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COMMUTATORS OF RELATIVE AND UNRELATIVE

ELEMENTARY SUBGROUPS IN CHEVALLEY GROUPS

NIKOLAI VAVILOV AND ZUHONG ZHANG

Abstract. In the present paper, which is a direct sequel of our papers [10, 11, 35]
joint with Roozbeh Hazrat, we achieve a further dramatic reduction of the gener-
ating sets for commutators of relative elementary subgroups in Chevalley groups.
Namely, let Φ be a reduced irreducible root system of rank ≥ 2, let R be a commu-
tative ring and let A,B be two ideals of R. We consider subgroups of the Chevalley
group G(Φ, R) of type Φ over R. The unrelative elementary subgroup E(Φ, A) of
level A is generated (as a group) by the elementary unipotents xα(a), α ∈ Φ, a ∈ A,
of level A. Its normal closure in the absolute elementary subgroup E(Φ, R) is de-
noted by E(Φ, R,A) and is called the relative elementary subgroup of level A. The
main results of [11, 35] consisted in construction of economic generator sets for the
mutual commutator subgroups [E(Φ, R,A), E(Φ, R,B)], where A and B are two
ideals of R. It turned out that one can take Stein—Tits—Vaserstein generators of
E(Φ, R,AB), plus elementary commutators of the form yα(a, b) = [xα(a), x−α(b)],
where a ∈ A, b ∈ B. Here we improve these results even further, by showing that in
fact it suffices to engage only elementary commutators corresponding to one long
root, and that modulo E(Φ, R,AB) the commutators yα(a, b) behave as symbols.
We discuss also some further variations and applications of these results.

To our distinguished colleague Ivan Panin,
a brilliant mathematician, and a wonderful friend

In the present paper we continue the study of the mutual commutator subgroups
of relative subgroups in Chevalley groups. In the context of the general linear
group GL(n,R) such commutator formulas were first systematically considered in
the groundbreaking work by Hyman Bass [1]. Soon thereafter, they were expanded
to various more general contexts by a number of experts including Anthony Bak,
Michael Stein, Alec Mason, Andrei Suslin, Leonid Vaserstein, Zenon Borewicz and
the first-named author, and many others. One can find an outline of that stage in
the survey [8].

The present paper continues the same general line of a long series of our joint
papers with Roozbeh Hazrat and Alexei Stepanov, where we established similar birel-
ative and multirelative formulas in various contexts, see, for instance, [24, 32, 33, 14,
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15, 9, 12], etc. For a much broader picture of the area and applications of those resuts
we refer the reader to our surveys and conference papers [4, 5, 6, 13].

More specifically, the present paper is a natural sequel of our joint papers with
Hazrat, Victor Petrov and Stepanov on relative subgroups and commutator formulas
in Chevalley groups, see [7, 3, 25, 10, 11, 21, 22], compare also the pioneering early
work by Hong You [39]. There we found, in particular, economic generating sets for
such mutual commutator subgroups [E(Φ, R, A), E(Φ, R, B)], which were later used
by Alexei Stepanov in his oustanding results on commutator width [23].

In 2018–2019 this line of research got an astounding boost, when we noticed that
for GL(n,R) everything works already for the unrelativised groups [29, 34, 36, 37].
In [35] we have partially generalised these results to Chevalley groups, by proving
that the third type of generators of [E(Φ, R, A), E(Φ, R, B)] that occurred in [11]
are redundant. Here, we obtain yet another dramatic improvement, and prove that
it suffices to consider the elementary commutators yα = [xα(a), x−α(b)] for a single
long root and, moreover, that the classes of these elementary commutators modulo
E(Φ, R, AB) behave as symbols in algebraic K-theory.

Introduction

Let Φ be a reduced irreducible root system of rank ≥ 2, let R be a commuta-
tive ring with 1, and let G(Φ, R) be a Chevalley group of type Φ over R. For the
background on Chevalley groups over rings see [28] or [31], where one can find many
further references. We fix a split maximal torus T (Φ, R) in G(Φ, R) and consider root
unipotents xα(ξ) elementary with respect to T (Φ, R). The subgroup E(Φ, R) gener-
ated by all xα(ξ), where α ∈ Φ, ξ ∈ R, is called the absolute elementary subgroup of
G(Φ, R).

Now, let I E R be an ideal of R. Then the unrelativised elementary subgroup

E(Φ, I) of level I is defined as the subgroup of E(Φ, R), generated by all elementary
root unipotents xα(ξ) of level I,

E(Φ, I) =
〈

xα(ξ) | α ∈ Φ, ξ ∈ I
〉

.

In general, this subgroup has no chances to be normal in E(Φ, R). Its normal closure
E(Φ, R, I) = E(Φ, I)E(Φ,R) is called the relative elementary subgroup of level I.

In the rest of this paper we impose the following umbrella assumption:

(*) In the cases Φ = C2,G2 assume that R does not have residue fields F2 of two
elements, and in the case Φ = Cl, l ≥ 2, assume additionally that any c ∈ R is
contained in the ideal c2R + 2cR.

This is precisely the condition that arises in the computation of the lower level
of the mixed commutator subgroup [E(Φ, A), E(Φ, B)], in [10], Lemma 17, and [11],
Theorem 3.1, see also further related results, and discussion of this condition in
[21, 22]. This condition ensures the inclusion

E(Φ, R, AB) ≤ [E(Φ, A), E(Φ, B)].
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Since all vital calculations in the present paper occur modulo E(Φ, R, AB), we are not
trying to remove or weaken this condition. In fact, when structure constants of type
Φ are not invertible in R, one should consider in all results more general elementary
subgroups, corresponding to admissible pairs, rather than individual ideals anyway.

Let us state the main result of our previous paper [35], Theorem 1.2, which, in
turn, is an elaboration of the main result of [11], Theorem 1.3. Below, zα(a, c) are
Stein—Tits—Vaserstein generators, whereas yα(a, b) are elementary commutators,
both are defined in the statement itself, see also §§ 1 and 2 for details.

Theorem A. Let Φ be a reduced irreducible root system of rank ≥ 2. Further, let

A and B be two ideals of a commutative ring R. Assume (*). Then the mixed com-

mutator subgroup
[

E(Φ, R, A), E(Φ, R, B)
]

is generated as a group by the elements

of the form

• zα(ab, c) = x−α(c)xα(ab)x−α(−c),

• yα(a, b) =
[

xα(a), x−α(b)
]

,

where in both cases α ∈ Φ, a ∈ A, b ∈ B, c ∈ R.

Recall that previous results, including [11], Theorem 1.3, required also a third
type of generators for mixed commutator subgroups, viz.

[

xα(a), zα(b, c)
]

, but the
Main Lemma of [35] shows that this type of generators are redundant, and can be
expressed as product of elementary conjugates of the generators listed in Theorem
A. Since both remaining types of generators sit already in

[

E(Φ, A), E(Φ, B)
]

, the
above theorem immediately implies the following result, [35], Theorem 1.1.

Theorem B. In conditions of Theorem A
[

E(Φ, R, A), E(Φ, R, B)
]

=
[

E(Φ, A), E(Φ, B)
]

.

Here, we obtain further striking improvements of these results. First of all, it turns
out that the set of generators in Theorem A can be further reduced by restricting α
for the second type of generators to a single long root.

Theorem 1. In conditions of Theorem A the mixed commutator of elementary sub-

groups
[

E(Φ, R, A), E(Φ, R, B)
]

is generated as a group by the elements of the form

• zα(ab, c) = x−α(c)xα(ab)x−α(−c),

• yβ(a, b) =
[

xβ(a), x−β(b)
]

,

where in both cases a ∈ A, b ∈ B, c ∈ R, whereas α ∈ Φ is arbitrary, and β ∈ Φ is a

fixed long root.

Morally, this theorem is also a partial counterpart of [35], Theorem 4.1, which
asserts that the relative elementary subgroups E(Φ, R, A) are themselves generated
by long root type unipotents.

Many of the auxiliary results are important and interesting in themselves, and we
reproduce some of them in the introduction. Firstly, it turns out that the elementary
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commutators are central in E(Φ, R)/E(Φ, R, AB). The proof of the following result
is similar to that of the Main Lemma in [35], and in fact easier.

Theorem 2. In conditions of Theorem A one has

xyα(a, b) ≡ yα(a, b) (mod E(Φ, R, AB)) .

for any α ∈ Φ, all a ∈ A, b ∈ B, and any x ∈ E(Φ, R).

This theorem asserts that
[

[E(Φ, A), E(Φ, B)], E(Φ, R)
]

≤ E(Φ, R, AB).

In particular, the quotient [E(Φ, A), E(Φ, B)]/E(Φ, R, AB) is itself abelian, so that
we get the following result.

Theorem 3. In conditions of Theorem A for all a, a1, a2 ∈ A, b, b1, b2 ∈ B one has

• yα(a1 + a2, b) ≡ yα(a1, b) · yα(a2, b) (mod E(Φ, R, AB)) ,

• yα(a, b1 + b2) ≡ yα(a, b1) · yα(a, b2) (mod E(Φ, R, AB)) ,

• yα(a, b)
−1 ≡ yα(−a, b) ≡ yα(a,−b) (mod E(Φ, R, AB)) ,

• yα(ab1, b2) ≡ yα(a1, a2b) ≡ e (mod E(Φ, R, AB)) .

The following two results afford the advance from Theorem A to Theorem 1.
Their proofs are exactly the main novelty of the present paper, the rest are either
easy variations of the preceding results, or easily follows.

Theorem 4. In conditions of Theorem A for all a ∈ A, b ∈ B, c ∈ R, one has :

• yα(a, b) ≡ yβ(a, b) (mod E(Φ, R, AB)) ,

for any roots α, β ∈ Φ of the same length.

• yα(a, b) ≡ yβ(a, b)
p (mod E(Φ, R, AB)) ,

if the root α ∈ Φ is short, whereas the long β ∈ Φ is long, while p = 2 for Φ =
Bl,Cl,F4, and p = 3 for Φ = G2.

Theorem 5. In conditions of Theorem A for all a ∈ A, b ∈ B, c ∈ R, one has :

• yα(ac, b) ≡ yα(a, cb) (mod E(Φ, R, AB)) ,

where either Φ 6= Cl, or α is short.

In the exceptional case when Φ = Cl and α is long only the following weaker

congruences hold :

• yα(ac
2, b) ≡ yα(a, c

2b) (mod E(Φ, R, AB)) ,

• yα(ac, b)
2 ≡ yα(a, cb)

2 (mod E(Φ, R, AB)) .

For GL(n,R) over an arbitrary associative ring R similar results were established
in our recent papers [34, 36, 37]. For Bak’s unitary groups GU(2n,R,Λ), again over
an arbitrary form ring (R,Λ), such similar results are presently under way [38].
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The paper is organised as follows. In § 1 we recall necessary notation and back-
ground. In § 2 we prove Theorem 2, and thus also Theorem 3. The technical core of
the paper are §§ 3–5, where we prove Theorems 4 and 5, for rank 2 root systems, A2,
C2 (which is again by far the most difficult case!) and G2, respectively. Together,
Theorems 2 and 4 imply Theorem 1. Finally, in § 6 we derive some corollaries of
Theorem 1 and state some further related problems.

1. Notation and preliminary facts

To make this paper independent of [10, 11, 35], here we recall basic notation and
the requisite facts, which will be used in our proofs. For more background information
on Chevalley groups over rings, see [28, 31, 7] and references therein.

1.1. Notation. Let G be a group. For any x, y ∈ G, xy = xyx−1 denotes the left
x-conjugate of y. As usual, [x, y] = xyx−1y−1 denotes the [left normed] commutator
of x and y. We shall make constant use of the obvious commutator identities, such as
[x, yz] = [x, y] · y[x, z] or [xy, z] = x[y, z] · [x, z], usually without any specific reference.

Let Φ be a reduced irreducible root system of rank l = rk(Φ). We denote by Φs

the subset Φ consisting of short roots, and by Φl the subsystem of Φ consisting of
long roots. Fix an order on Φ with Φ+, Φ− and Π = {α1, . . . , αl} being the sets of
positive, negative and fundamental roots, respectively. Further, let W = W (Φ) be
the Weyl group of Φ.

As in the introduction, we denote by xα(ξ), α ∈ Φ, ξ ∈ R, the elementary genera-
tors of the (absolute) elementary Chevalley subgroup E(Φ, R). For a root α ∈ Φ we
denote by Xα the corresponding [elementary] root subgroup Xα =

{

xα(ξ) | ξ ∈ R
}

.
Recall that any conjugate gxα(ξ) of an elementary root unipotent, where g ∈ G(Φ, R)
is called root element or root unipotent , it is called long or short , depending on
whether the root α itself is long or short.

Let, as in the introduction, I be an ideal of R. We denote by Xα(I) the intersection
of Xα with the principal congruence subgroup G(Φ, R, I). Clearly, Xα(I) consists of
all elementary root elements xα(ξ), α ∈ Φ, ξ ∈ I, of level I:

Xα(I) =
{

xα(ξ) | ξ ∈ I
}

.

By definition, E(Φ, I) is generated by Xα(I), for all roots α ∈ Φ. The same subgroups
generate E(Φ, R, I) as a normal subgroup of the absolute elementary group E(Φ, R).
Generators of E(Φ, R, I) as a group are recalled in the next subsection.

1.2. Generation of elementary subgroups. Apart from Theorem A we shall ex-
tensively use the two following generation results. The first one is a classical result
by Michael Stein [19], Jacques Tits [26] and Leonid Vaserstein [27].

Lemma 1. Let Φ be a reduced irreducible root system of rank ≥ 2 and let I be an ideal

of a commutative ring R. Then as a group E(Φ, R, I) is generated by the elements

of the form

zα(a, c) = x−α(c)xα(a)x−α(−c),
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where a ∈ I, c ∈ R, and α ∈ Φ.

The following result on levels of mixed commutator subgroups is [11], Theorem 4,
which in turn is a sharpening of [10], Lemmas 17–19.

Lemma 2. Let Φ be a reduced irreducible root system of rank ≥ 2 and let R be

a commutative ring. Then for any two ideals A and B of the ring R one has the

following inclusion

E(Φ, R, AB) ≤
[

E(Φ, A), E(Φ, B
]

≤
[

E(Φ, R, A), E(Φ, R, B)
]

≤
[

G(Φ, R, A), G(Φ, R, B)
]

≤ G(Φ, R, AB).

1.3. Structure constants. All results of the present paper are based on the Stein-
berg relations among the elementary generators, which will be repeatedly used with-
out any specific reference. Especially important for us is the Chevalley commutator
formula

[xα(a), xβ(b)] =
∏

iα+jβ∈Φ

xiα+jβ(Nαβija
ibj),

where α 6= −β and Nαβij are the structure constants which do not depend on a and
b. However, for Φ = G2 they may depend on the order of the roots in the product
on the right hand side. See [2, 19, 20, 31] for more details regarding the structure
constants Nαβij .

In the proof of Theorems 4 and 5 we need somewhat more specific information
about the structure constants. For Φ = A2 and Φ = C2 this is easy, since the
corresponding simply connected Chevalley groups can be identified with SL(3, R)
and Sp(4, R), respectively, and we select the usual parametrisation of the elementary
root subgroups therein.

For Φ = C2 the most complicated instance of the Chevalley commutator formula
is when α and β are the long and short fundamental roots, respectively. We will
choose the parametrisation of root subgroups for which

[xα(a), xβ(b)] = xα+β(ab)xα+2β(ab
2).

The case of Φ = G2 is somewhat more tricky. Let α and β be the short and long
fundamental roots, respectively. Then it is known that the parametrisation of the
root subgroups can be chosen in such a way that

[xα(a), xβ(b)] = xα+β(ab)x2α+β(a
2b)x3α+β(a

3b)x3α+2β(2a
3b2)

[xα(a), xα+β(b)] = x2α+β(2ab)x3α+β(3a
2b)x3α+2β(−3ab2),

[xα(a), x2α+β(b)] = x3α+β(3ab),

[xβ(a), x3α+β(b)] = x3α+2β(ab),

[xα+β(a), x2α+β(b)] = x3α+2β(−3ab),

these are precisely the signs you get for the positive Chevalley base. See, for instance
[2, 20, 31].
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Our initial proof of Theorems 4 and 5 in the case Φ = G2 relied on an explicit
knowledge of the structure constants also in some further instances of the Chevalley
commutator formula. Initially, we used a Mathematica package g2.nb by Alexander
Luzgarev, to compute the structure constants. However, later we noticed that pairs of
short roots do not require a separate analysis. This is precisely the shortcut presented
in § 5 below.

1.4. Parabolic subgroups. As in [36] an important part in the proof of Theorems
2, 4 and 5 is played by the Levi decomposition for [elementary] parabolic subgroups.
Oftentimes, it allows us to discard factors in the unipotent radicals, to limit the
number of instances, where we have to explicitly invoke precise forms of the Chevalley
commutator formula.

Classical Levi decomposition asserts that any parabolic subgroup P of G(Φ, R)
can be expressed as the semi-direct product P = LP ⋌ UP of its unipotent radical
UP E P and a Levi subgroup LP ≤ P . However, as in [11, 35] we do not have to
recall the general case.

• Since we calculate inside E(Φ, R), we can limit ourselves to the elementary

parabolic subgroups, spanned by some root subgroups Xα.

• Since we can choose the order on Φ arbitrarily, we can always assume that α is
fundamental and, thus, limit ourselves to standard parabolic subgroups.

• Since the proofs of our main results reduces to groups of rank 2, we could
only consider rank 1 parabolic subgroups, which in this case are maximal parabolic
subgroups.

Thus, we consider only elementary rank 1 parabolics, which are defined as follows.
Namely, we fix an order on Φ, and let Φ+ and Φ− be the corresponding sets of positive
and negative roots, respectively. Further, let Π = {α1, . . . , αl} be the corresponding
fundamental system. For any r, 1 ≤ r ≤ l, and define the r-th rank 1 elementary

parabolic subgroup as

Pαr = 〈U,X−αr〉 ≤ E(Φ, R).

Here U =
∏

Xα, α ∈ Φ+, is the unipotent radical of the standard Borel subgroup B.
Then the unipotent radical of Pαr has the form

Uαr =
∏

Xα, α ∈ Φ+, α 6= αr,

whereas Lαr = 〈Xαr , X−αr〉 is the [standard] Levi subgroup of Pr. Clearly, Lαr is
isomorphic to the elementary subgroup E(2, R) in SL(2, R), or to its projectivised
version PE(2, R) in PGL(2, R). In the sequel we usually (but not always!) abbreviate
Pαr , Uαr , Lαr , etc., to Pr, Ur, Lr, etc.

Levi decomposition (which in the case of elementary parabolics immediately fol-
lows from the Chevalley commutator formula) asserts that the group Pr is the semi-
direct product Pr = Lr ⋌Ur of Ur EPr and Lr ≤ Pr. The most important part is the
[obvious] claim is that Ur is normal in Pr.
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Simultaneously with Pr one considers also the opposite parabolic subgroup P−

r

defined as

P−

r = 〈U−, Xαr〉 ≤ E(Φ, R).

Here U− =
∏

Xα, α ∈ Φ−, is the unipotent radical of the Borel subgroup B− opposite
to the standard one. Clearly, Pr and P−

r share the common [standard] Levi subgroup
Lr, whereas the unipotent radical U−

r of P−

r is opposite to that of Pr, and has the
form

U−

r =
∏

Xα, α ∈ Φ−, α 6= −αr.

Now, Levi decomposition takes the form P−

r = Lr ⋌ U−

r with U−

r E P−

r . In other
words, Ur and U−

r are both normalised by Lr.

Actually, we need a slightly more precise form of this last statement. Namely, let
I be an ideal of R. Denote by Lr(I) the principal congruence subgroup of level I in
Lr and by Ur(I) and U−

r (I) the respective intersections of Ur and U−

r with G(Φ, R, I)
— or, what is the same, with E(Φ, R, I):

Ur(I) = Ur ∩ E(Φ, R, I), U−

r (I) = U−

r ∩ E(Φ, R, I).

Obviously, Ur(I), U
−

r (I) ≤ E(Φ, I) are normalised by Lr.

The following fact is well known, and obvious.

Lemma 3. Let A and B be two ideals of R. Then

[Lr(A), Ur(B)] ≤ Ur(AB), [Lr(A), U
−

r (B)] ≤ U−

r (AB).

In particular, both commutators are contained in E(Φ, AB) ≤ E(Φ, R, AB).

2. Proof of Theorems 2 and 3

This section is devoted to the proof of Theorem 2. It is a calculation of the same
type as the proof of the Main Lemma in [7], and actually easier than that, since now
we can expand the exponent level, rather than the ground level, so that there are no
protruding factors that have to be taken care of and the elementary commutators do
not procreate.

2.1. Idea of the proof. Consider the elementary conjugate xyα(a, b). We argue by
induction on the length of x ∈ E(Φ, R) in elementary generators. Let x = yxβ(c),
where y ∈ E(Φ, R) is shorter than x, whereas β ∈ Φ, c ∈ R. First of all, recall that
under the action of the Weyl group W (Φ) the root α is conjugate to a fundamental
root of the same length. Thus, we could from the very start choose an ordering of Φ
such that α = αr ∈ Π is a fundamental root for some r, 1 ≤ r ≤ l.

If β 6= ±α, then xβ(c) belongs either to Ur, or to U−

r . By Lemma 3 in each case
[xβ(c), yα(a, b)] ∈ E(Φ, R, AB) and thus

xβ(c)yα(a, b) = [xβ(c), yα(a, b)] · yα(a, b) ≡ yα(a, b) (mod E(Φ, R, AB)) .



COMMUTATORS OF RELATIVE AND UNRELATIVE ELEMENTARY SUBGROUPS 9

2.2. Expansion of the exponent. It remains only to consider the case, where
β = ±α. In each case we will express xβ(c) as a product of root elements satisfying
the conditions of the previous item. One of the four following possibilities may occure.
Since we are only looking at one instance of the Chevalley commutator formula at a
time, the parametrisation of the corresponding root subgroups can be chosen in such
a way that all the resulting structure constants are positive (see [2, 20] or [31] and
references there.

• First, assume that α can be embedded into a subsystem of type A2. This already
proves Theorem 1 for simply laced Chevalley groups, and for the Chevalley group of
type F4. It also proves necessary congruences for a short root α in Chevalley groups
of type Cl, l ≥ 3, for a long root α in Chevalley groups of type Bl, l ≥ 3, and for a
long root α in the Chevalley group of type G2.

In this case there exist roots γ, δ ∈ Φ, of the same length as α such that β =
γ + δ and Nγδ11 = 1. Express xβ(c) in the form xβ(c) = [xγ(1), xδ(c)] and plug this
expression in the exponent. We get

xβ(c)yα(a, b) =
xγ(1)xδ(c)xγ(−1)xδ(−c)yα(a, b) ≡ yα(a, b) (mod E(Φ, R, AB)) ,

by the first item in the proof.

• Next, assume that α can be embedded into a subsystem of type C2 as a short

root. In this case we express β as β = γ + δ, where γ is long and δ is short. By the
above we may xβ(c) in the form

xβ(c) = [xγ(c), xδ(1)] · xγ+2δ(−c).

Plugging this expression in the exponent, we get

xβ(c)yα(a, b) =
xγ(1)xδ(c)xγ(−1)xδ(−c)xγ+2δ(−c)yα(a, b) ≡ yα(a, b) (mod E(Φ, R, AB)) ,

where again γ, δ, γ + 2δ 6= ±α, so that we can invoke the first item.

• Next, assume that α can be embedded into a subsystem of type C2 as a long

root. In this case we express β as β = γ + 2δ, with the same γ, δ as above. so that
the formula takes the form

xβ(c) = [xγ(c), xδ(1)] · xγ+δ(−c).

Plugging this expression in the exponent, we get

xβ(c)yα(a, b) =
xγ(1)xδ(c)xγ(−1)xδ(−c)xγ+δ(−c)yα(a, b) ≡ yα(a, b) (mod E(Φ, R, AB)) ,

where again γ, δ, γ + δ 6= ±α.

• Finally, when α is a short root in G2, β as β = γ + δ, where γ is long and δ is
short. By the above, we can rewrite the Chevalley commutator formula in the form

xβ(c) = [xγ(c), xδ(1)] · xγ+2δ(−c)xγ+3δ(−c)x2γ+3δ(−2c2).
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Plugging this expression in the exponent, we get

xβ(c)yα(a, b) =
xγ(1)xδ(c)xγ(−1)xδ(−c)xγ+2δ(−c)xγ+3δ(−c)x2γ+3δ(−2c2)yα(a, b) ≡

yα(a, b) (mod E(Φ, R, AB)) ,

where again γ, δ, γ + 2δ, γ + 3δ, 2γ + 3δ 6= ±α.

2.3. Proof of Theorems 2 and 3. Summarising the above, we see that for all
elementary generators xβ(c) one has xβ(c)yα(a, b) ≡ yα(a, b) (mod E(Φ, R, AB)) and
thus

xyα(a, b) ≡
yyα(a, b) (mod E(Φ, R, AB)) ,

where the length of y in elementary generators is smaller than the length of x. By
induction we get that xyα(a, b) ≡ yα(a, b) (mod E(Φ, R, AB)) , as claimed. This
proves Theorem 2.

It is clear that Theorem 3 immediately follows. Indeed, to derive the first item,
observe that

yα(a1 + a2, b) = [xα(a1 + a2), x−α(b)] = [xα(a1)xα(a2), x−α(b)].

Using multiplicativity of the commutator w. r.‘t. the first argument, we see that

yα(a1 + a2, b) =
xα(a1)[xα(a2), x−α(b)] · [xα(a1), x−α(b)] =

xα(a1)yα(a2, b) · yα(a1, b).

It remains to apply Theorem 2. The second item is similar, and the third item follows.
The last item is obvious from the definition.

3. Proof of Theorems 4 and 5: the case A2

We are now all set to take up the proof of Theorems 4 and 5. In the present section
we prove Theorems 4 and 5 for simply laced systems.

3.1. Structure of the proof. The proof will be subdivided into a sequence of five
lemmas, which either simultaneously establish congruences in Theorems 4 and 5, for
some pairs of roots of the same length, or reduce elementary commutators for short
roots to elementary commutators for long roots. These five cases are:

• Two roots α and β that can be embedded into A2, Lemma 4,

• Two short roots in C2, Lemma 5,

• Two long roots in C2, Lemma 6,

• A short and a long root in C2, Lemma 7,

• A short and a long root in G2, Lemma 8.

Already Lemma 4 suffices to establish Theorem 4, and thus also Theorem 1, for
the case of simply-laced systems. It also reduces both long and short elementary
commutators in F4, long elementary commutators in Bl, l ≥ 3, and G2 and short
elementary commutators in Cl, l ≥ 3, to such elementary commutators for a single
root of that length. After that, Lemmas 5–7 completely settle the case of doubly
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laced root systems. Finally, Lemma 8 is only needed for G2. Observe that together
with Lemma 4 it immediately implies also the necessary congruences for pairs of short
roots in G2.

Warning. A similar strategy does not work for C2 since in this case the congruences
for long roots in Theorem 5 are weaker , than the desired congruences for short roots.
This compels us to derive the congruences for pairs of short roots and for pairs of
long roots independently, before comparing elementary commutators for short roots
with those for long roots. This makes C2 the most exacting case of all.

3.2. Two roots in A2. The first of these lemmas was essentially contained already
in [34], Lemma 5, and [36], Lemma 11. Of course, there we used matrix language.
For the sake of completeness, and also as a template for the following more difficult
lemmas, below we reproduce its proof in the language of roots.

Lemma 4. Assume that the roots α, β ∈ Φ of the same length can be embedded into

a subsystem of type A2. Then for all a ∈ A, b ∈ B, c ∈ R, one has :

yα(ac, b) ≡ yβ(a, cb) (mod E(Φ, R, AB)) .

Proof. First, assume that β is such that α = β + γ, with Nβγ11 = 1 and rewrite the
elementary commutator yα(ac, b) =

[

xα(ac), x−α(b)
]

as

yα(ac, b) = xα(ac) ·
x
−α(b)xα(−ac) = xα(ac) ·

x
−α(b)

[

xβ(a), xγ(−c)
]

.

Expanding the conjugation by x−α(b), we see that

yα(ac, b) = xα(ac)·
[

x
−α(b)xβ(a),

x
−α(b)xγ(−c)

]

= xα(ac)·
[

x−γ(ba)xβ(a), xγ(−c)x−β(cb)
]

.

Now, the first factor x−γ(ba) of the first argument in this last commutator already
belongs to the group E(Φ, AB) which is contained in E(Φ, R, AB). Thus, as above,

yα(ac, b) ≡ xα(ac) ·
[

xβ(a), xγ(−c)x−β(cb)
]

(mod E(Φ, R, AB)) .

Using multiplicativity of the commutator w. r. t. the second argument, cancelling the
first two factors of the resulting expression, and then applying Theorem 2 we see that
for a pair of roots α, β at angle π/3, one has

yα(ac, b) ≡
xγ(−c)

[

xβ(a), x−β(cb)
]

≡
[

xβ(a), x−β(cb)
]

≡ yβ(a, cb) (mod E(Φ, R, AB)) ,

as claimed. Obviously, one can pass from any root in A2 to any other such root in
not more than 3 such elementary steps. �

Joining two roots of the same length by a sequence of roots where every two
neighbours sit in a subsystem of type A2, we obtain the following corollary.

Corollary. Assume that the roots α, β ∈ Φ of the same length and one of the following

holds :

• Φ = Al,Dl,El,F4,

• Φ = Bl, l ≥ 3, and α, β are long,

• Φ = Cl, l ≥ 3, and α, β are short.
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• Φ = G2, and α, β are long,

Then for all a ∈ A, b ∈ B, c ∈ R, one has :

yα(ac, b) ≡ yβ(a, cb) (mod E(Φ, R, AB)) .

The remaining cases have to be considered separately, in the same style, as Lemma
4. However, in these cases the roots β and γ in the proof of this lemma would have
different lengths, so that it does matter, whether we put parameter a in the above
calculation in the short root unipotent, or the long root unipotent. In fact, by
choosing one way, or the other, one gets different congruences! Also, in the case
Φ = G2 the structure constants have to be chosen in consistent way.

4. Proof of Theorems 4 and 5: the case C2

In this section we prove Theorems 4 and 5 for doubly laced systems. This is by
far the most difficult case of all, since in this case we have to consider short roots and
long roots separately.

4.1. Two short roots. The following lemma settles the case of short roots in Bl,
l ≥ 2.

Lemma 5. Assume that the roots α, β ∈ Φ can be embedded as short roots into a

subsystem of type C2. Then for all a ∈ A, b ∈ B, c ∈ R, one has :

yα(ac, b) ≡ yβ(a, cb) (mod E(Φ, R, AB)) .

Proof. First assume that α and β are linearly independent. Then there exists a long
root γ such that α = β+γ and we can choose parametrisation of root subgroups such
that Nβγ11 = Nβγ21 = 1. Actually, the signs mostly do not play any role here, apart
from one position. Namely, we should eventually get that yα(ac, b) is equivalent to

yβ(a, cb), and not to yβ(a, cb)
−1. They were calculated in Sp(4, R).

Expanding the elementary commutator yα(ac, b) as in Lemma 4 and plugging in
xα(−ac) = xα+β(a

2c)[xβ(a), xγ(−c)], we get

yα(ac, b) = xα(ac) ·
x
−α(b)xα(−ac) = xα(ac) ·

x
−α(b)xα+β(a

2c) · x−α(b)
[

xβ(a), xγ(−c)
]

.

Expanding the conjugation by x−α(b), we see that

yα(ac, b) = xα(ac) ·
x
−α(b)xα+β(a

2c) ·
[

x−γ(ba)xβ(a), xγ(−c)x−β(cb)x−α−β(cb
2)
]

.

Now, the first factor x−γ(ba) of the first argument in this last commutator already
belongs to the group E(Φ, AB) which is contained in E(Φ, R, AB). Also,

x
−α(b)xα+β(a

2c) ≡ xα+β(a
2c) (mod E(Φ, R, AB)) .

Thus, as above,

yα(ac, b) ≡ xα(ac)xα+β(a
2c) · [xβ(a), xγ(−c)x−β(cb)x−α−β(cb

2)
]

(mod E(Φ, R, AB)) .
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Using multiplicativity of the commutator w. r. t. the second argument, cancelling the
first commutator of the resulting expression, we see that

yα(ac, b) ≡
[

xβ(a), x−β(cb)x−α−β(cb
2)
]

=

yβ(a, cb) ·
x
−β(cb)

[

xβ(a), x−α−β(cb
2)
]

≡ yβ(a, cb) (mod E(Φ, R, AB)) .

Obviously, one can pass from a short root α in C2 to the opposite root −α in two
such elementary steps. �

4.2. Two long roots. The following lemma settles the case of long roots in Cl,
l ≥ 2. This case is exceptional, since here, unlike all other cases, the arguments of an
elementary commutator are only balanced up to squares. In the following lemma we
establish the first related congruence in Theorem 5.

Lemma 6. Assume that the roots α, γ ∈ Φ can be embedded as long roots into a

subsystem of type C2. Then for all a ∈ A, b ∈ B, c ∈ R, one has :

yα(ac
2, b) ≡ yγ(a, c

2b) (mod E(Φ, R, AB)) .

Proof. First, let α and γ be linearly independent long roots. As in the previous lemma
we choose a short root β such that α = 2β + γ and specify the same choice of signs.

Expanding the elementary commutator yα(ac
2, b) as in Lemma 4 and plugging in

xα(−ac2) = xγ+β(ac)[xβ(c), xγ(−a)], we get

yα(ac
2, b) = xα(ac

2) · x−α(b)xα(−ac2) = xα(ac
2) · x−α(b)xγ+β(ac) ·

x
−α(b)

[

xβ(c), xγ(−a)
]

.

Expanding the conjugation by x−α(b), we see that

yα(ac
2, b) = xα(ac

2) · x−α(b)xγ+β(ac) ·
[

xβ(c)x−β−γ(cb)x−γ(c
2b), xγ(−a)

]

.

As usual,
x
−α(b)xγ+β(ac) ≡ xγ+β(ac) (mod E(Φ, R, AB)) .

so that the first two factors of the above expression are the inverse of [xβ(c), xγ(−a)].
Thus, up to a congruence modulo E(Φ, R, AB) we get

yα(ac
2, b) ≡

[

x−β−γ(cb)x−γ(c
2b), xγ(−a)

]

≡

y−γ(c
2b,−a) ≡ yγ(a, c

2b) (mod E(Φ, R, AB)) .

Obviously, one can pass from a long root α in C2 to the opposite root −α in two
such elementary steps. �

4.3. A short root and a long root. The following lemma establishes connection
between the classes of short and long elementary commutators in doubly laced sys-
tems.

Lemma 7. Assume that the roots α, γ ∈ Φ can be embedded as a short root and a

long root into a subsystem of type C2. Then for all a ∈ A, b ∈ B, c ∈ R, one has :

yα(ac, b) ≡ yγ(a, cb)
2 (mod E(Φ, R, AB)) .
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Proof. First, assume that α and γ form an angle π/4. We choose a short root β such
that α = β + γ and specify the same choice of signs.

Expanding the elementary commutator yα(ac, b) as in Lemma 5 and plugging in
xα(−ac) = xα+β(−ac2)[xβ(−c), xγ(a)], we get

yα(ac, b) = xα(ac) ·
x
−α(b)xα(−ac) = xα(ac) ·

x
−α(b)xα+β(−ac2) · x−α(b)

[

xβ(−c), xγ(a)
]

.

Expanding the conjugation by x−α(b), we see that

yα(ac, b) = xα(ac)·
x
−α(b)xα+β(−ac2)·

[

x−γ(−2cb)xβ(−c), xγ(a)x−β(−ab)x−α−β(−ab2)
]

.

Now, the last two factors x−β(−ab)x−α−β(−ab2) of the second argument in this last
commutator already belong to the group E(Φ, AB) which is contained in E(Φ, R, AB).
Also,

x
−α(b)xα+β(−ac2) ≡ xα+β(−ac2) (mod E(Φ, R, AB)) .

Thus, as above,

yα(ac, b) ≡ xα(ac)xα+β(−ac2) ·
[

x−γ(−2cb)xβ(−c), xγ(a)
]

(mod E(Φ, R, AB)) .

Using multiplicativity of the commutator w. r. t. the first argument, and cancelling
the first commutator of the resulting expression, we see that

yα(ac, b) ≡ y−γ(−2cb, a) ≡ y−γ(cb, a)
−2 ≡ yγ(a, cb)

2 (mod E(Φ, R, AB)) .

Obviously, combined with the previous lemma this gives necessary inlcusions for
all pairs of a short and a long root. �

Corollary. Assume that the roots α, γ ∈ Φ can be embedded as long roots into a

subsystem of type C2. Then for all a ∈ A, b ∈ B, c ∈ R, one has :

yα(ac, b)
2 ≡ yβ(a, cb)

2 (mod E(Φ, R, AB)) .

Proof. Indeed, let γ be any short root. Then by the previous lemma and Lemma 5
one has

yα(ac, b)
2 ≡ yγ(ac, b) ≡ yγ(a, cb) ≡ yβ(a, cb)

2 (mod E(Φ, R, AB)) .

�

This completes the proof of Theorems 4 and 5 for doubly laced root systems.

5. Proof of Theorems 4 and 5: the case G2

In this section we finish the proof of Theorems 4 and 5 for the only remaining case
Φ = G2. Since in this case long roots themselves form a root system of type A2, the
corresponding elementary commutators are balanced with respect to all elements of
R, which makes the proof quite a bit easier.

The following lemma establishes connection between the classes of short and long
elementary commutators in G2.
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Lemma 8. Assume that α, γ ∈ G2, where α is short and γ is long. Then for all

a ∈ A, b ∈ B, c ∈ R, one has :

yα(ac, b) ≡ yγ(a, cb)
3 (mod E(Φ, R, AB)) .

Proof. First, assume that α and γ form an angle π/6. We choose a short root β such
that α = β + γ and specify the same choice of signs as in Section 1.3.

Expanding the elementary commutator yα(ac, b) as in Lemma 4 and plugging in
xα(−ac) = u · [xβ(−c), xγ(a)], where u = xα+β(−ac2)xα+2β(ac

3)x2α+β(2a
2c3), we get

yα(ac, b) = xα(ac) ·
x
−α(b)xα(−ac) = xα(ac) ·

x
−α(b)u · x−α(b)

[

xβ(−c), xγ(a)
]

.

Clearly, x
−α(b)u ≡ u (mod E(Φ, R, AB)) .

Expanding the conjugation by x−α(b), we see that yα(ac, b) = xα(ac) ·
x
−α(b)u · v,

where

v =
[

x−γ(−3cb)xβ(−c), xγ(a)x−α−2β(−a2b3)x−2α−β(ab
3)x−α−β(ab

2)x−β(ab)
]

.

Clearly, the last four factors of the second argument in this last commutator already
belong to the group E(Φ, AB) which is contained in E(Φ, R, AB).

Thus, by the same token, as above,

yα(ac, b) ≡ xα(ac) · u ·
[

x−γ(−3cb)xβ(−c), xγ(a)
]

(mod E(Φ, R, AB)) .

Using multiplicativity of the commutator w. r. t. first argument, cancelling the first
commutator of the resulting expression, we see that

yα(ac, b) ≡ y−γ(−3cb, a) ≡ y−γ(cb, a)
−3 ≡ yγ(a, cb)

3 (mod E(Φ, R, AB)) .

Obviously, combined with Lemma 4 this gives necessary inlcusions for all pairs of
a short and a long root. �

Corollary. Assume that the roots α, β ∈ G2. Then for all a ∈ A, b ∈ B, c ∈ R, one

has :

yα(ac, b) ≡ yβ(a, cb) (mod E(Φ, R, AB)) .

Proof. Indeed, let γ be any long root. Then by the previous lemma and Lemma 4
one has

yα(ac, b) ≡ yγ(ac, b)
3 ≡ yγ(a, cb)

3 ≡ yβ(a, cb) (mod E(Φ, R, AB)) .

�

This completes the proof of Theorems 4 and 5 for the only remaining case Φ = G2,
and thus also the proof of Theorem 1, for all cases.
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6. Final remarks

Theorem 1 implies surjective stability for the abelian quotients
[

E(Φ, A), E(Φ, B)
]

/E(Φ, R, AB)

described in Theorem 2, without any stability conditions. This is a generalisation of
the first half of [13], Lemma 15, to all Chevalley groups. Indeed, in view of Theorems
1 and 2 as a normal subgroup of E(Φ, R) the group [E(Φ, A), E(Φ, B)] is generated
by a similar commutator for a rank 2 subsystem. This can be restated as follows.

Theorem 6. Let R be any commutative ring with 1, and let A and B be two sided

ideals of R. Further, assume that ∆ ≤ Φ is a root subsystem containing A2 on long

roots or C2. Then the stability map
[

E(∆, A), E(∆, B)
]

/E(∆, R, AB) −→
[

E(Φ, A), E(Φ, B)
]

/E(Φ, R, AB)

is surjective.

According to Theorem 4 modulo E(Φ, R, AB) the elementary commutators yα(a, b)
behave as symbols. Theorems 3 and 5 list some relations satisfied by these symbols.
However, looking at the examples for which [E(Φ, A), E(Φ, B)] was explicitly calcu-
lated, such as Dedekind rings of arithmetic type, [18, 17, 30], it is easy to see that
there must be further relations.

Problem 1. Give a presentation of
[

E(Φ, A), E(Φ, B)
]

/E(Φ, R, AB) by generators

and relations.

In the present paper we have generalised the main results of [35] to all Chevalley
groups. It is natural to ask, whether the same can be done also for the results of
[36, 37]. For the results of [36] this does not have much sense, since for commutative

rings they already follow from the birelative standard commutator formula, and are
already contained in [10, 23, 13]. The fact that they can be proven by elementary
calculations alone, without any use of localisation methods, is amusing, but does not
have any tangible implications.

However, the analogues of results of [37] would be markedly new, and would have
vital consequences. It is not even totally clear, whether the triple congruences for
subgroups of GL(n,R), such as established in [37], Theorem 1, hold in this form in
more general contexts, or should be replaced by fancier and longer ones.

Problem 2. Prove analogues of [37], Theorem 1, for Chevalley groups.

The partially relativised group E(Φ, B, A) = E(Φ, A)E(Φ,B) is the smallest E(Φ, B)-
normalised subgroup containing E(Φ, A). It is easy to derive from Theorem 1 that
E(Φ, B, A) is generated by the elementary conjugates zα(a, b) = x

−α(b)xα(a), where
α ∈ Φ, a ∈ A, b ∈ B. It is natural to ask, whether this result can be improved
further. Namely, can one limit the roots α here to roots in the special part of some
parabolic set of roots, as was done for E(Φ, R, A) by van der Kallen and Stepanov,
see [16, 21, 22].
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Problem 3. Prove that E(Φ, B, A) is generated by E(Φ, R) together with the ele-

mentary conjugates zα(a, b) =
x
−α(b)xα(a), where a ∈ A, b ∈ B, while α runs over the

special part of a fixed parabolic set of roots in Φ.

We are very grateful to Roozbeh Hazrat and Alexei Stepanov for extremely use-
ful discussions at various stages of this work. Also, we very much appreciate the
help by Alexander Luzgarev who has sent us his neat Mathematica package g2.nb.
Among other things, that package allowed us to generate explicit matrix form of root
unipotents and Chevalley commutator formulae for the Chevalley group of type G2 in
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