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Abstract—The nonequilibrium equation of state is studied in the context of the hydrodynamic approach. The
compression stage, the expansion stage, and the freeze-out stage of the hot spot formed during the collisions
of heavy ions are considered. The energy spectra of protons and subthreshold pions produced in collisions of
heavy ions are calculated with inclusion of the nuclear viscosity effects and compared with experimental data
for various combinations of colliding nuclei with energies of several tens of MeV per nucleon.
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INTRODUCTION
The main object of studying heavy ion collisions is

to study the equation of state (EOS) of nuclear matter.
Along with molecular dynamics and the Vlasov
dynamic equation, nuclear hydrodynamics is an effec-
tive method for describing the interaction of heavy
ions with medium and intermediate energies (see, for
example, [1]). Typically, the equilibrium EOS is used
[1]; it involves the local thermodynamic equilibrium
in the system. A hybrid model was proposed for use at
high energies in [2, 3]. It includes a fast nonequilib-
rium stage and the subsequent description of the
dynamics of a nucleus–nucleus collision based on
equilibrium relativistic hydrodynamics of an ideal
f luid. We showed in our works [4–11] that local ther-
modynamic equilibrium is not immediately estab-
lished in the process of collisions of heavy ions, since
the nonequilibrium component of the distribution
function, which leads to the formation of a collision-
less shock wave, is important at the compression stage.

The kinetic equation for finding the distribution
function of nucleons is used in this paper. It is solved
in conjunction with the equations of hydrodynamics,
which are essentially local conservation laws of mass,
momentum, and energy. Since the emitted secondary
particles (nucleons, fragments, and pions) contain the
basic information about the EOS, it is necessary to
know the differential cross sections for the emission of
these particles. The energy spectra of protons and sub-

threshold pions with allowance for nuclear viscosity
are analyzed in this paper as a follow-up to our works
[11–13] devoted to the energy spectra of protons and
fragments in which viscosity was neglected.

By subthreshold production, we mean the genera-
tion of  mesons with energies lower than the thresh-
old for the production of pions  in free nucleon–
nucleon collisions. The absolute thresholds for pion pro-

duction are  MeV in nucleon–

nucleon collisions,  MeV in nucleon–

nucleus collisions, and 

20 MeV in nucleus–nucleus collisions at ,
where  is the pion mass and  is the nucleon mass.
This expression for the absolute threshold energy is
obtained from a comparison of the relativistic invari-
ants  before and after the collision
neglecting the binding energy of pion (  is the total
energy;  is the total momentum).

The pion production threshold during the collision
of heavy ions decreases owing to collective effects and
the internal motion of nucleons. These effects are nat-
urally taken into account using the hydrodynamic
approach, which explicitly includes the many-particle
nature of colliding heavy ions. In the case of low ener-
gies, the hydrodynamics should be modified to take
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into account the nonequilibrium EOS, which
describes the transition from the initial nonequilib-
rium state to the state of local thermodynamic equilib-
rium.

Such an approach to describing the temporal evo-
lution of the resulting hot spot includes a compression
stage and an expansion stage taking into account the
nuclear viscosity that we found. The calculated energy
spectra of protons and pions produced in nuclear col-
lisions (both identical and different in mass) at an
energy of 92 MeV per nucleon in the case of protons
and 94 MeV per nucleon in the case of subthreshold
pions are in agreement with the available experimental
data [1] and [14], respectively.

EXPERIMENTAL
Nonequilibrium Hydrodynamics Equations

If the energies of colliding heavy ions are less than 300
MeV per nucleon (pion production threshold in free
nucleon–nucleon collisions), we use the kinetic equa-
tion to find the nucleon distribution function 
(  is the spatial coordinate;  is the
momentum;  is the time) [11, 12]:

(1)

where  is a locally equilibrium distribution
function;  is the relaxation time; 
( ) is a one-particle self-consistent
potential depending on the density , where three
parameters , , and  are deter-
mined by setting the equilibrium density = 0.145 fm–3,
binding energy  = –16 MeV, and compression mod-
ulus K = 210 MeV; and  is the nucleon mass.
Equation (1) with allowance for the hydrodynamic
equations obtained from (1) by taking the correspond-

ing moments with a weight of 1, , and  [11, 12]

describes the dynamics of nuclear collisions and forms
the basis of our approach. The solution of Eq. (1) can
be simplified if we work out the distribution function

 determining EOS in the form

(2)

where the distribution function  is defined in
momentum space as an axially symmetric Fermi ellip-
soid, which is a convenient form for describing exci-
tations in the Fermi liquid theory and is assumed to be
blurred along the  axis with the temperature  and
frozen in the transverse directions  and . The func-
tion  is represented in the momentum space by
the equilibrium Fermi sphere blurred with temperature

;  is a relaxation factor , where
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PH
 is the start time of the relaxation process in the
system;  is the relaxation time, which can be specified
as in [15]. However, we define  more traditionally as

, where  is the mean free path of nucleons at
a given nucleon density, which is assumed to be equal
to the mean distance between nucleons, and  is the
mean speed of the thermal Fermi motion of nucleons.
This expression for  in the energy range under con-
sideration is close in magnitude to the value proposed
in [15], but it turns out to depend on temperature and
compression ratio and seems to us more realistic. All
calculations are carried out precisely for such . The
equation for finding the relaxation factor  is
obtained by taking the moment for the kinetic equa-
tion with a weight of  that determines
the degree of anisotropy of the distribution function

 in momentum space.

Hydrodynamic Stage

We simplify the description of the time evolution of
colliding nuclei distinguishing the compression stage,
the expansion stage, and the freeze-out stage of the
resulting hot spot. We reduce the interaction between
two nuclei to the interaction between their overlapping
regions. This can be interpreted as a hot spot forma-
tion process. In this case, we take into account the
conservation laws. Shock waves with changing front
diverging in opposite directions are formed at the stage
of compression during the interaction between over-
lapping regions of colliding nuclei [5–9].

In the process of compression, when the shock
wave reaches the boundaries of the hot spot, the den-
sity  reaches its maximum value. The dependence of
the maximum compression ratio  at the shock-
wave front (solid line) on the collision energy of nuclei

 is shown in Fig. 1. It hardly depends on the compo-
sition of colliding nuclei, since we consider the inter-
action of the same overlapping regions in the system of
equal speeds of the colliding nuclei. The dependence
of  on the energy  for the distribution function
corresponding to the equilibrium EOS with  is
shown by a dashed line, and such a dependence for a
completely nonequilibrium EOS with  is shown
by a dash-dotted line.

The relaxation factor at the energy region of
 MeV per nucleon is maximal ( ) and it

decreases with increasing energy, leading to a greater
isotropy of the distribution function. We calculated
the dependence of the maximum compression ratio on
energy for MeV per nucleon. It is found in
between the extreme cases with  and . At

 MeV per nucleon, the dependence  on
energy coincides with the dash-dotted curve corre-
sponding to the case with  (i.e., completely non-
equilibrium EOS) and is located above the dashed
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Fig. 1. The dependence of the maximum compression
ratio  on the collision energy  achieved during the
interaction of the overlapping regions of colliding nuclei
for the case of the relaxation factor  calculated by us (solid
line), for the case where the factor  (dashed line), and
for the case where  (dash-dotted line). All depen-
dences correspond to the value of the compression modu-
lus  MeV. 
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curve corresponding to the case with  belonging
to traditional hydrodynamics and the onset of local
thermodynamic equilibrium.

A compressed and heated hot spot (a ball with
radius ) expands when the shock wave reaches the
boundaries of the system. The hot spot expands in
accordance with the equations of hydrodynamics for
radial motion of nucleon density , velocity ,
energy density  and pressure , following
from (1) [11, 12]:

(3)

(4)

(5)

The heat f lux for a locally equilibrium distribution
function is . Here, the internal energy density is

 and pressure is , where 
and  are the kinetic terms, and the interaction
terms  and  are

(6)

The velocity field is found from Eq. (3) in the approx-
imation of a homogeneous but time-dependent den-
sity of hot spot :

(7)

(8)

where  is the radius of the hot spot;  is the
radius of the velocity field kink determined from the
solution of equations; and  and  are the deriv-
atives in time (speed), which are also found from the
equations. A system of ordinary integro-differential
equations is obtained after integrating Eqs. (4) and (5)
over the hot spot volume. It is solved numerically.

However, the deviation of the distribution function
 from the locally equilibrium function
 is not taken into account in these equations.

Expressing  from the right side of Eq. (1)
through its left side, we find

(9)

where  is the thermal term depending on the tem-
perature . When obtaining (9), we substituted

 into the left part of Eq. (1)
instead of , taking into account Eqs. (3)–(5),
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where . In this case, the hot spot was

averaged over the volume to derive Eq. (1), and at the
expansion stage, the density , the temperature

, and the thermal term  were considered to
be homogeneous functions of time  and independent
of the radius . Substituting expression (9) into the
equations of hydrodynamics [11, 12], we find the cor-
rections to kinetic terms of the energy density  and
pressure density :

(10)

(11)

where  and  are the equilib-

rium kinetic parts of the energy density and pressure den-

sity, , and  is

the viscosity coefficient. The following correction
terms turn out to be an order of magnitude smaller and
they are not taken into account. The heat f lux is

. The corrections to kinetic terms significantly
affect the hot spot expansion and slow it down,
because the Reynolds number is not large

 for the viscosity coefficient  found by

us (formula (10)) in the energy range under consider-
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Fig. 2. Spectra of protons emitted in the reaction 40Ar +
40Ca with the energy of 40Ar ions of 92 MeV per nucleon at
angles of 30° (1), 50° (2), 70° (3), and 90° (4). The solid
lines are the results of calculations according to this model
with the calculated  corresponding to MeV; the
histograms are the results of calculations obtained from the
solution of the VUU kinetic equation [1]; the dots are the
experimental data from [1]. 
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ation of  ≈ 100 MeV per nucleon with a characteris-
tic nuclear size of l ≈ 3 fm. In our case, the temperature
is 20 MeV; ;  s; the viscos-

ity coefficient is   kg m–1 s–1. It coincides in
order of magnitude with the gas estimate 
[16] if we take  40 mb for the elementary cross sec-

tion. Moreover, , where  is the entropy den-

sity ( ). That is, in our case, the ratio  is more

than an order of magnitude higher than the limiting

value of  [17] (achievable, for example, in the state

of a quark–gluon plasma).
Thus, the viscosity coefficient  is quite large in the

energy range under consideration. This reduces the
expansion speed of the hot spot and increases its tem-
perature. Secondary particles (nucleons, fragments, and
pions) form and freeze out when the expanding nuclear
system reaches a critical density (freezing density) 

determined from the condition .

Double Differential Cross Sections of the Emission
of Protons and Pions: Comparison

with the Experimental Data
Protons and pions are emitted when the nuclear

system reaches a critical density. The cross section of
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the emission of protons (pions) is found from the con-
dition that the number of particles  and the value
of  are relativistic invariants [18, 19]. As a result,
the inclusive double differential cross section of reac-
tion A + B → p( ) + X is

(12)

where is an impact parameter and the distribution
function of protons (pions) has the form

(13)

Here  and p are the total energy and momentum of

the proton (pion), respectively; ;  is
the solid angle;  is the spin;  and  are the
velocity field and temperature at the time of freeze-out
(they are solutions of the equations of hydrodynam-

ics);  is the Lorentz factor;  is the
chemical potential (for pions , because the num-
ber of pions is not specified). The factor

 introduced in (12) takes into
account the difference between the total cross section
and the geometric cross section, where  is defined
as the cross section of the formation of a hot spot for a
given impact parameter  from two overlapping
regions in colliding nuclei, and  is equal to the
geometric cross section of these overlapping regions.
Here, the total cross section is always greater than geo-
metric one, as in the case of the fusion of two nuclei
comparable in size. In addition, the function 
included in (12) was modified in comparison with (13)
according to relation (2): the sign “+” refers to pro-
tons, and the sign “–” refers to pions. Expressions (12)
and (13) refer to protons (pions) emitted from a hot
spot as a result of the interaction of the overlapping
regions of colliding nuclei. In addition to this contri-
bution, we took into account the contribution from the
emission of protons (pions) as a result of the fusion of
non-overlapping regions of colliding nuclei. The cal-
culated double differential cross sections of proton
emission (energy spectra) were compared with similar
calculations obtained by solving the Vlasov–Uling–
Uhlenbeck (VUU) kinetic equation [1] and with avail-
able experimental data. Our calculations corre-
sponded to the equation of state with selected com-
pression modulus equal to K = 210 MeV, i.e., with the
same  which was taken for the best description of the
experiment in the calculations that we performed in
[8, 9] at energies of 250 and 400 MeV per nucleon for
colliding Ne and U nuclei.

We present the proton spectra in the 40Ar + 40Ca →
 reaction at the angles of 30° (1), 50° (2), 70° (3),

3fd p
3 /d Ep

π

σ π

Ω π

γ(

= +

× −




�

2

3
2(2 1) ( )

(2 )
) ( , , ),

d S G b bdb
dEd

d E pf tr pv r p

b

γ
−− − μ   = ±     

1( )( , , ) exp 1 .Ef t
T
pvr p

E

π)
= +2 2

(pE p m Ω
S ( , )tv r ( , )T tr

γ = − v
21/ 1 ( / )c μ

μ = 0

= σ σ( ) ( )/ ( )t gG b b b

σ ( )t b

b
σ ( )g b

( , , )f tr p

K

+p X
YSICS OF ATOMIC NUCLEI  Vol. 82  No. 12  2019



SPECTRA OF PROTONS AND SUBTHRESHOLD PIONS 1645

Fig. 3. The calculated (solid lines) and experimental (dots)
[14] inclusive double differential cross sections of the emis-
sion of  mesons at the observation angle of 90° in the reac-
tions 16O + 27Al (1), 16O + 58Ni (2), and 16O + 197Au (3) with
energy of 16О ions of  MeV per nucleon. 
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Fig. 4. The calculated (solid curves) and experimental
(dots) [14] inclusive double differential cross sections of
the emission of  mesons in the reaction 16O + 27Al with
energy of 16O ions of 94 MeV per nucleon at the observation
angles of 70° (1), 90° (2), and 120° (3). 
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and 90° (4) for the energy of projectile nuclei of 40Ar of
92 MeV per nucleon (Fig. 2). In Fig. 2, the solid curves
correspond to our calculation, the histograms corre-
spond to the calculations performed by the method of
solving the VUU equation [1], and the dots are the
experimental data from [1].

As can be seen, our calculation (this is not the
Monte Carlo method and not histograms) is in good
agreement with the experimental data. This is espe-
cially true for small angles of emission of protons (30°,
50°, and 70°). Our approach has an advantage over the
more detailed method of solving the VUU equation
[1], since the solid curves (but not histograms) are the
result of the calculation. Note here that simple cascade
models, as mentioned in [1], cannot describe these
experimental data at all.

We compared our data with the available experi-
mental data on the emission of pions. Figure 3 illus-
trates the comparison of our (solid lines) and experi-
mental [14] (dots) double differential cross sections for
the reactions of -meson production when 16O ions
collide with 27Al nuclei (curve 1), 58Ni nuclei (curve 2),
and 197Au nuclei (curve 3) at energies of 16O ions of

= 94 MeV per nucleon at an angle of 90°. It can be
seen that the calculation is in good agreement with the
experiment for chosen parameters of the nuclear inter-
action and taking into account the viscosity of the
medium  that is found by us and proportional to the
relaxation time  within the experimental errors. In
this case, the effect of viscosity on the calculated cross
section of emitted pions is stronger for more asymmet-
ric combinations of colliding nuclei, when the contri-
bution of the emission of pions from the hot spot pre-

+π

0E

η
τ
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vails. Thus, inclusive pion spectra in asymmetric
nuclear collisions can be used to measure the viscosity
of a nuclear medium.

Figure 4 illustrates the comparison of the calcula-
tions (solid lines) with the experimental data [14]
(dots) for the reaction 16O + 27Al → + X at energy of
16O ions of 94 MeV per nucleon at pion emission angles
of 70° (curve 1), 90° (curve 2), and 120° (curve 3). The
calculation is in agreement with the experimental data
if its parameters are constant.

In all the illustrations under consideration, the
agreement of calculation with the experiment was
achieved without introducing fitting parameters and is
more successful compared to our previous works [11,
19, 20].

CONCLUSIONS

Thus, the idea of using the hydrodynamic
approach with a nonequilibrium equation of state in
describing collisions of heavy ions is further developed
in this work. The differential cross sections of the
emission of protons and the production of subthresh-
old pions in heavy ion collisions are uniformly
described with the same fixed parameters of the equa-
tion of state and in the same approach as in the previ-
ous papers [11–13], which describe the differential
cross sections for the formation of protons and light
fragments. It is shown that the nonequilibrium equa-
tion of state included in the hydrodynamic equations
allows us to describe the experimental energy spectra
of protons produced in collisions of heavy ions with
intermediate energies better than the equation of state

+π
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corresponding to traditional hydrodynamics, which
initially implies the local thermodynamic equilibrium.

This simplified hydrodynamic approach including
a description of the stages of compression, expansion,
and freeze-out of a substance during heavy ion colli-
sions turned out to be no worse than a more detailed
approach based on the Monte Carlo solution of the
Vlasov–Uling–Uhlenbeck kinetic equation.

In comparison with previous works, the inclusion
of the effects of nuclear viscosity, which we found in
the relaxation  approximation for the kinetic equa-
tion, is new. This did not add new parameters in
describing the temporal evolution of nuclear colli-
sions. The relaxation time , which determines the
nuclear viscosity coefficient , turned out to be close
to the value found on the basis of the behavior of
nuclear Fermi liquid [15] and is not a fitting parame-
ter. When describing the emission of protons and frag-
ments, the inclusion of the viscosity of the medium is
not so significant, and the pions are very sensitive to
the viscosity.

The highlighting of proton (pion) emission after
the temporal evolution of the resulting hot spot and
the contribution to the particle emission cross sections
during the fusion of “spectators” (non-overlapping
regions of colliding nuclei) were significant in calcu-
lating the cross sections. This made it possible to
describe the differential cross sections of the emission
of protons (pions) for collisions of nuclei in various
combinations. Highlighting this feature of our
approach can be useful in comparison with other ways
of pion production in heavy ion collisions, for exam-
ple, [21, 22], based on the solution of the Vlasov–
Uling–Uhlenbek equation. These works include a
range of higher energies of colliding heavy ions (more
than 300 MeV per nucleon) and the production of
pions by means of -isobar production. We included
this channel at low subthreshold energies, not limited
to the production of thermal pions. However, this
channel appears on the higher energy tails of the
energy spectra of pions [23].

Studies of the formation of protons, fragments, and
subthreshold production of pions may be of interest
for the development of a scientific program planned
with radioactive beams in Dubna using the COMBAS
facility [24], which is designed to study nuclear colli-
sions in the energy range of 20–100 MeV per nucleon.
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