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a b s t r a c t

In this work we study diffraction of a spherical acoustic wave due to a point source,
by an impedance wedge In the exterior of the wedge the acoustic pressure satisfies the
stationary wave (Helmholtz) equation and classical impedance boundary conditions on
two faces of the wedge, as well as Meixner’s condition at the edge and the radiation
conditions at infinity. Solution of the boundary value problem is represented by a Weyl
type integral and its asymptotic behavior is discussed. On this way, we derive various
components in the far field interpreting them accordingly and discussing their physical
meaning.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Geometrical Theory of Diffraction (GTD) is one of the most powerful and widely exploited asymptotic theories in
engineering and research practice. It is based on a commonly accepted high frequency localization principle. As is well
known, practical use of GTD in various ray-tracing procedures requires knowledge of diffraction or excitation coefficients
which should be incorporated into such procedures. These coefficients are responsible for local transformation of the
wave field attributed to the rays interacting with some points of the boundary. It is remarkable however that these
coefficients are traditionally determined from canonical problems locally describing the process of such interaction. Due
to the high frequency localization principle, various canonical problems are of importance in applications and therefore
attract attention of researchers.

The canonical problem under consideration plays an important role in numerous applications including first of all
Geometrical Theory of Diffraction and its various modifications. In the case of perfect wedges, i.e. those with ideal
boundary conditions, some results dealing with the 3D diffraction of waves from a point source are known in the
literature [1–5]. To our knowledge, a basic idea is in use of the Weyl type integral representation [6] of solution for
the corresponding boundary value problem. This representation is actually a plane wave expansion for the incident field
from a point source and a similar representation for the field diffracted by the perfect wedge. Such an expansion is based
on solution of the plane wave diffraction problem by a wedge for real angles of incidence, which is then analytically
continued for complex-valued angles. An appropriate choice of integration contours leads to a rapidly convergent iterated
integral called further Weyl integral representation. For a perfect wedge the integrand of Weyl representation has a simple
elementary form, and further analysis deals with asymptotic evaluation of the Weyl integral for large distances from the
edge.
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However, only recently some progress has been achieved for the problem of diffraction of the electromagnetic wave
field from a Hertzian dipole located over an impedance wedge [7], Chapter 3, [8,9]. Actually, in the present work we
appropriately adapt results of the abovementioned works to the acoustic case, taking into account that the acoustic
problem admits solution in quadratures with the aid of the Malyuzhinets function. The authors of [8,9] relied upon
analytical-numerical solution of the diffraction problem of a skew incident plane electromagnetic wave in a wedge-
shaped domain with Leontovich boundary conditions [10,11], see also [12]. (Remark that for some special cases this
problem can be solved explicitly, i.e. in quadratures [13,14].) Exploiting, in particular, the Malyuzhinets technique [15],
they have reduced the electromagnetic problem to a system of vector functional equations and then to a Fredholm
integral equation. Then, making use of some ideas of analytic continuation with respect to the angles of skew incidence,
they have asymptotically evaluated the iterated Weyl integral and described the scattered field at far distances from
the edge. Some numerical results have been also obtained, which included numerical solution of the integral equation.
It should be emphasized that a principal difficulty of the corresponding analysis was in the fact that, as it seems, the
electromagnetic problem of diffraction of a skew incident plane wave by an impedance wedge cannot be solved explicitly,
i.e. in quadratures.

In the present work we exploit the possibility to solve the acoustic problem explicitly, i.e. the problem of diffraction of
an acoustic plane wave which is skew incident at the edge of an impedance wedge. This solution given below is actually
some modification of the Malyuzhinets solution [15] and is found explicitly. Having Weyl integral representation of the
wave field for the point source illumination of an impedance wedge, we evaluate the integral by means of the saddle
point technique (or stationary phase technique). To this end, we deform the integration contours appropriately, taking
into account the corresponding singularities captured in the course of the deformation. Then we evaluate various terms
asymptotically and discuss physical meaning of the wave components at far distances from the edge. These components
are reflected waves from the faces, the space wave from the edge as well as the surface waves from the edge. The
amplitudes and phases of these waves depend on position of the point source. Provided that the point source is in some
close vicinity of a face of the wedge, additional components in the asymptotics arise. In this case the source additionally
excites a surface wave that propagates along the face towards the edge then it is reflected from and transmitted across
the edge, giving rise to an additional space wave from the edge.

2. Statement of the problem

An acoustic point source illuminates an impedance wedge of the opening angle 2Φ . The wave field interacts with the
faces and with the edge giving rise to the scattered field, which consists of various far-field components having clear
physical meaning. The asymptotic description of these components in the far field, mentioned in the Introduction, is one
of the main goals of our study.

2.1. Formulation of the problem

In the exterior Ω of a wedge with the surface S consisting of two faces S+ and S− (Fig. 1) the acoustic wave field u
(Green’s function) satisfies the Helmholtz equation

(△ + k2)u(X, Y , Z) = −δ(X − x0)δ(Y − y0)δ(Z) , (1)

where the point source is located at (x0, y0, 0). Together with the Cartesian coordinates, it is also useful to introduce
cylindrical coordinates r, ϕ, z,

X = r cosϕ, Y = r sinϕ, Z = z.

In these coordinates the position of the point source is given by (r0, ϕ0, 0) and the domain Ω is Ω = {(r, ϕ, z) : r >
0, |ϕ| < Φ, |z| < ∞}.

The total acoustic field u = u(r, ϕ, z) fulfills the impedance boundary conditions on the wedge’s faces S±(
±

1
r
∂u
∂ϕ

− ikη±u
)⏐⏐⏐⏐

ϕ=±Φ

= 0 , (2)

where k > 0, π/2 < Φ ≤ π , η± are the surface impedances. It is worth commenting on the real and imaginary parts
of the surface impedances. We assume that ℜη± = 0, which means that the impedance surfaces are not absorbing, and
ℑη± < 0. In acoustics the latter restriction implies that the impedance surfaces S± can support surface waves [5], Chapter
2.1

The wave field behavior at the edge satisfies Meixner’s condition, as r → 0,

u(r, ϕ, z) = C + O(rδ) , δ > 0 , (3)

for arbitrary fixed z and uniformly with respect to (w.r.t.) ϕ.

1 The time dependence exp{−iωt} is assumed and suppressed throughout the paper.
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Fig. 1. Diffraction of waves from a point source over an impedance wedge.

An appropriate radiation condition at infinity is implied and it can be formulated in different forms (see also [5], Sect.
2.4). Such a formulation is the simplest provided ℜη± = ϵ, ϵ > 0 is small, which means that the faces S± are slightly
absorbing,2 then∫

SR

⏐⏐⏐⏐∂u∂r − iku
⏐⏐⏐⏐2 ds → 0, as r = R → ∞ , (4)

where SR is the part of the sphere r = R which is contained in Ω . The problem (1)–(4) is uniquely solvable with the
classical solution uϵ . Then, because we are interested in the case ℜη± = 0, we can specify the desired solution u with the
non-absorbing wedge’s faces as the limiting one,

u = lim
ϵ→0

uϵ . (5)

The existence of the latter limit in (5) can be directly verified for the problem at hand.

2.2. The far-field asymptotics and dependence on parameters of the problem

We intend to describe the far-field behavior of u satisfying the problem (1)–(5). It should be noticed that it strongly
depends on the position of the point source. We, first, assume that the dimensionless parameter kr0 is large, i.e. the source
is not close to the edge. In what follows, however, we assume that, instead of kr0, k ≫ 1 is the main dimensionless
large parameter implying that the dimensionless coordinates r, ϕ, z are introduced in accordance with the substitution
r/r0 → r, z/r0 → z. Second, the position of the point source w.r.t. the wedge’s faces depends on ϕ0, |ϕ0| < Φ .

A basic analytical tool for study of the problem is the Weyl type integral representation of the solution, [6,7]; Chapter 3.
For the point source in the 3D space this is a double contour integral which, in accordance with the physical terminology,
is an expansion w.r.t. the plane waves depending on complex angles of incidence α, β . It should be noticed, however,
that for real α, β these angles can be really attributed to the direction of propagation of some ‘incident’ plane wave with
its expression contained in the integrand.

Solution of the problem for the point source located over an impedance wedge in 3D space is sought in a similar form
of ‘the plane wave expansion’, i.e. in the form of the double Weyl integral, however, with yet unknown function in the
integrand. It turns out that this unknown function can be found, for real α, β , as a solution of the diffraction problem
for the plane wave which is skew incident at the edge of the wedge. For real α, β , in the acoustic problem the solution
can be determined in an explicit form (as a Malyuzhinets’ type solution) and then analytically continued on the complex
values so that the Weyl integral solves the problem for a point source over the impedance wedge. Further, our analysis
deals with asymptotic evaluation of the Weyl integral representation as k ≫ 1.

2.3. Overview of the main new results

As already mentioned, in the present work we make use of the Weyl integral representation describing solution of the
problem in an explicit form of triple integral. This work deals basically with asymptotic evaluation of the Weyl integral

2 In this case, in particular, the surface waves that outgo from the edge to infinity exponentially vanish as r → ∞.
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Fig. 2. The contours of integration for the Weyl integrals for the wave field from the point source. The branch cuts for θ+(β) connect the points
arcsin η+ + πn and − arcsin η+ + πn with n = 0,±1, . . . correspondingly.

and with description of various components in the far-field asymptotics. We apply multi-dimensional versions of the
saddle point technique. On this way, we are forced to consider two different cases. The first case implies that the point
source is located outside a close neighborhood of the wedge’s faces. The second one corresponds to the source located
near a wegde’s face, however, outside some close vicinity of the edge. In the first case we obtain asymptotic expressions
of the far field that have clear physical meaning of waves reflected from the faces. The other components correspond to
the diffracted wave from the edge as well as the surface waves propagating from the edge. These terms are analogous
to those obtained in the electromagnetic version of the problem [7]; Chapter 3.3 The asymptotic expressions are written
in simple geometrical terms, depending on Malyuzhinets function, and can be easily interpreted in the framework of
Geometrical Theory of Diffraction (GTD). The latter means that geometrical optics objects like angle of conical diffraction,
diffractional eikonals etc. can be easily identified in the far-field expressions. In the second case the results are similar.
However, several new terms in the asymptotics arise. The source located near a wedge’s face additionally generates the
so-called primary surface wave that propagates to the edge and gives rise to reflected and transmitted surface waves.
We carefully discuss laws of reflection and transmission of these waves. On this way, an exhaustive physical analysis of
wave processes can be given. At the same time, the space wave from the edge is also generated as a result of interaction
of the primary surface waves with the edge. Contrary to the result, discussed in [9] that requires solution of an integral
equation, we obtain new expressions for the diffraction or excitation coefficients which have clear physical interpretation
and can be directly used for numerics. These expressions depend on the eponymous Malyuzhinets function and can be
efficiently incorporated in various GTD-type procedures of research and engineering practice. Some important results
similar to those in this work were discussed in the paper [16] for the case of surface wave incidence.

3. Weyl integral representation, Malyuzhinets type solution for the amplitude and analytic continuation

We make use of the integral representation for the incident field from an acoustic point source in 3D space located at
M0 = (x0, y0, 0)

u0(M) =
ik

8π2

∫
Γπ/2

dβ
∫
γψ−π

dα sinβ eik[z cosβ+sinβ(r0 cos(α−ϕ0)−r cos(α−ϕ))] (6)

and also u0(M) =
eikR0
4πR0

, where M = (X, Y , Z) (or (r, ϕ, z)), R0 = |MM0|, the contours of integration in (6) are shown in

Fig. 2, (0 ≤ ψ < 2π ).4 It should be noticed that Weyl integral representation for the wave field from the point source in
3D space requires some work to derive. The detailed derivation of the Weyl integral representation is discussed in Sect.
3.1 of [7]. In particular, it is shown that the parameter ψ in (6) is connected with direction from the point source to the
observation point. The representation (6) can be interpreted as an expansion of the wave field from a point source with
the aid of the plane waves eik[z cosβ−r sinβ cos(α−ϕ)]A0 with the amplitude A0 = exp(ikr0 sinβ cos(α − ϕ0)).

Remark 1. It is worth noticing that v = e−ikr sinβ cos(α−ϕ) is a plane wave solution of the 2D Helmholtz equation,
(△r,ϕ + k2 sin2 β)v = 0, whereas w = eik[z cosβ−r sinβ cos(α−ϕ)]A0 satisfies the equation (△r,ϕ,z + k2)w = 0.

3 In this case solution of an integral equation is required because the electromagnetic problem is more complex than acoustic one which is solved
in quadratures.
4 The contour Γπ/2 coincides with Γ ′

π/2 in Fig. 2., however, the integrand in (6) does not have any branching points.
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The total field from the point source over a wedge is sought in an analogous form

u(M) =
ik

8π2

∫
Γ ′
π/2

dβ
∫
γ(ϕ0)

dα sinβ eik[z cosβ+sinβr0 cos(α−ϕ0)] U(r, ϕ;α, β) (7)

with yet unknown U(r, ϕ;α, β) and with the contours of integration shown in Fig. 2, Γ ′

π/2 = (i∞, 0+] ∪ [0+, π − 0] ∪

[π − 0, π − 0− i∞). The contour Γ ′

π/2 goes along the corresponding sides of the branch cuts. The contour γ(ϕ0) is located
in the strip which is parallel to the imaginary axis and has the width π . We assume that |ϕ0| < Φ − π/2 which ensures
convergence of the Weyl integral for the incident wave. It should be remarked that this restriction can be actually ignored
for the asymptotic expressions to be derived.

Taking into account Remark 1 as a motivation, by analogy we assume that U solves the equation

(△r,ϕ + (k′)2)U(r, ϕ;α, β) = 0, (8)

and additionally satisfies the boundary condition(
±

1
r
∂U
∂ϕ

− ik′ sinϑ±(β)U
)⏐⏐⏐⏐

ϕ=±Φ

= 0 , (9)

where we exploited the notations

sinϑ±(β) =
η±

sinβ
(10)

and k′
= k sinβ which are convenient for further studies.

Let us also assume that for real α and β and such that −Φ < α < Φ , 0 < β < π the yet unknown U(r, ϕ;α, β)
satisfies Meixner’s condition as r → 0 and the condition as r → ∞. This condition for U will be discussed below.

In other words we require that the wave field eik[z cosβ+sinβr0 cos(α−ϕ0)] U(r, ϕ;α, β) be the solution of the diffraction
problem of the skew incident plane wave eik[z cosβ−r sinβ cos(α−ϕ)]A0 with the amplitude A0 = exp(ikr0 sinβ cos(α − ϕ0)).
The angles α, β specify the direction of the incident ray impinging the axis OZ: β is the angle between the axis OZ and
the incident ray and α is the angle between the axis OX and the projection of the ray on the plane Z = 0 (see also Fig. 1).

It is remarkable that the desired 2D solution U(r, ϕ;α, β) of (8), (9) satisfying Meixner’s and radiation conditions for
arbitrarily fixed values of the parameters α, β (−Φ < α < Φ , 0 < β < π ) can be found explicitly and is actually the
Malyuzhinets solution (see [5], Chapter 6, for the wave number k′(β) = k sinβ).

For given angles α, β the desired solution satisfying Eq. (8) and the boundary conditions (9) is found in the form of
the Sommerfeld integral

U(r, ϕ;α, β) =
1

2π i

∫
γ

ds e−ikr sinβ cos s f (s + ϕ;α, β) , (11)

where the double-loop Sommerfeld contour of integration γ is shown in Fig. 3 together with the steepest descent paths
(SDP), the function f is specified by the expressions

f (s;α, β) =
µ cosµα

sinµs − sinµα
Ψ (s;β)
Ψ (α;β)

, µ =
π

2Φ
and

Ψ (s;β) =

ψΦ (s −Φ + π/2 − ϑ−(β))ψΦ (s −Φ − π/2 + ϑ−(β))ψΦ (s +Φ + π/2 − ϑ+(β))ψΦ (s +Φ − π/2 + ϑ+(β)).
The meromorphic function ψΦ (·) is the Malyuzhinets function (see [5], Sect. 6.2). The Malyuzhinets function is a
meromorphic solution of the functional difference equation

ψΦ (z + 2Φ)
ψΦ (z − 2Φ)

= cot
( z
2

+
π

4

)
and in the strip |ℜ(z)| < π/2 + 2Φ has an integral representation

ψΦ (z) = exp
[
−

1
2

∫
∞

0

cosh(zζ ) − 1
ζ cosh(πζ/2) sinh(2Φζ )

dζ
]
.

In order to be able to substitute the function U(r, ϕ;α, β) into the representation (7) one ought to continue analytically
w.r.t. α, β from the real values onto complex domains containing the integration contours Γ ′

π/2 and γ(ϕ0). To this end, in
particular, one has to describe the analytic branches of the functions ϑ±(β) which are the solutions of the Eqs. (10). This
is traditional and is described in [7] pp. 79–80. The branch cuts on the β-plane are shown in Fig. 2.

We are interested in asymptotics as k → ∞ or, in other words, we deduce the far-field asymptotics of the integral (7)
because we also assume that kr → ∞. To this end, it is necessary to study the behavior of U and deform the integration
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Fig. 3. The plane of the complex variable s with the Sommerfeld double loops γ and the steepest descent paths γ±π := SDP(±π ).

contour γ in the integral into the SDPs. On this way, the singularities of f (s+ϕ;α, β) will be captured. Namely the location
of the observation point and that of the source specify the singularities captured, see (32) in Appendix. First, we consider
the case when the point source is not close to a wedge’s face and compute different components in the far field. Then,
assuming that the source is near the face S+, ϕ = Φ , we obtain expressions for the additional components that arise in
this case.

4. The far-field asymptotics: the point source is not close to the wedge’s faces

The main tool in calculation of the asymptotics for the Weyl integral (7) is the saddle point technique, in particular, its
multi-dimensional version, [17–21]. We also provide the calculations by appropriate physical interpretations. The latter
enables us to describe physical meaning of the components in the scattered field but are also used to control correctness
of the derivations.

4.1. Motivation, reductions and asymptotic evaluation of (7)

We evaluate asymptotics of (7) as k → ∞. To this end, consider, first, the phase function

S = i {z cosβ + sinβ [r0 cos (α − ϕ0)− r cos s]} (12)

which is formed by the exponents in the integrands of (7) and (11). For a simple saddle point (α0, β0, s0) we require that

grad S(α, β, s)
⏐⏐
α=α0,β=β0,s=s0

= 0, det S ′′(α, β, s)
⏐⏐
α=α0,β=β0,s=s0

̸= 0

is true. As can easily be seen, the following two saddle points are determined

(ϕ0, β0,−π) , (ϕ0, β0, π) (13)

with β0 = arctan [(r + r0) /z] and r =

√
x2 + y2.

The moduli of det S ′′ at these two saddle points (13) are identical and given by⏐⏐det S ′′
⏐⏐
α=ϕ0,β=β0,s=±π

= r0r
[
li + l

]
sin2β0, (14)

with

li = r0/sinβ0, l = r/sinβ0,

√
(r + r0)2 + z2 = li + l.

For the moduli of det S ′′ differ from zero, the two points given in (13) are indeed the sought-for simple saddle points. Then
deformation of the integration surface to that of the steepest descent S(β0) × S(ϕ0) × Sarg sinβ0 (±π ) is required [17], see
below the definitions of S(a). In this way, some singularities of the integrand are captured which additionally complicates
the analysis.
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It is reasonable, however, to proceed in a different way considering the integral (7) as iterated formally substituting U
from (11). Consider the innermost integration with respect to s. The rapidly varying exponential factor exp(−ikr sinβ cos s)
of the Sommerfeld integrals has the saddle points s0 = ±π as well as the steepest descent paths Sarg sinβ (±π ):

Re s = ±π − Gd(Ims, arg sinβ),

where Gd(ξ, ψ) is the generalized Gudermann function defined as a solution of the equation

cos Gd(ξ, ψ) cosh ξ − tanψ sin Gd(ξ, ψ) sinh ξ = 1,

Gd(x, y) = arctan
(

sinh(x) cos(y)
1 + cosh(x) sin(y)

)
satisfying the conditions Gd(ξ, 0) = gd(ξ ) and Gd(ξ, π/2) = 0, where gd(x) = sign(x)arcccos(1/cosh(x)) is the
traditional Gudermann function (see also [9] and Appendix). The curve Sarg sinβ (a) intersects the real axis at the point
a. As arg sinβ = 0 we also denote the contour Sarg sinβ (a)|β=π/2 by S(a).

Then we deform the integration paths γ to those of steepest descent in one-dimension, namely, to Sarg sinβ (±π ). Recall
that for β = π/2 one has Sarg sinβ (+π )|β=π/2= S(π ) = γ+π . During this process, several polar singularities (see the
Table A.1 in Appendix) may be captured. The contours Γ ′

π/2 and γ(ϕ0) in (7) are also deformed to those of steepest descent
S(β0) and S(ϕ0) correspondingly.

The integral (7) reduces to

u(M) = ue(M) +
ik

8π2

5∑
n=1

∫
S(β0)

dβ
∫
S(ϕ0)

dα sinβ eik[z cosβ+sinβ(r0 cos(α−ϕ0)−r cos sn(α,β))] rn(α, β) , (15)

rn(α, β) = Hσ (β)(An)Rn(α, β) and

ue(M) =
ik

8π2

∫
S(β0)

dβ
∫
S(ϕ0)

dα
∫
Sarg sin(β)(0)

ds
2π i

sinβ eik[z cosβ+sinβ(r0 cos(α−ϕ0)+r cos s)]
×

[f (s + π + ϕ;α, β) − f (s − π + ϕ;α, β)] ,
(16)

where Rn(α, β) , Hσ (β) are defined in Appendix and the boundaries of the curvilinear strip σ (β) are Sarg sinβ (±π ). Remark
that in (16) we made the change of the integration variable s in accordance with s → s ± π so that the contours
Sarg sin(β)(∓π ) are transformed to Sarg sin(β)(0).

4.2. The incident field from the source, the reflected waves

Consider the summands with n = 1, 2, 3 for the double integral in (15) and apply the 2D saddle point technique
directly following the derivations in Sect. 3.3.3 in [7] (see also (13), (14)) which are only briefly described in this Section.

As a result of simple calculations we find the expressions for the direct (incident) and waves reflected from the faces.
For the incident wave we have

u0(M) =
eikR0

4πR0
(17)

as |ϕ − ϕ0| < π , otherwise, there is no contribution from the saddle point, u0(M) = 0.
We notice that (α±

0 , β
±

0 ) are the saddle points of the double integral (k → ∞)

ik
8π2

3∑
n=2

∫
S(β0)

dβ
∫
S(ϕ0)

dα sinβ eik[z cosβ+sinβ(r0 cos(α−ϕ0)−r cos sn(α,β))],

where n = 2 corresponds to (α+

0 , β
+

0 ) and n = 3 to (α−

0 , β
−

0 ),

α±

0 = arctan
y0 − r sin (±2Φ − ϕ)

x0 − r cos (±2Φ − ϕ)
, β±

0 = arccos
z
ψ r±

.

ψ r± denote the distances that the reflected waves travel from the source point via the respective points of reflection to
the point of observation

ψ r± =

√
r2 + r20 − 2rr0 cos (±2Φ − ϕ − ϕ0)+ z2.

As a result of derivations analogous to those in Sect. 3.3.3 in [7], we arrive at the non-uniform asymptotic expressions
for the reflected waves

ur
±
(M) = R±(α±

0 , β
±

0 )
eikψ

r±

4πψ r±
(18)
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Fig. 4. The edge wave and Keller’s cone.

as |±2Φ − ϕ − ϕ0| < π , otherwise, ur
±
(M) = 0. The reflected waves can be interpreted as the waves emanated by the

imaginary sources which are the mirror images of the real source at (x0, y0, 0) w.r.t. the wedge’s faces S±, R±(α±

0 , β
±

0 ) are
the reflection coefficients, see Appendix. The eikonals of these waves are ψ r± correspondingly.

It is worth remarking that the expressions for the incident and reflected waves in (17), (18) are in full agreement with
the Geometrical Optics.

4.3. The space wave, excited by the incident space wave, from the edge

We intend to apply the multi-dimensional saddle point technique [17] to the triple integral (16). In the integral
expression for ue in (16) we consider the phase function of rapidly varying exponent

Se
= i {z cosβ + sinβ [r0 cos (α − ϕ0)+ r cos s]}

and deform integration contours to those of the steepest descent. To this end, we study the saddle points.
The equations for the saddle point

Se
α = −i sinβr0 sin (α − ϕ0) = 0,

Se
β = i {−z sinβ + cosβ [r0 cos (α − ϕ0)+ r cos s]} = 0,

Se
s = −ir sinβ sin s = 0

are satisfied by w0 = (ϕ0, β0, 0), where β0 is a solution of the equation cotβ0 =
z

r+r0
from the segment (0, π ).

It is instructive to discuss the geometrical meaning of the saddle point w0. The point Ed on the edge with the Cartesian
coordinates (0, 0, zd) (with zd =

zr0
r+r0

) is called diffraction point, Fig. 4. The incident ray goes from the source to the point
Ed under the angle of incidence π/2 − β0

5 and gives rise to the right circular cone of the diffracted rays i.e. to the so
called Keller cone with the vertex at Ed and with the axis Edz having the opening angle π/2 − β0 and composed by the
diffracted rays. The observation point M = (r, ϕ, z) belongs to this cone so that one of the diffracted rays arrives at this
point.

We can compute the second derivatives and then det[{Se
}
′′
] is assumed to be non-degenerate,

det[{Se
}
′′
] = irr0 sin2 β0{z cosβ0 + (r + r0) sinβ0} ̸= 0.

The latter means that the observation point M = (r, ϕ, z) is located outside the pernumbral domains for the incident or
reflected waves.

Applying the formula for the leading term in the 3D steepest descent technique to the integral

ue(M) =
ik

8π2

∫
S(β0)

dβ
∫
S(ϕ0)

dα
∫
Sarg sin(β)(0)

ds
2π i

sinβ eik[z cosβ+sinβ(r0 cos(α−ϕ0)+r cos s)]
×

[f (s + π + ϕ;α, β) − f (s − π + ϕ;α, β)] ,

we arrive at6

ue(M) =
eiπ/4

4π
eik

√
z2+(r+r0)2√

(z2 + (r + r0)2)

{√
z2 + (r + r0)2

2πkrr0

}1/2

D(ϕ, ϕ0, β0)
(
1 + O

(
1
k

))
, (19)

5 This is the angle between the incident ray and the plane orthogonal to the edge and conducted at the diffraction point Ed .
6 The formula for the leading term of the asymptotics is given in [17], see also pp. 89–92 in [7].
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where D(ϕ, ϕ0, β0) = f (−π + ϕ;ϕ0, β0) − f (π + ϕ;ϕ0, β0) is the diffraction coefficient of the edge wave. As we have
already mentioned the asymptotics of the edge wave in (19) is non-uniform w.r.t. ϕ, however, the corresponding uniform
version in the framework of Uniform Asymptotic Theory (UAT) of diffraction can easily be developed in the line with Sect.
3.4.2, [7], i.e. with the aid of the Fresnel type transition functions. Remark that the non-uniform expression (19) can also
be written in terms of the incident and diffracted rays introducing the corresponding eikonals l and li as it is described
in Sect. 3.4.1 of [7].

It is worth commenting on the expression (19) in a limiting situation as z = 0 and also kr0 → ∞. This will enable us
to verify the result of calculation by its reduction to a formula known from literature. Expression for the cylindrical wave
is well known in the far field asymptotics for the plane wave which is normally incident at the edge. It is also known
that the expression for the plane wave can be obtained from that for the point source if the latter is moved to infinity
(kr0 → ∞) and its amplitude is appropriately normalized. It is, therefore, natural to compare the expression for the edge
wave (19) with that in the limiting case z = 0 and kr0 → ∞. To this end, we set β0 → π/2, r/r0 → 0 and find

ue(M) ∼
eikr0

4πr0

eiπ/4
√
2π

eikr0
√
kr

D(ϕ, ϕ0, π/2)
(
1 + O

(
1
k

))
. (20)

In these limiting conditions for the incident wave field we have the expression

u0(M) =
eikr0

4πr0
e−ikr cos[ϕ−ϕ0]

(
1 + O

(
1
kr0

))
which represents the 2D plane incident wave with the amplitude A =

eikr0
4πr0

. As a result, the formula (20) gives the correct
expression for the 2D circular wave from the vertex excited by the 2D plane wave A e−ikr cos[ϕ−ϕ0], compare with the
formula (6.53) in [5].

4.4. Surface waves propagating from the edge

Now we turn to the summands with n = 4, 5 in the expression (15), the asymptotics of which describe the surface
waves propagating from the edge. They are excited by the incident wave from the point source interacting with the edge.
We shall apply the 2D saddle point technique and, to this end, it is useful to make the change of the integration variable
β in accordance with τ = cosβ . The latter mapping transforms the strip |ℜβ − π/2| ≤ π/2 onto the complex plane τ
with the cuts conducted from −∞ to −1 and the from 1 to +∞. The integration contour Γ ′

π/2 is reduced to the contour
R′ which passes from +∞ along the lower side of the branch cut to +1 + 0 then comprises it along the small arc in the
lower half plane and goes to −1 + 0 along the segment (−1, 1) and in a similar way compassing the point −1 in the
upper half plane arriving at infinity along the upper side of the branch cut (−∞,−1]. Remark that −1 < τ < 1 provided
0 < β < π .

Thus we have7

usw
±
(M) = e−ikr sin(Φ∓ϕ) η±

×

−ik
8π2

∫
R′

dτ
∫
S(ϕ0)

dα Hσ (β(τ ))(A±)C±(α, β(τ )) eik[zτ+
√

1−τ2r0 cos(α−ϕ0)+
√
1−η2

±
−τ2 r cos(Φ∓ϕ)]

, (21)

where

Ssw
±

= i[zτ +

√
1 − τ 2r0 cos(α − ϕ0) +

√
1 − η2± − τ 2 r cos(Φ ∓ ϕ)]

is the phase function of rapidly varying exponent as k → ∞,

C±(α, β) = Rϑ± (β) · f (Φ − π − ϑ±(β);α, β)

is the slowly varying factor. The non-degenerate saddle points are found from the equations

(Ssw
±

)′α = 0 , (Ssw
±

)′τ = 0,

or

−ir0 sin(α − ϕ0)
√
1 − τ 2 = 0,

i

⎛⎝z − r0 cos(α − ϕ0)
τ

√
1 − τ 2

− r cos[Φ ∓ ϕ]
τ√

1 − η2± − τ 2

⎞⎠ = 0

so that the saddle points (ϕ0, τ±

0 ) of Ssw
±

are correspondingly specified by

α = ϕ0, τ = τ±

0 .
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Fig. 5. Surface waves from the edge.

We take τ+

0 = cosβ+

0 for the upper signs and τ−

0 = cosβ−

0 for the lower signs in the equation

z = r0
τ±

0√
1 − (τ±

0 )2
+ r cos[Φ ∓ ϕ]

τ±

0√
1 − η2± − (τ±

0 )2

correspondingly. It is useful to introduce the geometrical characteristics that can be attributed to the latter equation for
τ±

0 and to clarify the geometrical optics meaning of the equation, Fig. 5. Let K±

0 be correspondingly the angle between
the incident ray (of the length L± = r0/cos K±

0 ), that impinges the edge at the point E± of diffraction, and the orthogonal
to the edge plane conducted through the point E± of diffraction on the edge. (Remark that in general case E+ and E−

are different points.) Then, along S± it goes to the point of normal projection of the observation point M on S± (which is
assumed to be close to S± correspondingly) under the angle of transmission K±. The lengths of the diffracted rays along
the surface S± are r cos[Φ∓ϕ]/cos K± correspondingly. As a result, we have an equivalent of the equation in geometrical
optics form

z = r0 tan K±

0 + r cos[Φ ∓ ϕ] tan K±

with

tan K±

0 =
τ±

0√
1 − (τ±

0 )2
, tan K± =

τ±

0√
1 − η2± − (τ±

0 )2
.

We can easily compute the second derivatives of Ssw
±

at the stationary points,

det Ssw
±

= −

⎛⎝ r20
1 − (τ±

0 )2
+

r0r cos[Φ ∓ ϕ]

1 − η2± − (τ±

0 )2

√
1 − (τ±

0 )2√
1 − η2± − (τ±

0 )2

⎞⎠
and Ssw

±
|(ϕ0,τ

±

0 )= i[zτ±

0 +

√
1 − (τ±

0 )2r0 +

√
1 − η2± − (τ±

0 )2 r cos(Φ ∓ ϕ)] .
Applying the formula for the leading term of the asymptotics of the double integral (21), we find (τ±

0 = cosβ±

0 =

sin K±

0 )

usw
±
(M) = sinβ±

0 C±(ϕ0, β±

0 )
e−ikr sin(Φ∓ϕ) η±

4π
×

exp(ik[z cosβ±

0 + sinβ±

0 r0 cos(α − ϕ0) +

√
sin2 β±

0 − η2± r cos(Φ ∓ ϕ)] ){
r20

sin2 β±

0
+

r0r cos[Φ∓ϕ]

sin2 β±

0 −η2
±

sinβ±

0√
sin2 β±

0 −η2
±

}1/2

(
1 + O

(
1
k

))
. (22)

The expressions in (22) are really present in the asymptotics if the observation point is close to the wedge’s face
ϕ = ±Φ correspondingly or, more exactly, as 0 < Φ ∓ ϕ < −gd(Imϑ±(β±

0 )). It is obvious from the expressions (22) that
wave field is exponentially small outside some close vicinities of S± as kr ≫ 1 due to the factor e−ikr sin(Φ∓ϕ) η±

.

7 The analysis can be given for surface waves both on S+ and on S− simultaneously.
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5. The far-field asymptotics: the point source is near one face of the wedge

In this section we assume that the point source is located in some close vicinity of the wedge’s face S+ so that
0 < Φ − ϕ0 < −gd(Imϑ+(π/2)). In this case some additional components arise in the asymptotics as k → ∞. Indeed,
from the physical point of view the point source located near the impedance surface S+ excites the so-called primary
surface wave that propagates at the edge then, interacting with the edge, gives rise to the edge wave that differs from
that described. At the same time the surface waves reflected from and transmitted across the edge discussed in [16] are
added to the surface waves discussed in Section 4.4. We begin the analysis with the primary surface wave from the point
source.

In the adopted assumption about the position of the point source an additional singularity α = Φ+ϑ+(β) of R+(α, β)
is captured when deforming the contour of integration w.r.t. α in the integral (15) with n = 2 to the SD path S(ϕ0) and
the corresponding residue contribution reads

usw
0 = −

k
4π

∫
Γ ′
π/2

dβ sinβ resΦ+ϑ+(β) R+(α, β) eik{z cosβ+sinβ[r0 cos(Φ+ϑ+(β)−ϕ0)−r cos(ϑ+(β)−Φ+ϕ)]}.

As in the previous section we make use of the new integration variable τ = cosβ and arrive at the integral

usw
0 =

k
4π

eik[r0 sin(ϕ0−Φ)η++r sin(ϕ−Φ)η+]

∫
R′

dτ r+(τ ) e
ik
{
zτ+ρ0

√
1−η2

+
−τ2

}
, (23)

where ρ0 = r0 cos[Φ − ϕ0] − r cos[Φ − ϕ] > 0, r+(τ ) = resΦ+ϑ+(β) R+(α, β)|τ=cosβ . Applying the stationary phase
technique to the integral (23), we arrive at the leading term of the primary surface wave from a point source

usw
0 (M) = r+(τ∗)×

kei3π/4

2
√
2π

eik[r0 sin(ϕ0−Φ)η++r sin(ϕ−Φ)η+]√
(1 − η2+)kρ0

{
1 − η2

+

1 + z2/ρ2
0

}3/4

eik
√
(1−η2

+
)(z2+ρ20 )

(
1 + O

(
1
k

))
, (24)

where τ∗ = z
√

1−η2
+

z2+ρ20
.

5.1. Reflection and transmission of the primary surface wave at the edge of the wedge

The primary surface wave (24) propagates to the edge and gives rise to the edge wave and to the reflected and
transmitted surface wave. Derivation of the expressions for those waves is the main goal of our simple calculations in
this section. From the analytical point of view the reflected surface wave is described by the additional contribution of
the polar singularity at α = Φ + ϑ+(β) of C+(α, β) = Rϑ+ (β) · f (Φ − π − ϑ+(β);α, β) that is captured when deforming
the integration contour γ(ϕ0) into S(ϕ0) for the summand in (15) with n = 4 (see also (21)). The residue contribution then
reads

usw
r (M) = −

k
4π

∫
Γ ′
π/2

dβ sinβ Rϑ+ (β)resΦ+ϑ+(β) f (Φ − π − ϑ+(β);α, β)×

eik{z cosβ+sinβ[r0 cos(Φ+ϑ+(β)−ϕ0)+r cos(ϑ+(β)+Φ−ϕ)]}.

We make use of the new integration variable τ = cosβ and arrive at the integral

usw
r (M) =

k
4π

e−ik[r0 sin(Φ−ϕ0)η++r sin(Φ−ϕ)η+]

∫
R′

dτ rϑ+ (τ ) e
ik
{
zτ+ρ

√
1−η2

+
−τ2

}
, (25)

rϑ+ (τ ) = Rϑ+ (β)resΦ+ϑ+(β) f (Φ − π − ϑ+(β);α, β)|τ=cosβ and ρ = r0 cos[Φ − ϕ0] + r cos[Φ − ϕ] . The integral in (25) is
computed asymptotically as k → ∞. The stationary point τ0 of the phase function

S+(τ ) = zτ + ρ

√
1 − η2+ − τ 2

satisfies the equation

S ′

+
(τ+) = z −

ρ τ+√
1 − η2+ − τ 2+

= 0,

and τ+ = z

√
1−η2

+

z2+ρ2
. It is non-degenerate with

S ′′

+
(τ+) = −ρ(1 − η2

+
)
{
1 + z2/ρ2

1 − η2+

}3/2

< 0.
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Fig. 6. Reflection and transmission of the primary surface wave at the edge, h = r cos[Φ − ϕ], h0 = r0 cos[Φ − ϕ0].

The stationary point τ+ has simple geometrical meaning. We introduce the point of reflection (0, 0, zr ) on the edge
and the angle of reflection κ+ by the equality (see Fig. 6)

tan κ+ =
z − zr

h
, h = r cos[Φ − ϕ].

In the same manner, we can introduce the angle of incidence of the primary surface wave (see (24)) by the equality

tan κ0 =
zr
h0
, h0 = r0 cos[Φ − ϕ0].

As a result, the equation for the stationary point is written as

z = h0 tan κ0 + h tan κ+, tan κ0 =
τ∗√

1 − η2+ − τ 2
∗

= tan κ+

with κ+ = κ0 which is the Geometrical Optics law of reflection of the surface wave at the edge, see Fig. 6. In the leading
approximation, for the reflected surface wave we find

usw
r (M) = rϑ+ (τ+)×

kei3π/4

2
√
2π

eik[r0 sin(ϕ0−Φ)η++r sin(ϕ−Φ)η+]√
(1 − η2+)kρ

{
1 − η2

+

1 + z2/ρ2

}3/4

eik
√
(1−η2

+
)(z2+ρ2)

(
1 + O

(
1
k

))
. (26)

In a similar manner we deal with the transmitted surface wave that originates from the analysis of the contribution of
the polar singularity at α = Φ+ϑ+(β) of C−(α, β) = Rϑ− (β) · f (−Φ+π +ϑ−(β);α, β) that is captured when deforming
the integration contour γ (Φ−π/2) into S(ϕ0) for the summand in (15) with n = 5. After the change of variable τ = cosβ
we arrive at the integral

usw
t (M) =

k
4π

e−ik[r0 sin(Φ−ϕ0)η−+r sin(Φ+ϕ)η−]

∫
R′

dτ rϑ− (τ ) e
ik
{
zτ+ργ+

√
1−η2

+
−τ2+ργ−

√
1−η2

−
−τ2

}
, (27)

where γ+
= r0 cos(Φ − ϕ0)/ρ, γ−

= r cos(ϕ +Φ)/ρ, rϑ− (τ ) = Rϑ+ (β)resα=Φ+ϑ+(β) f (−Φ + π + ϑ−(β);α, β)|τ=cosβ .

The phase function S−(τ ) = zτ + ργ+

√
1 − η2+ − τ 2 + ργ−

√
1 − η2− − τ 2 of the integrand in (27) has the stationary

point τ− solving the equation

S ′

−
(τ−) = z −

ρ γ+τ−√
1 − η2+ − τ 2−

−
ρ γ−τ−√

1 − η2− − τ 2−

= 0

which is non-degenerate and

S ′′

−
(τ−) = −ρ

⎛⎝ γ+(1 − η2
+
)τ−

[

√
1 − η2+ − τ 2−]3

+
γ−(1 − η2

−
)τ−

[

√
1 − η2− − τ 2−]3

⎞⎠ < 0.
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We can attribute some geometrical meaning to the equation for the stationary point introducing the angles of incidence
κ+ and of refraction κ− of the surface wave (Fig. 6)

tan κ± =
τ−√

1 − η2± − τ 2−

and writing the equation for the stationary point as

z = r cos(ϕ +Φ) tan κ− + r0 cos(Φ − ϕ0) tan κ+.

The Snell’s type law of refraction of the primary surface wave across the edge of two impedance halfplanes reads√
1 − η2+ sin κ+ =

√
1 − η2− sin κ−.

Remark 2. In the assumption |η−| < |η+| the phenomenon of the total internal reflection of the primary surface wave
arriving at the edge may occur.8 In this case the stationary point approaches one of the branch point ±

√
1 − η2−. (Recall

that a contribution from the branch cut is usually attributed to the so called head surface wave.) The corresponding critical
angle of the total internal reflection is given by (κ− → π/2)

κ∗

+
= arcsin

(√
1 − η2−

1 − η2+

)
.

For the critical angle κ+ = κ∗
+

the transmitted surface wave propagates along the edge (κ− = π/2) and also rapidly
vanishes as kr → ∞.

The leading term of the transmitted surface wave takes the form

usw
t (M) = rϑ− (τ−)

kei3π/4

2
√
2π

eik[r0 sin(ϕ0−Φ)η−+r sin(ϕ−Φ)η−]

√
kρ

×⎧⎨⎩ γ+(1 − η2
+
)τ−

[

√
1 − η2+ − τ 2−]3

+
γ−(1 − η2

−
)τ−

[

√
1 − η2− − τ 2−]3

⎫⎬⎭
−1/2

eik[zτ−+ργ+

√
1−η2

+
−τ2

−
+ργ−

√
1−η2

−
−τ2

−
]

(
1 + O

(
1
k

))
. (28)

The expression (28) can be also written with the aid of the introduced angles κ± in order to underline the geometrical
nature of refraction of the surface waves.

A similar case, when the surface wave interacts with the edge, however, coming along the surface from infinity, is
discussed in [16].

It is worth commenting on the reciprocity principle because it is easily manifested in the formulas for the surface
waves. Indeed, in the asymptotic formulas (26), (28) interchange of the source and observation points leads to a simple
substitutions of r → r0, ϕ → ϕ0 and to other simple modifications. The expressions have obviously symmetric form and
do not alter its form while interchanging. Such a demonstration of reciprocity for the other components requires more
work, however, there is no doubt that it could be done.

5.2. The edge wave generated by the primary surface wave interacting with the edge

The expression for this wave is also obtained by means of the asymptotic evaluation of the integral that originates
from the residue of f (s + π + ϕ;α, β) − f (s − π + ϕ;α, β) of the integrand in (16). The corresponding singularity at
α = Φ +ϑ+(β) is captured provided that the source is close to the face S+ when deforming the integration contour γ(ϕ0)
into S(ϕ0) in (16). We find

usw
e (M) = −

k
4π

∫
Γ ′
π/2

dβ
∫
Sarg sin(β)(0)

ds
2π i

sinβ eik[z cosβ+sinβ(r0 cos(Φ+ϑ+(β)−ϕ0)+r cos s)]
×

resα=Φ+ϑ+(β)[f (s + π + ϕ;α, β) − f (s − π + ϕ;α, β)] .
(29)

Then introduce the new variable of integration τ = cosβ , from (29) thus obtain

usw
e (M) =

k
4π

e−ikr0 sin(Φ−ϕ0)η+

∫
R′

dτ
∫
Sarg sinβ(τ )(0)

ds
2π i

×

eik[zτ+
√

1−τ2r cos s+r0 cos(Φ−ϕ0)
√
1−η2

+
−τ2]d(τ , s;ϕ) ,

(30)

where d(τ , s;ϕ) = resα=Φ+ϑ+(β)[f (s + π + ϕ;α, β) − f (s − π + ϕ;α, β)]|τ=cosβ is computed explicitly.

8 Recall that η± are assumed to be purely imaginary.
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Fig. 7. The edge wave generated by the primary surface wave interacting with the edge.

Asymptotic evaluation of the double integral (30) as k → ∞ is conducted in a traditional manner. We specify the
saddle point as a solution of the equations

(Sswe)′s = 0 , (Sswe)′τ = 0,

with Sswe = i[zτ+r cos s
√
1 − τ 2+r0 cos(Φ−ϕ0)

√
1 − η2+ − τ 2]. Actually, our calculations are straightforward. However,

we consider some details because, in this way, the geometrical law of diffraction of the primary surface wave by the edge
is directly manifested. The latter equations are written as

−r
√
1 − τ 2 sin s = 0,

z − r cos s
τ

√
1 − τ 2

− r0 cos[Φ − ϕ0]
τ√

1 − η2+ − τ 2
= 0

and have a solution (τe, s = 0), where τe (cosβe = τe < 1) is real. It satisfies the equation

z = r tan κd + r0 cos[Φ − ϕ0] tan κ0,

where the angles of diffraction and of incidence of the surface wave are defined by

tan κd =
τe√

1 − τ 2e

, tan κ0 =
τe√

1 − η2+ − τ 2e

.

The geometrical meaning of the equation for τe is obvious from Fig. 7, where the diffractional (Keller) cone of the edge
wave is specified by the angle κd, see also [22]. The Geometrical Theory of Diffraction (of Keller with abbreviation GTD)
traditionally operates with various types of rays: incident, reflected, diffracted or others. In our case, the diffracted rays
in Fig. 7 compose the Keller cone the opening of which is π/2 − κd, where κd is determined from the transcendental
equation

sin κd√
cos2 κd − η2+

= tan κ0

if the angle of incidence κ0 is given. In GTD the latter equation can naturally be called the law of conical diffraction of the
surface wave at the edge of an impedance wedge. It obviously has an asymptotic nature and can be exploited together
with high-frequency localization principle. It is worth noticing the existence of the critical angle κ∗

0 for edge wave which
corresponds to κd = π/2,

κ∗

0 = arctan
(

1
|η+|

)
.

For this angle the edge wave collapses to be concentrated near the edge. The point τe goes to the branch points of√
1 − τ 2 and disappears through the cut. The asymptotics of the integral, in this case, requires a special study. For the

electromagnetic case some additional details can be found in [23].
The saddle point (τe, 0) is non-degenerate with

det{S ′′

swe} =
r2

1 − τ 2e
+ rr0 cos[Φ − ϕ0]

(1 − η2
+
)
√
1 − τ 2e√

1 − η2+ − τ 2e

.
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Table A.1
Polar singularities and residues of f (s + ϕ;α, β).
n Singularity sn(ϕ, α, β) Residue Rn(α, β) Argument An

1 α − ϕ 1 π − [α − ϕ]

2 2Φ − α − ϕ R+(α, β) π − 2Φ + α + ϕ

3 −2Φ − α − ϕ R−(α, β) π − 2Φ − α − ϕ

4 π +Φ + ϑ+(β) − ϕ Rϑ+ (β) · f (Φ − π − ϑ+(β);α, β) −Φ − ϕ − gd
(
Imϑ+(β)

)
5 −π −Φ − ϑ−(β) − ϕ Rϑ− (β) · f (−Φ + π + ϑ−(β);α, β) −Φ − ϕ − gd

(
Imϑ−(β)

)

The leading term of the asymptotics of (30) reads (τe = cosβe)

usw
e (M) =

d(τe, 0;ϕ)
4π

⎧⎨⎩ r2

sin2 βe
+ rr0 cos[Φ − ϕ0]

(1 − η2
+
) sinβe√

sin2 βe − τ 2e

⎫⎬⎭
−1/2

e−ikr0 sin(Φ−ϕ0)η+ eik[z cosβe+sinβer+r0 cos(Φ−ϕ0)
√
sin2 βe−η2+]

(
1 + O

(
1
k

))
.

(31)

Remark that the formula (31) can also be written in terms of the angles κ0 and κd.

6. Conclusion

In this paper, we applied recently developed results [7] (Chapter 3), [8,9], obtained in the case of electromagnetic
problem, to the acoustic one. A principal difference of the acoustic case is that, contrary to the electromagnetic problem
which requires solution of an integral equation, it is explicitly solvable. The corresponding non-uniform asymptotic results
are written in terms of the Malyuzhinets’ and elementary functions. The Weyl integral representation played a crucial role,
whereas the integrand was found explicitly in terms of the Malyuzhinets’ solution of an auxiliary problem.

We could obtain asymptotic components of the total field as k → ∞. In this way, as a result of asymptotic evaluation
of the integrals we also clarified physical meaning of the wave components computed. In particular, the laws of the
Geometrical Theory of Diffraction describing the interaction of the primary surface wave with the edge were discussed.

One of the further prospects is in study of possible excitation of the edge waves, i.e. the waves whose energy is
concentrated near the edge. Such localized waves, together with the other waves, might actually propagate along the
edge in the opposite directions from the source located near the edge. To our mind, existence of such phenomenon can
be expected, for instance, provided the impedances of the faces coincide and the wedge’s opening 2Φ is less than π .
Remark that the existence and excitation of the edge waves in elasticity is also of great practical importance.
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Appendix. Deformation of the Sommerfeld contour and contribution of the captured singularities, −Φ < α < Φ ,
0 < β < π

Recall that we can deform the Sommerfeld contours into SDPs γ±π in the expression (11) and make use of the theorem
on residues thus formally writing

U(r, ϕ;α, β) =

5∑
n=1

Hσ (An)Rn(α, β) exp{−ikr sinβ cos sn}+

1
2π i

∫
γπ∪γ−π

ds e−ikr sinβ cos s f (s + ϕ;α, β) ,

(32)

where the residues are described in the Table A.1. The Heaviside type function Hσ (An) is defined as follows. By definition
σ is the strip on the complex plane s between the curves γπ and γ−π then Hσ (An) = 1 provided An ∈ σ , otherwise, it is
zero.
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In the Table A.1 we use the following notations

R±(α, β) =
sin(Φ ∓ α) − sinϑ±(β)
sin(Φ ∓ α) + sinϑ±(β)

, Rϑ± (β) = ±2 tanϑ±(β),

gd(x) = sign(x)arcccos(1/cosh(x)). For the real-valued α, β (−Φ < α < Φ , 0 < β < π ) the residues in the Table A.1 have
clear physical meaning describing incident, from S± reflected or surface waves (see [7], Sect 2.6.2 for details) in the 2D
problem of diffraction by a wedge.

It is worth mentioning that the expressions above admit analytic continuation for the complex values of α, β implying
that the branch of ϑ±(β) is properly specified.
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