the SB
calculations, while the uncontracted basis set (14s13p10d7 f 6g5h5i) (Tl) and the uncontracted version
(7s4p3d2 f ) of the aug-cc-pVQZ set were used in the large basis (LB) FS-RCCSD calculations. 60 core
electrons of Tl were represented by the relativistic pseudopotential (see above). During the calculations
accounting for triples excitations the 5s and 5p shells of Tl were excluded from the correlation treatment.
To suppress the instabilities in the FS-RCC equations the small amplitudes of denominator shifts [32]
in the non-trivial FS sectors were used, 0.1, 0.2 and 0.3 a.u. for singles, doubles and triples amplitudes,
respectively; effective Hamiltonians computed at the values of the attenuation parameter n = 2–4
(see Equations (3) and (4) in Reference [33]) were extrapolated to the zero-shift limit by the [0/1] matrix
Padé approximant [33]. The basis set superposition error was estimated by the counterpoise correction.
Equilibrium distances as well as harmonic vibrational frequencies were evaluated with the help of
the program VIBROT [89]. Equilibrium distance re for the A0+ state was extracted from the rotational
constants reported in [87] for TlD.

Table 2 summarizes term energies and spectroscopic constants for the X0+ and A0+ states of the
TlH molecule.

Table 2. Equilibrium internuclear distances re, vibrational constants ωe and term energies Te for the
X0+ and A0+ states of TlH.

X0+ A0+

re, Å ωe, cm−1 Te, cm−1 re, Å ωe, cm−1 Te, cm−1

FS-RCCSD/LB 1.775 1800 0 1.749 1572 15,914
FS-RCCSD/LB + SDT-1/SB 1.862 1378 0 1.812 1222 17,899
FS-RCCSD/LB + SDT/SB 1.840 1500 0 1.801 1302 17,501
RKR(X0+) + FS-RCCSD/LB 1.909 1018 15,948
RKR(X0+) + FS-RCCSD/LB + SDT-1/SB 1.829 1218 17,931
RKR(X0+) + FS-RCCSD/LB + SDT/SB 1.846 1138 17,567
Exptl. [86,87,90] 1.873 1391 0 1.840 1043 17,723

Term energy of the A0+ state as well as equilibrium internuclear distances obtained by the
complete ab initio and the triples-corrected models are in reasonable agreement with the experimental
ones, while those derived from the FS-RCCSD potential curves can hardly be considered to be
satisfactory. One can see that the inclusion of connected triples amplitudes brings the vibrational
constants to a much better agreement with the experiment for both electronic states.

Further refinement of the term energy and spectroscopic constants of the A0+ state is possible by
combining the ab initio transition energies as functions of the internuclear separation with accurate
Rydberg-Klein-Rees (RKR) ground-state potential energy function derived from the spectroscopic
constants reported in [90] (the RKR1 program by LeRoy [91] was employed). Resulting values
obtained in the FS-RCCSDT-corrected calculation are in excellent agreement with the experimental
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ones; note that this result was obtained for the smallest possible model space for which the FS-RCCSD
model yields very poor results.

Further experience with more complicated molecules is required to turn FS-RCCSDT into a
standard tool in high-precision molecular calculations.

3.3. Static Dipole Polarizability of Lead

The developed method allows the calculation of different properties of atoms and molecules
using the finite-field approach. One of such properties is the static dipole polarizability. It characterizes
the interaction of an atom with an external electric field. It can be also used to estimate some chemical
properties of an element such as its dispersion interactions with surfaces.

The polarizability tensor is defined as a mixed derivative of the energy with respect to components
of the external electric field F via the following expression:

αa,b = − ∂2E
∂Fa∂Fb

∣∣∣∣
F=0

. (11)

We focus here on the isotropic (scalar) part of the tensor. Polarizability can be calculated
numerically by the direct use of the finite-field procedure based on the Equation (11). For this
purpose, one can turn on the interaction of the atom with the external electric field adding this
interaction as a perturbation to the electronic Hamiltonian. In the case of an atom, such perturbation
reduces the symmetry of the Hamiltonian from the spherical to the axial one. Since it is not necessary
to employ the spherical symmetry in the calculations carried out with the EXP-T code, it is possible to
avoid using any special procedure, such as the sum-over-states approach. Other properties such as the
electron electric dipole moment enhancement factor can be calculated in a similar way [72,92,93].

Table 3 presents the calculated values of the polarizabilities of the ground electronic state of
the lead atom and its ions. The leading contribution to the polarizability has been calculated
at the FS-RCCSD level with the uncontracted basis set (LB) consisting of (25s25p22d10 f 6g5h4i)
functions with exponential parameters forming the geometric progression. The use of such a
large basis set is important to ensure the satisfactory treatment of all leading polarization effects.
To calculate the contribution of triple cluster amplitudes (see Equation (8)) the SB basis set consisting
of (13s11p10d2 f 2g) functions has been employed; the f and g functions were again contracted using
the ANO-type procedure (see above). In all polarizability calculations 60 core electrons of Pb were
substituted by the relativistic pseudopotential [77].

Table 3. Static scalar dipole polarizabilities for lead and its ions (in atomic units).

State FS- FS-RCCSD/LB + T/SB
RCCSD/LB SDT-1 SDT-1’ SDT-2 SDT-3 SDT Experiment

Pb2+ 6s2 1S0 13.8 13.4 13.4 13.4 13.8 13.7 13.62(8) [94] 13.38(2) [95]
Pb+ 6s26p1 2P1/2 22.7 22.5 22.5 22.6 22.8 22.7
Pb 6s26p2 3P0 43.6 47.7 47.1 46.8 47.0 47.0 47.1(7.1) [96,97]

One can see from Table 3 that triples are mostly important for the neutral lead atom. In this case,
triples contribution is about 7%. It can be noted that the values of the polarizability obtained within
the FS-RCCSDT-3 model are very close to those obtained within the full FS-RCCSDT method.

The calculated values of the polarizability for different charge states of Pb are in good agreement
with available experimental data (see Table 3). The polarizability of the ground state of the neutral lead
is also in a reasonable agreement with previous theoretical data: 46.5 a.u. [98], 44.04 a.u. [81], 47.70 [96],
46.96 [99] (see Ref. [97] for a complete overview of the polarizability calculations). The polarizability
of the Pb+ cation has not ever been measured experimentally, but was theoretically estimated earlier
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to be equal to 23.5 a.u. [100]. We do not know about any other calculation of polarizabilities of Pb+

and Pb2+.

4. Concluding Remarks

Pilot applications of the presented FS-RCCSDT and FS-RCCSDT-n schemes to atomic (Tl, Pb) and
molecular (TlH) systems clearly demonstrate the importance of accounting for triple excitations in
relativistic coupled cluster models for achieving really high accuracy. The results indicate that the
decisive breakthrough in the accuracy and predictive power of the electronic structure modeling of
heavy-element compounds can be achieved by the proposed way. However, further developments in
both the theoretical foundations and the algorithm design are clearly required to make the FS-RCCSDT
models applicable to wide classes of complex heavy-atom molecules as well as to cluster models of
solids [101].

Finally, we note that the proposed models with non-perturbative triples provide a firm basis for
the proper extension of the FS-RCC method to higher Fock space sectors (nh + np ≥ 3), for instance,
to the (1h,2p) and (0h,3p) sectors [37,39,102]. The restriction of the cluster expansions to singles
and doubles in these cases actually means the building of the effective Hamiltonian for the target
sector exclusively from the lower sectors diagrams with no more than two quasiparticles, and thus
resulting in a low precision in most cases. This conclusion is supported by the numerical evidence
reported in Reference [103], which clearly demonstrated the insufficiency of the triple-electron-affinity
equation-of-motion (TEA-EOM) CCSD model for a quantitative description of systems with three open
shells. The extension of the FS-RCCSDT model to higher FS sectors is under testing now and will be
reported in our future papers.
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