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The application of the speed-gradient (SG) principle
to the non-equilibrium distribution systems far away
from thermodynamic equilibrium is investigated. The
options for applying the SG principle to describe
the non-equilibrium transport processes in real-world
environments are discussed. Investigation of a non-
equilibrium system’s evolution at different scale
levels via the SG principle allows for a fresh look
at the thermodynamics problems associated with
the behaviour of the system entropy. Generalized
dynamic equations for finite and infinite number
of constraints are proposed. It is shown that
the stationary solution to the equations, resulting
from the SG principle, entirely coincides with the
locally equilibrium distribution function obtained by
Zubarev. A new approach to describe time evolution
of systems far from equilibrium is proposed based
on application of the SG principle at the intermediate
scale level of the system’s internal structure. The
problem of the high-rate shear flow of viscous fluid
near the rigid plane plate is discussed. It is shown that
the SG principle allows closed mathematical models
of non-equilibrium processes to be constructed.

This article is part of the themed issue ‘Horizons of
cybernetical physics’.

1. Introduction
Questions of evolution in nature and society give rise to
many different discussions where the notion of entropy is
a key concept which forms the basis of modern statistical
physics and thermodynamics.
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The maximum entropy principle (MaxEnt) is often used to describe the evolution of non-
stationary processes. This principle states that the system that is in ‘natural’ conditions (in the
absence of deliberate external action) tends to the state corresponding to the maximum value of
its entropy. In the study of the evolution of systems, the MaxEnt allows for some cases to obtain
missing information and determine the choice of mode.

The principle was first described by physicist Jaynes [1–3]. It is a simple and easy way to
build statistical thermodynamics (classical and quantum), which is devoid of some difficulties,
such as, for example, the ergodic hypothesis [1–4]. An important advantage of the Jaynes
formalism is its ability to generalize the study of non-equilibrium systems. There are various
areas of its use in the literature, including the description of relaxation processes (related to
the thermodynamics of irreversible processes, Green–Kubo formulae, etc.) [1,3,5,6] and non-
equilibrium phase transitions [7].

The MaxEnt is widely used in various studies of complex systems of physical, chemical and
biological origin [8]. However, the issue of withdrawal of this principle has remained valid until
now. This withdrawal determines how and at what trajectory the system tends to a state of
maximum entropy.

It is known that the methods of optimal control such as Bellman dynamic programming,
maximum principle of Pontryagin, etc., can be effectively used for modelling the dynamics of
mechanical [9], thermodynamic [10] and other complex systems. For example, according to the
works of Rosenbrock [11,12], the derivation of the basic equations of quantum mechanics can
be obtained based on the principles of optimal control, because the Schrödinger equation is a
direct consequence of the principle of optimality of the Hamilton–Jacobi–Bellman. In the context
of the MaxEnt principle, the usage of optimal control methods also seems to be promising. The
equations of dynamics of physical systems can be built based on the extreme principles in the
case when it is possible to introduce the concept of a goal as the achievement of the objective
functional extremum. As the goal, we can consider the maximization of entropy of the system
and use the principle of speed gradient (SG principle) [13–17], designed to address problems of
control of time-continuous systems where the above-mentioned goal is given.

The extreme SG principle has been successfully applied to construct equations of statistical
dynamics of finite systems of particles that obey the principle of maximum entropy [13,18].
In [16], the experimental verification of the SG principle applicability is performed on the
example of a system of particles, modelled by molecular dynamics based on the equations of
classical mechanics. The dynamics of discrete systems for the Tsallis entropy is discussed in [19].
Rényi entropy is investigated from the SG principle perspective in [20]. Continuous probability
distributions are considered in [21,22].

The paper deals with the application of the SG principle to the non-equilibrium distribution
systems far away from thermodynamic equilibrium. We propose a new approach to describe time
evolution of the system at intermediate-scale level of the system’s internal structure. We show that
the stationary solution to the equations, resulted from the SG principle, entirely coincides with the
locally equilibrium distribution function obtained by Zubarev [4,7]. We derive new generalized
dynamic equations for finite and infinite number of constraints, and also discuss the problem of
the high-rate shear flow of viscous fluid near the rigid plane plate.

The problem of describing the high-speed processes in a real-world environment is very
relevant in relation to the development of new technologies and devices (high-speed machines,
laser technology, nanotechnology, biotechnology, medical devices, etc.). Application of the SG
principle to describe processes in distributed systems far from the thermodynamic equilibrium
often requires going beyond traditional models of mechanics.

In the second half of the last century, Zubarev [4,7] used the MaxEnt principle to derive the
most general distribution function describing processes far from equilibrium. Following Jaynes,
he was the first who incorporated all the history of macroscopic fields in the system volume
into the macroscopic constraints, imposed on the system. According to the more recent papers
[1,2] in which the information aspects of the Jaynes approach using the MaxEnt principle were
considered, the information, included into the imposed constraints, determines the predictive
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ability of the mathematical model of the system evolution. The macroscopic information used
by Zubarev in his integral constraints is the most full macroscopic information about the
system. It means that his distribution function is the most general and can describe macroscopic
evolution of the system in the widest range of conditions far from equilibrium. Zubarev’s non-
equilibrium distribution function results in the integral thermodynamic relationships between the
macroscopic gradients and conjugated fluxes that take into account spatio-temporal correlations
and generalize the linear thermodynamic relationships of irreversible processes to high-rate and
high-gradient processes. However, the generalized description is also incomplete because the
explicit form of the spatio-temporal correlation functions is unknown. For many years, this was an
obstacle to their use in practical problems for making the set of macroscopic transport equations
complete.

To overcome these difficulties and to develop macroscopic description of non-equilibrium
processes outside the framework of the conventional hydrodynamic stage close to the local
equilibrium, a new approach based on the integral thermodynamic relationships is proposed
[23–26]. Unlike the papers [1–4,7], where the problem of the irreversibility is considered
at two-scale levels (macroscopic and microscopic), a third-scale level, intermediate between
macroscopic and microscopic levels, is introduced. The new level, called mesoscopic, is
determined by the first moments of the spatio-temporal correlation function in the generalized
thermodynamic relationships obtained by Zubarev. As shown in papers [23–26], the spatial
moments are connected to the size of new internal structure of the system and the temporal
ones correspond to the living time of the structure. Experimental data [27] show that the
external action, deflecting the system state far from equilibrium, gives rise to self-organization
making the system structured. For example, even in homogeneous metal, as in turbulent flow
of fluid, after the shock loading a formation of rotational structures of mesoscopic size was
observed [28].

In this paper, we propose to move from the microscopic description of the time evolution
(at which we cannot set the initial condition for the distribution function in the differential
equation based on SG-algorithm) to another, mesoscopic, level of the system’s internal structure.
Unlike the conventional macroscopic stage of evolution valid near the local equilibrium state,
the transition to the time evolution of the system’s internal structure allows construction of a
much more general description as far from equilibrium as we can measure the characteristics of
the system’s internal structure. The application of the SG principle at the mesoscopic level of the
internal structure allows a prediction of the further structure evolution in the direction of maximal
information entropy beginning from the measured structure. According to the SG principle, the
structure evolution proceeds at a maximal rate and decays near the local equilibrium state. For the
structured system, the full entropy production is always less than for the homogeneous system.
Finally, the information entropy attains its maximum only in equilibrium. So, the structure
formation is caused by the loss of correlation between the initial and finite microstates of the
system during its evolution in the direction of the information entropy maximization under
macroscopic constrains.

Investigation of a non-equilibrium system’s evolution on different scale levels via the
SG principle allows for a fresh look at the thermodynamics problems associated with the behavior
of the system entropy. Each of the scale levels is characterized by its objective (goal) function
and time needed to achieve the goal. This makes it possible to resolve some of the controversy
surrounding the use of the Prigogine theorem on the minimum entropy production in the steady
state of a weakly non-equilibrium system [29] and the principle of Ziegler (maximum entropy
production principle (MEPP)) [30] away from equilibrium, which are implemented at different
time scales. The SG principle combines the global goal of evolution: the desire to establish a
steady state with a minimum of entropy losses by the fastest possible way and with the maximum
entropy production at any given time, which gradually decreases as it reaches a steady state. This
universality allows the SG principle to build a closed mathematical model of non-equilibrium
processes with feedback between the evolution of the internal structure of the system and its
macroscopic response to an external perturbation.
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The approach based on the results of Zubarev and the SG principle is investigated in [23–26].
Applying this approach to the description of the shock-wave transient processes in condensed
matter showed that it can be used to describe some of the detected anomalous effects, which
do not find their explanation in the framework of traditional mechanical models [31–33]. As an
example, in the paper the SG principle is applied to the well-known problem of mechanics, the
Rayleigh problem [34] on the time evolution of the shear medium flow along the plane rigid
surface. It is shown that the motion of the structureless medium is described by the SG-algorithm
with the integral entropy production as a goal function and the medium velocity as control
parameter. To choose another control parameter, the width of the viscous boundary layer near the
surface characterizing the macroscopic structure of the flow, its time evolution is also described
by the SG-algorithm. The generalized description of the time evolution at mesoscale based on
the model spatial correlation function with the internal structure parameters in accordance with
the SG principle shows that at a high rate the flow tends to the regime with turbulent mesoscale
structure.

2. The principle of maximum entropy by Jaynes
The approach proposed by Jaynes [1–3] has become the basis for building the foundations of
statistical physics based on information entropy. We present its main ideas.

Let p(x) be a multivariate distribution function of the random variable. This function is
unknown and it has to be defined on the basis of the information available on this system. Let
us assume that we have information about some average values H̄m

H̄m =
∫

Hm(x)p(x) dx, m = 1, . . . , M. (2.1)

For the density function, it is true that ∫
p(x) dx = 1. (2.2)

In general, the conditions (2.1) and (2.2) may not be sufficient for a finding of p(x). In this case,
according to Jaynes, the most objective way to determine the distribution function is to maximize
the information entropy SI

SI = −
∫

p(x) log(p(x)) dx.

The search of maximum for SI with additional conditions (2.1) and (2.2) is performed by means
of Lagrange multipliers λm and leads to the following results:

p(x) = 1
Z

exp

( M∑
m=1

λmHm

)
(2.3)

and

Z =
∫

exp

(
−

M∑
m=1

λmHm

)
dx, (2.4)

where the parameters λm can be determined from the conditions (2.1).
These formulae enable us to find the distribution function for the microcanonical, canonical

and other ensembles, using as a (2.1) the conditions that characterize each of these equilibrium
ensembles (e.g. [2,4]). It also shows that in the case of equilibrium with an appropriate choice of
the random variables x, the maximum information entropy coincides with the Gibbs entropy and
can be identified with the thermodynamic entropy.

Jaynes showed a deep connection and continuity of his approach to the classical works like
Bernoulli and Laplace on the theory of probability and statistics, as well as the works on physics
and information theory (especially J. Gibbs and C. Shannon) [3].

Although information theory initially was created with the help of concepts of statistical
physics, at present, according to Jaynes, we can take the information approach as the basis for
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the construction of statistical physics. According to [8], the formalism of statistical mechanics
becomes a certain sequence of actions, following which we are able to get the best possible
and objective assessment under significant limitations of our knowledge of the microcosm (i.e.
a statistical technique to prevent possible errors).

3. Maximizing the entropy by the SG principle
The SG principle determines the law under which the system will evolve. The resulting equation
for transient (non-stationary) states characterizes the dynamics of the system operation.

In accordance with the second law of thermodynamics and the Gibbs–Jaynes MaxEnt principle
[2], the entropy of any physical system tends to increase as long as it does not reach its maximum
possible value at the limitations imposed by other physical laws. This statement defines the
asymptotic behaviour of the system for t → ∞, but says nothing about how there is movement
to asymptotic behaviour. To answer this question, we use the SG principle. The initial state
and conditions for equilibrium are not enough to uniquely describe a system’s dynamics in
general. We consider the SG principle as a kind of evaluation from the class of possible dynamic
movements.

(a) The system with a continuous distribution of states
Consider a system with a continuous distribution of the set of possible states. The probability
distribution over states is characterized by continuous everywhere (except for a set of zero
measure) non-negative probability density function p(t, r) satisfying the condition∫

Ω

p(t, r) dr = 1, (3.1)

where Ω is a compact set. The density distribution function is differentiable with respect to time
t; one-dimensional, r can be a vector of finite dimension.

The system state evolves in time. We are interested in the behaviour of the system in steady
state and in a transient mode. The steady state is determined by the maximum entropy principle:
if nothing more about the system is known then its limiting behaviour will maximize its measure
of uncertainty (entropy).

As a measure of uncertainty choose the information entropy. For the considering system, it is
defined as

S(t) = −
∫
Ω

p(t, r) log(p(t, r)) dr. (3.2)

The law of system’s dynamics will be searched in the form

ẋ = u(t, r), x = p(t, r). (3.3)

We have to define the function u(t, r). In accordance with the SG principle, it is required to
calculate the rate of change of entropy (3.2) by virtue of (3.3), then calculate the gradient of this
velocity with respect to u, and finally determine the actual control variables proportionally to the
projection of gradient to the surface of limitations (3.1).

Let us introduce the Lagrange function for this constrained optimization problem as Sλ =
S(t) + λ′(

∫
Ω p(t, r) dr − 1), where λ′ is a Lagrange multiplier.

We have for Ṡλ

Ṡλ = −
∫
Ω

(
u log p + u

p
p

)
dr + λ′

∫
Ω

u dr.

From (3.1), it follows that ∫
Ω

u(t, r) dr = 0. (3.4)

It implies that Ṡλ = − ∫
Ω u log p dr + λ′ ∫

Ω u dr. Gradient of Ṡλ with respect to u is ∇uṠλ =
−∇u〈log p, u〉 + λ′∇u〈u, 1〉. According to the scalar product, we get ∇uṠλ = − log p + λ′.
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The SG-law of motion takes the form u = −Γ log p(t, r) + λ, where Γ is a scalar value, and
Lagrange multiplier λ = Γ λ′ is selected to satisfy the constraint (3.4).

∫
Ω

(−Γ log p(t, r) + λ) dr = 0 ⇒ λ = Γ
∫

Ω log p(t, r) dr
mes(Ω)

, (3.5)

where mes(Ω) = ∫
Ω 1 dr.

The final equation of dynamics is given by

ṗ = −Γ log p(t, r) + Γ
∫

Ω log p(t, r) dr
mes(Ω)

= −Γ

(
log p(t, r) −

∫
Ω log p(t, r) dr

mes(Ω)

)
. (3.6)

The physical meaning of the law (3.6) is moving along the direction of fastest growth of
entropy, which corresponds to the maximum entropy production principle (MEPP) [8].

Stability of equilibrium together with the asymptotic convergence of solutions to the final
distribution is shown in [21].

(b) Total energy constraint
The problems with a few constraints can be considered in the same way. The constraint (3.1) can
be interpreted as the law of mass conservation of the system in the space Ω . Consider a system
where the law of conservation of energy is also introduced. We consider the conservative case,
when the energy does not depend on time. The new constraint can be described as

∫
Ω

p(t, r)h(r) dr = E, (3.7)

where E is the total energy of the system and h(r) is the density of energy.
Consider the system

ṗ = u. (3.8)

The problem is to find an operator u such that at any time t both of the constraints are satisfied
and the target condition is true: S(p(t, r)) → Smax for t → ∞.

To solve this problem, we use the SG principle. As the goal function, we take

Q(p) = Smax − S + λ′
1

(∫
Ω

p(t, r)h(r) dr − E
)

+ λ′
2

(∫
Ω

p(t, r) dr − 1
)

,

where S is a differential entropy, λ′
1 and λ′

2 are Lagrange multipliers.
According to the SG principle, the operator u must be taken in the form u = −Γ ∇uQ̇(p, u, t). We

calculate the time derivative of a goal function

Q̇ =
∫
Ω

u(t, r) log p(t, r) dr + λ′
1

∫
Ω

u(t, r)h(r) dr + (λ′
2 + 1)

∫
Ω

u(t, r) dr.

The gradient with respect to u is

∇uQ̇ = log p(t, r) + λ′
1h(r) + (λ′

1 + 1)u(t, r).

Finally,

u = −Γ log p(t, r) + λ1h(r) + λ2, (3.9)

where λ1 = −Γ λ′
1, λ2 = −Γ (λ′

2 + 1).
Now we find Lagrange multipliers λ1 and λ2 based on constraints conditions. For simplicity,

we omit the arguments of functions. For example, instead of log p(t, r) we write log p.
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From constraint (3.4), we have

− Γ

∫
Ω

log p dr + λ1

∫
Ω

h dr + λ2 mes(Ω) = 0. (3.10)

From condition (3.7), equivalent to the expression
∫

Ω uh dr, it follows that

− Γ

∫
Ω

log (p)h dr + λ1

∫
Ω

h2 dr + λ2

∫
Ω

h dr. (3.11)

Solving the system of equations (3.10) and (3.11), we obtain

λ1 = Γ
mes(Ω)

∫
Ω log (p)h dr − ∫

Ω log (p) dr
∫

Ω h dr

mes(Ω)
∫

Ω h2 dr − (
∫

Ω h dr)2 (3.12)

and

λ2 = Γ

∫
Ω log (p) dr

∫
Ω h2 dr − ∫

Ω h dr
∫

Ω log (p)h dr

mes(Ω)
∫

Ω h2 dr − (
∫

Ω h dr)2 . (3.13)

Equations (3.12) and (3.13) are defined when denominator in both fractions is not zero. If the
Cauchy–Schwarz inequality is taken for f = h and g = 1, then we have the following inequality:∣∣∣∣

∫
Ω

h dr
∣∣∣∣2 ≤ mes(Ω)

∫
Ω

h2 dr. (3.14)

This inequality becomes an equality when h = const. This is the case when all energy levels are the
same. Such cases will be regarded as degenerate and will not be considered. Thus, the expression

mes(Ω)
∫
Ω

h2 dr 
=
(∫

Ω

h dr
)2

(3.15)

is always true.
Substituting (3.9) into the equation (3.8), taking into account (3.12) and (3.13) we obtain the

equation of the dynamics in the following form:

ṗ(t, r) = −Γ log p(t, r) + Γ
mes(Ω)

∫
Ω log (p)h dr − ∫

Ω log (p) dr
∫

Ω h dr

mes(Ω)
∫

Ω h2 dr − (
∫

Ω h dr)2 h(r)

+ Γ

∫
Ω log (p) dr

∫
Ω h2 dr − ∫

Ω h dr
∫

Ω log (p)h dr

mes(Ω)
∫

Ω h2 dr − (
∫

Ω h dr)2 . (3.16)

The general form of the evolution law (3.16) can be represented in an abbreviated form

ṗ = Γ Ψ log p,

where Ψ is a linear integral operator that is independent of p.

Ψ = −I + (1, ·)
mes(Ω)

+ h̃(h̃, ·)
‖h‖2 − 1

mes(Ω) (1, h)2
,

where I is identity operator, h̃ = h − (1/mes(Ω))
∫

Ω h dr.

4. Zubarev’s method of non-equilibrium statistical operator
The macroscopic state of a non-equilibrium distributed system at time t is entirely determined
if the density fields of mass, momentum and energy are given. Macroscopic densities are equal to
the dynamic densities averaged over a distribution function. Following Jaynes [1–3], Zubarev
[4] sought the non-equilibrium distribution function that maximized the information entropy
under the conditions specifying the density fields induced in the system after a contact with
its surroundings. A very complete overview of Zubarev’s results together with an analysis of
relations between different theories on the non-equilibrium processes description is presented
in [35].
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As a set of the averaged values 〈Pm〉t of the dynamic density operators of energy, momentum
and particles number Pm is given at time t, the distribution function corresponds to the locally
equilibrium statistical operator that describes the given non-equilibrium state of the system only
via the macroscopic parameters

floc = exp

{
−Φ −

∑
m

PmFm(t)

}
. (4.1)

Lagrange multipliers Φ, Fm have a meaning of macroscopic parameters depending on
the space and time variables. The locally equilibrium statistical operator (4.1) describes
thermodynamic medium properties and hydrodynamic processes in the local equilibrium
state. Therefore, it cannot describe dissipative processes and irreversible system evolution. In
thermodynamic equilibrium, the distribution floc is converted into the Gibbs distribution

f0 = exp

{
−Φ0 −

∑
m

PmF0m

}
, (4.2)

which not only maximizes the information entropy, but unlike (4.1) satisfies to Liouville equation.
In equilibrium, the thermodynamic entropy is identical to the maximal value of the information
entropy S = Φ0 +∑

m 〈Pm〉0F0m.
The index m can be assumed to take both discrete and continuous values. Then, the summation

over m simultaneously denotes integration over the space coordinates. In this case, the non-local
effects can be taken into account.

Irreversible processes of thermoconduction and viscous friction followed by the entropy
production are due to deviations from local equilibrium. In order to describe the irreversible
processes, the retardation (memory) effects should be taken into account. If to seek a distribution
function maximizing the information entropy on the condition that the macroscopic densities
are given not only at time t but at each instant in the interval (∞, t], then the result is the
non-equilibrium statistical operator

f = exp

{
−Φ̃ −

∑
m

∫ t

∞
dt′�m(t, t′)Pm(t′)

}
, (4.3)

where Φ̃, �m(t, t′) are Lagrange multipliers. Non-equilibrium distribution function (4.3) satisfies
the Liouville equation with a source related to an interaction with surroundings and can describe
the irreversible system evolution.

At the hydrodynamic stage of the evolution, the macroscopic densities averaged over the
non-equilibrium distribution function (4.3) are identical to those averaged over the locally
equilibrium function (4.1). Maximization of the information entropy in non-equilibrium process
has been proven by Glansdorf & Prigogine [29] to lead to the evolution criterion. According to
the criterion in a real non-equilibrium process, a part of the entropy production decreases. In
the linear approximation in the thermodynamic forces, the Prigogine theorem on the minimal
entropy production in a non-equilibrium stationary state [1,29] has been proven. Unlike linear
thermodynamics of irreversible processes, the local entropy production σ (r, t) ≥ 0 ceases being
always positive and in non-equilibrium processes can change its sign. It has been shown
that the non-local effects can provide at any time only the positive full entropy production∫t

−∞ dt′
∫

drσ (r, t′) ≥ 0. Accounting both non-local and memory effects allows only the following
statement

S(+∞) − S(−∞) =
∫+∞

−∞
dt

∫
drσ (r, t) ≥ 0.

In order to describe the system evolution, it is necessary to solve the macroscopic transport
equations obtained by averaging dynamic transport equations for operators over the non-
equilibrium distribution (4.3). The generalized macroscopic transport equations are integral-
differential and include non-local and memory effects [4,36,37]. The usual hydrodynamic
equations can be obtained in the first approximation, taking the macroscopic gradients as small
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parameters. The relaxation equations are derived by expanding the generalized equations in the
small differences of macroscopic densities.

5. Generalization of Zubarev’s results based on the SG principle
We consider distributed system where the distribution function depends on the spatial
coordinates.

(a) The generalization for a finite number of constraints
The above method of entropy maximization based on the SG principle can be generalized to an
arbitrary finite number of constraints on the example of the MaxEnt principle by Jaynes.

Suppose we have a finite number M of constraints that are defined in the form (2.1).
Constraint (2.2) is also always true for the probability density function. As before, use the

Lagrange method. We define the functional Q as

Q = S +
M∑

m=1

λ(m)
[

H̄(m) −
∫

H(m, x)p(x, t) dx
]

+ λ0

(
1 −

∫
p(x, t) dx

)
,

where λm is Lagrange multiplier. Then, we can calculate the following values:

Q̇ = Ṡ −
M∑

m=1

λm

∫
Hm(x)ṗ(x, t) dx − λ0

∫
p(x, t) dx

∇uQ̇ = ∇uṠ −
M∑

m=1

λmHm(x) − λ0

∇uṠ = − log p(x, t),

The general equation of dynamics on the basis of the SG principle has the form

u = −Γ

[
− log p(x, t) −

M∑
m=1

λmHm(x) − λ0

]

For the stationary case, the statement u = 0 is true. It means that

log p(x, t) =
M∑

m=1

λmHm(x) − λ0

Then, we have

p = C ∗ exp

(
−

M∑
m=1

λmHm(x)

)
, (5.1)

where C = exp(−λ0).
From equation (2.2), we see that

C = 1∫
exp(−∑M

m=1 λmHm(x)).

It can be seen that equation (5.1) coincides with the equations for the distribution (2.3) and (2.4)
and also corresponds to the principle of Jaynes.
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(b) Generalization for an infinite number of constraints
These equations can also be extended for an infinite number of constraints. In this case, parameter
m takes not only discrete but continuous values. Then, the functional Q takes the form

Q = S +
∫

m
λ(m)

[
H̄(m) −

∫
H(m, x)p(x, t) dx

]
dm + λ0

(
1 −

∫
p(x, t) dx

)
.

The way to derive the dynamics equation will not change. The general equation takes the form

u = −Γ

[
− log p(x, t) −

∫
m

λ(m)H(m, x) dm − λ0

]
. (5.2)

The final distribution can be obtained in a similar manner.
If the constrains are imposed on the averaged values of the dynamic density operators of

energy, momentum and particles number, the stationary solution of the equation (5.2) entirely
corresponds to the local-equilibrium distribution (4.1) obtained by Zubarev. After the local-
equilibrium state is reached, and the information entropy achieved its maximum, the system
evolution continues via the averaged values at the macroscopic level in the reversible way. The
non-stationary solution of the equation (5.2) in the framework of the SG principle describes
the irreversible system evolution in the direction of the local-equilibrium state. However, the
differential equation of SG-laws requires the initial condition for the non-equilibrium distribution
function which is unknown in the general case. According to hypothesis [38,39], the system
forgets its initial state during the time evolution that allows a transition to the final evolution
stage described by the reduced set of macroscopic variables. Zubarev tried to compensate the lack
of information about the initial distribution function with the full information about the history
of macroscopic evolution of the system far from equilibrium. Then the description should be the
most general. However, the description, accounting of the memory and non-local effects, is also
incomplete because of the unknown spatio-temporal correlation functions �m(r, r′, t, t′) in (4.3).
So, a new approach is needed to develop an adequate description of the real physical processes
far from equilibrium which are characterized by special features that distinguish them from the
simply non-stationary ones.

6. Special features of non-equilibrium processes
Modern understanding of non-equilibrium processes in distributed systems based on
experimental data, obtained with the use of high-precision instruments, is fundamentally
different from the previously common opinion that non-equilibrium processes are irreversible
non-stationary processes which can be described by partial differential equations [28,31,40].
Attempts to apply conventional mathematical models far from thermodynamic equilibrium led to
serious errors. The main problem is that all physical concepts are at any rate related to equilibrium
system states and a generalization of one concept implies the revision of all the basics. In order to
avoid contradictions in the construction of mathematical models, an understanding of special
features characterizing the system’s reaction to an external perturbation much deflecting the
system state from equilibrium is needed.

At rather large, macroscopic scale the linear laws adequately describe processes in distributed
systems near local equilibrium. High-rate and rapidly occurring processes are characterized by
much smaller spatio-temporal scales on which the internal structure effects appear. Experimental
results, obtained in the study of non-equilibrium processes in different branches of mechanics
(hydrodynamics of turbulent flows, multi-phase flows, shock-induced wave processes in solids,
biomechanical processes), show many similar characteristics of the non-classical system reaction
to external perturbations. Far from equilibrium processes are often followed by self-organization
of new internal structures [7,28,29,31,32,40] such as boundary layers, mass velocity pulsations,
vortex structures, localized inhomogeneities, etc. The observable self-organization effects are
characterized not only by the medium properties (composition, phase state) but also by the
loading regime, boundary conditions and the system geometry.
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The system relaxation to thermodynamic equilibrium after perturbation due to the collective
interaction effects is followed by the internal structure evolution that influences the macroscopic
properties of the system. The rate of the structure evolution can change and lead to structure
transitions with switching from one mode to another. The appearing feedback form the internal
control closed-loops [23,24].

So, an adequate description of non-equilibrium processes requires to go beyond the
conventional mechanics models and to develop a new approach at the intersection of statistical
mechanics, theory of nonlinear integral sets and control theory.

7. Non-local thermodynamic relationships with memory
Critical analysis of the situation with the description of non-equilibrium processes allows a
conclusion that the conventional differential models of physical systems are not valid for high-
rate processes and strongly inhomogeneous systems. As non-equilibrium statistical mechanics
shows [4,36,37,41] macroscopic transport equations far from equilibrium should be spatially non-
local and contain the memory about the process history. In the general case, the description of
non-equilibrium processes in terms of a distribution function is virtually unavailable. Therefore,
it makes sense to describe non-equilibrium processes immediately at the macroscopic level, using
the non-local hydrodynamic equations with memory.

Zubarev by the non-equilibrium statistical operator method [4] obtained the integral
relationships between thermodynamic forces G(r, t) (gradients of macroscopic fields) and fluxes
J(r, t)

J(r, t) = k0

∫ t

−∞
dt′

∫
V

dr′�(r, r′, t, t′)G(r′, t′) =
∫ t

−∞
dt′

∫
V

dr′�(r, r′, t, t′)J0(r′, t′). (7.1)

The relationships (7.1) generalize the linear and local thermodynamic relationships

J0(r, t) = k0G(r, t) (7.2)

(k0 are transport coefficients) which is valid near equilibrium, to the processes far from
equilibrium. The integral kernels �(r, r′, t, t′) are non-equilibrium spatio-temporal correlation
functions of thermodynamic fluxes which introduces nonlinear, non-local and memory effects
into the system reaction. The correlation functions are nonlinear functionals of the history of
macroscopic fields all over the system volume, including boundary interaction. Macroscopic
expressions for the functionals are unknown in the general case.

The relationships (7.1) close the set of macroscopic transport equations on non-equilibrium
conditions and make equations non-local and retarding. Instead of the distribution function
the generalized equations contain more rough characteristics of non-equilibrium processes, the
integral functionals of macroscopic variables. The non-local and memory effects occur as a
payment for the inevitable incompleteness of description of non-equilibrium processes in open
system. Despite the fact that the non-local mathematical models with memory are the only
fundamentally new over the past two centuries, these results so far have not been claimed because
of the problems on the correlation functions modelling and misunderstanding of the link between
correlations and boundary conditions imposed on the system from outside.

8. New approach based on non-local theory of non-equilibrium transport
processes

Based on the non-local and retarding relationships (7.1) obtained in non-equilibrium statistical
mechanics, a new self-consistent theory of the transport processes far from equilibrium has
been developed by Khantuleva and colleagues [25,26,31,40]. The new universal approach to
the transition processes in open systems with internal structure evolution relies on the non-
local and retarding relationships (7.1) generalized to take into account the structure effects.
The first statistical moments of the correlation function have been found to characterize the
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internal structure scale. The model of spatio-temporal dependence �(r, r′, t, t′) constructed in
correspondence with the known asymptotic limits should depend on the structure parameters
s (having dimension of length) incorporated into the model,

J(r, t) = k0

∫ t

−∞
dt′

∫
V

dr′�(r, r′, t, t′, s)G(r′, t′) =
∫ t

−∞
dt′

∫
V

dr′�(r, r′, t, t′, s)J0(r′, t′). (8.1)

For structureless continuous medium, s → 0 (8.1) converts into the linear relationships (7.2). In
this case, the non-local and memory effects are caused by the collective interaction and internal
structure formation. The detection of a connection between the non-equilibrium correlation
function and the wave-vortex internal structure was a big step forward to the nature of non-
equilibrium processes. Boundary conditions imposed on the system lead to a discretization of
the spectrum of the parameters s, i.e. self-organization (the structuring of the system). The result,
like in quantum mechanics, corresponds to the modern tendency in mathematics to discretization
connected to computer engineering. The structure parameters become nonlinear functionals of
macroscopic fields and boundary conditions. The internal structure interaction generates the
structure evolution with internal control described by cybernetic methods.

Only such interdisciplinary approach at the intersection of statistical mechanics, physics and
cybernetics can close the self-consistent formulation of boundary problems on non-equilibrium
processes in open systems and predict the system evolution and new structure formation. In
papers [31–33,40], the elastic–plastic transition inside the shock-induced pulse running in solid
material and followed by new structure formation at mesoscopic scale is described using the
non-local theory of non-equilibrium transport. In the paper [33], the transition to quasi-stationary
regime of the elastic–plastic wave propagation results from the SG-algorithm. The developed
nonlinear and non-local mathematical models with memory have been found to adequately
describe the experimentally observable effects and offer new possibilities for developing of
modern technologies to get materials with the desired internal structure.

9. The SG principle for describing the system structure evolution
Non-equilibrium transport processes are induced in macroscopic systems under dynamic loading
and are followed by the structure formation of different kind: vortexes, dynamic pulsations,
near-boundary structures, etc. The structure transformation can lead to different instabilities
and change the macroscopic properties of the system. It is the structure evolution during non-
equilibrium process that binds the problem of the description of non-equilibrium processes
and the control theory. The internal structure is the information carrier and it is by means of
the structure interaction the information-control feedback is forming in the system far from
equilibrium. So, the inclusion of the self-organization and internal control closed-loops are
prerequisites for an adequate modelling of non-equilibrium processes.

The main question arising in the formulation of the problem in scope of the control theory
concerns to the choice of a goal function and ways to achieve it. The laws governing the internal
structure transformation are defined by thermodynamic principles and the energy exchange
between different degrees of freedom at the internal structure scale. An evolution should have its
direction determined by irreversible dissipation of mechanical energy into heat (chaotic motion at
microscale) and the system relaxation to thermodynamic equilibrium characterized by maximal
entropy value.

In the paper, maximization of the full entropy production in the system is chosen as a control
goal (goal of the system evolution) and the SG-algorithm [13,17,18,23,24] should describe the
shortest way to achieve the goal. The rates of the structure scale characteristics are chosen as the
control parameters. The SG principle imbedded in the internal control mechanism of the non-
equilibrium system is an engine of the system evolution. Transforming its internal structure,
the system minimizes its irreversible losses and contains information about the history of the
imposed external loading. According to the SG-algorithm, the system evolution is represented as
a trajectory on the hypersurface constructed above the control parameters space. The phase point
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should go down the trajectory bounded by the imposed conditions. If the trajectory is known,
it becomes possible to predict the future reaction of the system which from the point of view of
conventional approaches, based on ‘rigid’ models [42], seems to be unpredictable.

For the non-equilibrium processes instead of the local entropy production, used in
conventional continuum mechanics, only the integral characteristics can serve for the goal
formulation. In paper [43], Lucia has introduced a capacious concept of the entropy generation
defined as the full entropy produced by the system all over the process history

Σ(t) =
∫ t

0
dt

∫
V

dxJ(x, t)G(x, t). (9.1)

Then, the integral entropy production is the rate of the entropy generation

Σ̇(t) =
∫

V
dxJ(x, t)G(x, t). (9.2)

In the region of linear thermodynamics of irreversible processes where thermodynamic fluxes
are proportional to forces, (9.2) takes a form

Σ̇(t) = k0

∫
V

dxG2(x, t). (9.3)

According to the Prigogine theorem proved in linear thermodynamics, the local entropy
production takes its minimal value in the stationary non-equilibrium state maintained by the
imposed boundary conditions. This result should be valid for the integral entropy production
too. However, far from equilibrium the result is not proved. The macroscopic system, deviated
far from equilibrium, relaxes to equilibrium with maximal entropy generation and zero entropy
generation rate. The system with imposed boundary conditions also relaxes to more equilibrium
state with the smaller entropy generation. According to the SG principle, if it is a stationary state
the evolution trajectory should go down to the plane with constant and minimal value of the
entropy production rate. This entirely corresponds to the Prigogine theorem, but not bound to
near equilibrium conditions. So, in the framework of the SG principle the Prigogine theorem can
be generalized to nonlinear non-equilibrium processes.

Unlike the Prigogine theorem, Ziegler [8,30] argues the opposite seemingly: the system far
from equilibrium tends to maximize its local entropy production. Despite claims of the Ziegler
principle’s validity in a wide range of non-equilibrium conditions, the local entropy production
does not describe the system evolution to the goal with time. It only says that at any time during
the evolution the local entropy production should be maximal, though the maximal value should
be zero in the final equilibrium state.

Both seemingly opposite results can be combined in the framework of the SG principle: the
goal function is defined by the maximal entropy generation and minimal entropy generation rate
on the imposed boundary conditions, but the way to the goal, defined by the SG-algorithm, goes
along the gradient on the surface of the entropy generation rate at maximal rate. So, the proposed
formulation of the internal control problem considers being acceptable at any rate for the non-
equilibrium systems which evolution is entirely defined by the internal structure evolution.

The SG-algorithm has two different forms: differential for the wave-type processes and finite
for more slow relaxation. As the integral values, such as the entropy generation, change more slow
than macroscopic gradients the structure evolution supposes being slow and can be described by
the finite form of the SG principle. This circumstance causes separation of variables in scale that is
the necessary condition for self-organization of new structures in non-equilibrium system. Only
under the condition, the concept of internal structure itself is meaningful. The finite form of the
SG-algorithm results in a set of nonlinear differential equations with respect to the rates of the
structure parameters ṡ

ṡ = ṡ(t = t0) − g∇sΣ̇ . (9.4)

Coefficient g > 0 is an empiric constant characterizing inertial properties of the system’s
internal structure. Through the entropy production rate in the right part of (9.4), the feedback
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between the structure evolution and macroscopic relaxation is introduced, and the control
problem formulation of the system’s evolution becomes closed and self-consistent. The control
closed-loops are known to make systems more stable than ‘rigid’ programme control.

It must be noted that the finite form of the SG principle (9.4) entirely coincides with the steepest
descent algorithm with the goal (9.2) and control parameters s

ṡ = −g∇ṡΣ̈ = −g∇ṡ(∇sΣ̇ ṡ) = −g∇sΣ̇ . (9.5)

The rate of the function (9.2) results in the evolution principle obtained by Glansdorff &
Prigogine [29]

Σ̈ = ∇sΣ̇ ṡ = −g(∇sŻ)2 ≤ 0. (9.6)

The set of differential equations (9.4) needs initial conditions characterizing the internal
structure resulting from the external action. The evolution trajectory goes down from this point
on the surface (9.2). In the general case, the initial point is unknown, but in practice it is possible to
calculate one of the trajectory points from experimentally measured macroscopic characteristics,
solving the inverse problem with respect to the structure parameters. The approach was used
in paper [33] for the elastic–plastic shock-induced wave evolution. It should be underlined that
only the set of equations (9.4) allows a closed formulation of problems on non-equilibrium
processes.

10. The structure stability in non-equilibrium transport
Cybernetic methods allow a new point of view at the stability of non-equilibrium systems. Often
stationary macroscopic states of non-equilibrium system simultaneously lose their stability, and
it is difficult to find the reason of such behaviour. In the framework of non-local theory of
non-equilibrium transport the internal structure evolution can continue even in the stationary
macroscopic state because the boundary conditions maintain not all degrees of freedom. As
a result a part of the structure parameters relaxes decreasing the entropy production rate.
When due to the positive feedback the scale of macroscopic inhomogeneity coincides with the
internal structure scale, the structure transformation occurs. In such a threshold manner the
system switches to another regime of evolution. Sometimes the transformation may be called
catastrophic. For example, it is a fracture of solid, non-equilibrium phase transformation, etc.

The proposed non-local approach together with the SG principle allows a direct calculation of
the living time for the considered internal structure type under the imposed boundary conditions
taking into account feedback in between the structure evolution and the dynamic of macroscopic
fields.

11. The SG principle in non-equilibrium hydrodynamic processes
One of the known test problems in hydrodynamics is Rayleigh problem having a solution in the
explicit form [34]. An evolution of a shear flow of the viscous Newtonian fluid above an infinite
plane rigid plate moving at a constant velocity U0 (figure 1) is considered. The plate at t = 0
supposes to be instantaneously set in motion, and further the fluid in a nearby layer begins move
together it.

The motion of the incompressible viscous fluid is described by a parabolic equation for the
shear mass velocity u

∂u
∂t

= v0
∂2u
∂y2 , (11.1)

where v0 is kinematic shear viscosity. Equation (11.1) describes the momentum diffusion due
to the interaction between the moving plate and the initially immovable fluid. Under the given
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Figure 1. The flow diagram.

initial and boundary conditions,

u(y, t = 0) = 0, u(y = 0, t) = U0, u(y → ∞, t) → 0. (11.2)

Equation (11.1) has a solution

u(y, t) = U0

(
1 − erf

y
2
√

v0t

)
, erf(x) = 2

π

∫ x

0
exp −ξ2 dξ . (11.3)

The velocity gradient,

∂u
∂y

= − U0√
πv0t

exp

{
− y2

4v0t

}
, (11.4)

is infinite at t = 0 and decreases to zero at t → ∞. Within the the linear thermodynamics of
irreversible processes, the shear stress P is proportional to the normal gradient (11.4)

P(y, t) = v
∂u
∂y

= − vU0√
πv0t

exp

{
− y2

4v0t

}
. (11.5)

Expression (11.5) has δ-singularity at y = 0, t → 0. If the initial acceleration (∂u/∂t)(y, t = 0)
is finite, there is an initial regime when parabolic equation (11.1) is not valid. According to the
solution (11.3), a stationary state is setting when all the fluid moves together with the plate at
the velocity U0. In the reference connected to the plate, the system state is full thermodynamic
equilibrium. The local entropy production decreases with time to zero

σ (y, t) = ∂u
∂y

P(y, t) = v0

(
∂u
∂y

)2
. (11.6)

Substitution (11.4) into (11.6) shows that σ decreases with time to zero

σ (y, t) = vU2
0

πv0t
exp

{
− y2

2v0t

}
t→0

→ 0. (11.7)

The introduced above entropy generation calculated accounting (11.7), to the opposite, tends
from zero to maximal value which is infinite for the infinite system

Σ(t) = U2
0
√

2v0t√
π

, Σ(t)t→∞ → ∞. (11.8)

The entropy generation rate calculated for the entropy generation (11.8) tends from infinite at
the initial instant to zero during relaxation

Σ̇(t) = vU2
0√

2πv0t t→∞
→ 0. (11.9)

It is worth to note that equation (11.1), governing the viscous shear flow, can be derived within
SG-algorithm applied to the problem under certain conditions. Choosing the entropy generation
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rate (11.9) as a goal function and the fluid acceleration u̇ as a control parameter, and using the
SG-algorithm, one gets first the second time derivative of the entropy generation

Σ̈(t) =
∫∞

0
dyv02

∂u
∂y

∂2u
∂y∂y

= 0 −
∫∞

0
dyv02

∂2u
∂y2

∂u
∂t

.

Then the gradient with respect to u̇

∇u̇Σ̈(t) = ∇u̇

∫∞

0
dyv02

∂2u
∂y2

∂u
∂t

= −v0
∂2u
∂y2 .

The finite form of the SG-algorithm yields an equation

u̇ = −Γ ∇u̇Σ̈(t)

that for the parameter value Γ = 1 on the condition u̇(y > 0, t = 0) = 0 is identical to the
momentum diffusion equation

∂u
∂t

= Γ v0
∂2u
∂y2 .

The boundary condition is not included into the system. It means that without boundary and
initial conditions the equation (11.1) describes only the gradient way but not the system evolution
itself. Then, the question arises: what principle the system follows during the time evolution
under the conditions (11.2)?

Let an evolution parameter α(t)t→0 → 0 of the length dimension generates the initial
δ-singularity at y = 0, t → 0 in the shear stress P like 2

√
v0t in (11.5) under conditions (11.2). Then,

P(y, t) = v0
∂u
∂y

= −2v0U0√
πα

exp

{
− y2

α2

}
,

the local entropy production within the linear thermodynamics.

σ (y, α) = ∂u
∂y

P(y, α) = v0

(
∂u
∂y

)2
= 4v0U2

0
πα2 exp

{
−2y2

α2

}
,

the entropy generation

Σ(α) =
∫α

0
dα

∫∞

0
dyσ (y, α)

and the entropy generation rate

Σ̇(t) =
∫∞

0
dyσ (y, t)α̇ =

∫∞

0
dyv

(
∂u
∂y

)2
α̇ = 2v0U2

0√
2πα

α̇ (11.10)

are expressed in terms of the parameter α(t). With the entropy generation Σ(α) in the form (11.10)
chosen as a goal function and α(t) as a control parameter, the SG-algorithm defines an unknown
temporal dependence of the parameter α(t)

α̇ = Γ
∂Σ̇

∂α̇
, α̇ = Γ

2v0U2
0√

2πα
, (11.11)

where the constant coefficient Γ characterizes the rate of the system evolution under the given
conditions. The differential equation (11.11) has a solution α2 = Γ (U2

0/
√

2π )4v0t that defines the
dependence α(t) = 2

√
v0t up to a constant. It means that the temporal evolution of the shear

viscous flow is going in accordance with the SG-algorithm in the direction of maximization of
entropy generation.

The SG principle, as might be expected, should be valid above the limits of linear
thermodynamics under much more non-equilibrium conditions.
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12. Non-local generalization of Rayleigh solution to high-rate motion of the
plate

High-rate motion of the plate prevents the momentum exchange between the fluid layers and the
plate. The diffusive mechanism of the momentum transport has no enough time to form. As a
result, wave-vortex structures are generated near the plate surface and move from it, forming
the expanding with time turbulent layer. In order to describe the turbulent flow, an integral
mathematical model relationship between the shear stress P(y, t) and the velocity gradient,
obtained in non-local theory of non-equilibrium transport processes [26], can be used

P(y, t) = v0

∫∞

0

dy′

ε
exp

{
−π (y′ − y − γ )2

ε2

}
∂u
∂y′ . (12.1)

The integral in (12.1) contains a smoothing δ-type kernel depending on parameters ε, γ which
are tied to the size of the wave-vortex structures near the plate. The shear parameter γ > 0
introduces the boundary influence into the process model. However, for a one-dimensional
problem ε characterizes a thickness of the layer where the fluid moves in correlation with the
rigid boundary, and γ defines a rotational moment γ × u of the structure element near the
boundary that allows the conditions (11.2) being satisfied. Big gradients near the boundary make
the solution (11.3) invalid in the layer of the thickness γ and result in the mass velocity slip on the
rigid surface. According to the non-local relationship (12.1), the stress is not proportional to the
velocity gradient in the same spatial point at any instant, but it depends on the velocity field all
over the spatial region.

In the general case, the parameters ε(t), γ (t) evolve in time and describe the wave-vortex
structure evolution. Unlike the evolution of the structureless medium described by the solution
(11.3), the evolution of turbulent flows goes due to the structures interaction, but not due to the
momentum diffusion. Let for simplicity, an approximate model for the shear stress in turbulent
flow is considered instead of (12.1)

P(y, t) = v0

∫∞

0

dy′

ε
exp

{
−π (y′ − y − γ )2

ε2

}
∂u0

∂y′ , (12.2)

where ∂u0/∂y is defined by (11.4).
The δ-singularity at y = 0, t → 0 disappears for the finite size structures, the friction behaviour

becomes inmonotoneous and decreases compared with the structureless medium at the same
velocity. However, it should be recalled that the model relationship (12.1) is not correct at the
initial stage of the process without the memory effects included into the model. So, it is possible
to confirm only that the maximal friction value in turbulent flow should be less than in the
structureless medium. The result is in accordance to one obtained by Klimontovich within the
kinetic theory.

The approximate expression for the entropy generation rate with the stress (12.2) is also
evolving in time

Σ̇(t) =
∫∞

0
dyσ (y, t) =

∫∞

0
dy

∂u0

∂y
P(y, t)

= v0

∫∞

0
dy

∂u0

∂y

∫∞

0

dy′

ε
exp

{
−π (y′ − y − γ )2

ε2

}
∂u0

∂y′ . (12.3)

Figure 2 shows the evolution of the surface Σ̇(ε, γ , u0(t)), constructed above the plane of the
structure parameters ε, γ .

The maximal growth of the entropy generation rate (12.3) is localized near the origin that
corresponds to the structureless fluid, described by the solution (11.3) invalid at the initial stage
of the process. In course of time the surface is equalizing, as shown in figure 2. The SG principle,
applied to the entropy generation rate (12.3), results in the structure evolution description.
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t = 1 × 10–2(a) (b) t = 5
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Figure 2. The surface (12.2) over the phase plane (ε, γ ). (a) at instant t and (b) t = 5. (Online version in colour.)
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Figure 3. The SG trajectories on the surface at instant t = 1 going down fromdifferent initial points 1, 2, 3 and 4. (Online version
in colour.)

According to (9.5), the SG-algorithm in the finite form entirely corresponds to the steepest descent
algorithm with the goal (12.3) and the control parameters ε, γ . Figure 3 shows the structure
evolution trajectories.

As shown in figure 3, the time dependence of (12.4) is non-monotonic during the evolution.
All the evolution trajectories, going down from different initial points, lead to a clusterization

of the medium elements and formation of the internal medium structure. The right trajectory
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Figure 4. Time evolution of the entropy generation rate (12.4):γ = 0.01 (a),γ = 0.2 (b),γ = 1 (c) (in sequence downward).
(Online version in colour.)

on figure 3 corresponds to the case ε → 0, γ > 0 when the entropy generation rate can be
calculated.

Σ̇(t) =
∫∞

0
dyσ (y, t) =

∫∞

0
dyv0

(
∂u
∂y

)2

= v0U2
0

πvt

∫∞

0
dy exp

{
− (y + γ )2

2v0t

}
= v0U2

0√
2πv0t

(
1 − exp

γ√
2v0t

)
. (12.4)

Figure 4 shows that the entropy generation rate decreases due to the parameter’s γ growth.
The equation for the parameter γ (t), provided by the SG-algorithm, describes the very right
trajectory on figure 3.

γ̇ = Γ
U2

0
π t

exp

{
− γ 2

2vt

}
> 0. (12.5)

Figure 3 shows the trajectories going down the surface fixed at one instant, but the surface
itself is equalizing during the trajectories are going down. Figure 3 also shows that the entropy
generation rate in the turbulent flow is always less than in the laminar one at the same high
velocity of the flow. The larger the scale of the turbulent flow, the less the entropy generation rate
becomes. This finding is consistent with the result obtained by Klimontovich [44], who calculated
the entropy production for the turbulent gas flow using the kinetic theory.

It would be very interesting to investigate the system evolution with feedback between the
changing surface of the entropy generation rate and the internal structure evolution. Boundary
conditions imposed on the finite size system can originate different wave-vortex structures
depending on the initial perturbations in the flow.

13. Conclusion
In this paper, it is shown that elements of the control theory are necessary to construct closed
mathematical models of non-equilibrium processes which have a predictive ability. Far from
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equilibrium, where the initial distribution function cannot be specified, it makes sense to leave
the evolution description in terms of the distribution function and to describe the more available
structure evolution. The physics of non-equilibrium processes requires the self-organization
modelling, because the high-rate transport in real media is often followed by new internal
structure formation at an intermediate-scale level between the macroscopic and microscopic ones
[23,24,28,31,32,40]. The formed structures become the natural information carriers in the system
far from equilibrium and lead to the internal closed-loops via feedback between the structural and
macroscopic medium properties. So, the self-regulation, operating in accordance with the control
theory principles, as shown in papers [23,24,26,31–33], is inherent not only to living systems, but,
in a varying degree, to almost all material phenomena.

We consider a non-equilibrium system’s evolution at different scale levels via the SG principle
and show that the SG principle allows closed mathematical models for non-equilibrium processes
to be constructed. We also propose a new approach to describe time evolution of a system far from
equilibrium at intermediate-scale level of the system’s internal structure.

Consideration of the changing structure effects requires new mathematical model (which can
be called ‘flexible’ [42]) that change their type with time depending on the internal structure
evolution. Therefore, it becomes clear that attempts to use the ‘rigid’ multi-parameters models, in
order to describe dynamic processes within a wide range of the loading conditions, are doomed
to failure.

Such ‘flexible’ mathematical models are constructed in the framework of the non-local theory
of non-equilibrium transport processes [23–26,31,32], based on the results of non-equilibrium
statistical mechanics [4,36,37,41] and methods of the cybernetic physics [14,15,18]. It is shown
that the role of the SG principle in description of processes far from equilibrium becomes
determinative.

The system evolution far from equilibrium, inseparably linked to the internal structure
evolution, is governed by the thermodynamic goal functional, connected to the maximization
of the entropy generation [43]. The fastest way to reach the goal, bounded by the imposed
conditions, is described by the SG principle [14–18,21], which determines the evolution
trajectories going down the moving surface of the entropy generation rate. Owing to feedback
between the structure evolution and macroscopic properties of the system, this approach allows
a prediction of the future system behaviour including possible turns of the trajectories.

The SG principle can eliminate the contradiction between the seemingly opposite
thermodynamic principles and combine the minimal entropy production principle for stationary
states, proved by Prigogine within linear theory of irreversible processes [29] and maximal
entropy production in nonlinear non-equilibrium process by Ziegler [30].

We show that the control closed-loops, occurring at the internal structure level, generate
new prospects for the external control, which are related to development of new technologies,
intellectual systems and prediction of catastrophic processes. The set of ‘flexible’ mathematical
models proposed in the paper provides the effective theoretical approach to solve a wide range
of the modern practical problems with the use of cybernetic physics methods.
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