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Статья посвящена применению методов и результатов тропической математики, ко-
торая изучает теорию и приложения алгебраических систем с идемпотентными опера-
циями, для разработки многокритериальной процедуры принятия решений. Рассматри-
вается задача оценки рейтингов альтернатив по данным парных сравнений альтернатив
в соответствии с несколькими критериями, а также парных сравнений критериев. Для
решения задачи предлагается процедура принятия решений на основе чебышевской ап-
проксимации в логарифмической шкале матриц парных сравнений обратно симметриче-
скими матрицами единичного ранга (согласованными матрицами), с помощью которых
определяют элементы векторов весов критериев и рейтингов альтернатив. Сначала ре-
шается задача аппроксимации матрицы парных сравнений критериев для нахождения
вектора весов критериев. Затем взвешенные матрицы парных сравнений альтернатив
аппроксимируются общей согласованной матрицей, определяющей искомый вектор рей-
тингов альтернатив. Если результатом является не единственный (с точностью до по-
ложительного множителя) вектор весов (рейтингов), решается дополнительная задача
анализа решений для нахождения векторов, которые могут рассматриваться в некото-
ром смысле как наихудшее и наилучшее решения. Задачи аппроксимации и анализа
решений в рамках предложенной процедуры формулируются как задачи тропической
оптимизации, которые имеют прямые аналитические решения в компактной вектор-
ной форме. Приводится пример применения процедуры для решения известной задачи
Т. Саати о выборе школы.
Ключевые слова: идемпотентное полуполе, тропическая оптимизация, матрица парных
сравнений, аппроксимация матриц, log-чебышевская метрика, многокритериальная за-
дача принятия решений.

1. Введение. Многокритериальные задачи принятия решений возникают в слу-
чаях, когда необходимо найти решение, которое будет в определенном смысле оп-
тимальным по нескольким критериям одновременно [1, 2]. Такие задачи встречают-
ся, например, при анализе предпочтений респондентов с использованием различных
критериев оценки в таких областях как маркетинг (исследование потребительского
спроса), социология (анализ социологических опросов) и политология (прогноз ре-
зультатов выборов).

Распространенный способ изучения предпочтений основан на методе парных
сравнений [3, 4], при котором на каждом шаге сравниваются только две альтернати-
вы (два объекта, две характеристики объектов), что обычно является более простой
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задачей, чем одновременная оценка нескольких альтернатив. Результат применения
метода — матрица парных сравнений, анализ которой позволяет получить вектор,
составленный из рейтингов альтернатив и сделать вывод об их ранжировании.

В матрицах парных сравнений, как правило, нарушена согласованность оценок,
которую, однако, можно восстановить путем решения задачи аппроксимации таких
матриц согласованными матрицами, элементы которых обладают свойствами обрат-
ной симметричности и транзитивности. Эту задачу формулируют как задачу опти-
мизации, которую обычно решают различными алгоритмическими методами.

Наиболее распространен метод главного собственного вектора [4], при котором
решение строится при помощи главного собственного вектора матрицы парных срав-
нений. Кроме того, применяются другие методы, опирающиеся на разные способы
определения метрики на множестве матриц, при помощи которой измеряется ошиб-
ка аппроксимации. В частности, при использовании евклидовой метрики приходят
к методам наименьших квадратов, логарифмических наименьших квадратов (метод
геометрического среднего), а в случае чебышевской метрики получают задачу ли-
нейного программирования. Примеры различных подходов к задаче аппроксимации
матрицы парных сравнений можно найти в работах [5–9]. При условии, что ошибка
аппроксимации измеряется в метрике Чебышева в логарифмической шкале, решение
задачи можно получить аналитически с помощью методов тропической математики.

Тропическая (идемпотентная) математика изучает теорию и приложения алгеб-
раических систем с идемпотентными операциями [10–14]. Задачи оптимизации, сфор-
мулированные в терминах тропической математики (задачи тропической оптимиза-
ции), находят приложения в разных областях, включая задачи оценки альтернатив
на основе парных сравнений [15–18]. В ряде случаев методы тропической оптимиза-
ции позволяют найти решение задач в явном виде в компактной векторной форме,
удобной для формального анализа решений и непосредственных вычислений.

Если в задаче имеются несколько критериев оценки, результатом исследования
будут несколько матриц парных сравнений, соответствующих сравнению как альтер-
натив по каждому критерию, так и самих критериев. Для решения полученной мно-
гокритериальной задачи обычно применяют метод анализа иерархий, разработанный
Т. Саати [4], а также его модификации [19–23]. Еще один подход к решению задачи,
предложенный в [17, 24–26], состоит в использовании тропической оптимизации [27].

Настоящая работа посвящена развитию и практическому применению методов
тропической оптимизации [15–18, 24–26] для решения многокритериальных задач
оценки альтернатив на основе парных сравнений. Основными целями являются раз-
работка и иллюстрация использования процедуры принятия решений, которая может
рассматриваться как некоторый тропический аналог метода анализа иерархий.

2. Задача аппроксимации матрицы парных сравнений. Пусть имеется n
альтернатив (вариантов) принятия решения, из которых необходимо выбрать наибо-
лее предпочтительную. Альтернативы сравниваются попарно в соответствии с неко-
торым критерием, в результате чего образуется матрица парных сравненийA = (aij),
в которой элемент aij > 0 показывает, во сколько раз альтернатива i предпочтитель-
нее альтернативы j (относительный рейтинг, приоритет i по отношению к j) для
всех i, j = 1, . . . , n. Цель анализа и оценки предпочтений — вычисление на основе
матрицы A абсолютных предпочтений (рейтингов, приоритетов) альтернатив.

Матрица парных сравнений является обратно симметрической, т. е. ее элементы
удовлетворяют равенству aij = 1/aji. Это условие требует, чтобы в случае, когда аль-
тернатива i оказывается в aij раз предпочтительнее альтернативы j, которая, в свою

Вестник СПбГУ. Прикладная математика. Информатика... 2019. Т. 15. Вып. 4 473



очередь, должна быть в aij раз менее предпочтительной, чем i. Матрица парных срав-
нений является транзитивной, если aik = aijajk для всех i, j, k = 1, . . . , n. Это условие
означает, что если альтернатива i предпочтительнее альтернативы j в aij раз, а аль-
тернатива j предпочтительнее k в ajk раз, то альтернатива i должна быть более
предпочтительной, чем альтернатива k, в aijajk раз.

Матрица парных сравнений, которая обладает свойствами обратной симметрич-
ности и транзитивности, называется согласованной. Несложно показать, что если мат-
рица A согласована, то найдется положительный вектор a = (ai), который однознач-
но определяет элементы матрицы следующим образом: aij = ai/aj , а его элементы ai
показывают абсолютную степень предпочтения альтернатив i = 1, . . . , n.

В практических задачах матрица парных сравнений A обычно не является со-
гласованной по причине того, что свойства транзитивности, а иногда и обратной сим-
метричности оказываются нарушенными. Отсюда возникает задача аппроксимации
матрицы A некоторой согласованной матрицей X, которая заключается в миними-
зации подходящей функции расстояния между матрицами (ошибки аппроксимации).
В силу того, что элементы согласованной матрицы X = (xij) определяются вектором
x = (xi) по формуле xij = xi/xj , задачу аппроксимации можно представить в виде
задачи нахождения вектора рейтингов x, на котором достигается

min
x

ϕ(A,x), (1)

где ϕ — ошибка аппроксимации матрицы A матрицей, заданной вектором x.
Для определения вектора x рейтингов альтернатив часто используют метод глав-

ного собственного вектора [4], в котором в качестве x берется собственный вектор
матрицы парных сравнений, соответствующий ее максимальному собственному чис-
лу. В настоящей работе используется подход на основе аппроксимации матриц пар-
ных сравнений в метрике Чебышева в логарифмической шкале, который будет описан
в п. 4.

3. Метод анализа иерархий. Рассмотрим многокритериальную задачу, в ко-
торой n альтернатив сравниваются попарно согласно m критериям. Заданы матрицы
Ak = (a(k)

ij ) парных сравнений альтернатив по критериям k = 1, . . . ,m. Результаты
сравнения критериев составляют матрицу парных сравнений критериев C = (crs),
где элемент crs показывает, во сколько раз критерий r важнее (более значим) для
принятия решения, чем критерий s. Необходимо на основе матриц парных сравнений
A1, . . . ,Am иC определить абсолютную степень предпочтения каждой альтернативы.

Распространенный подход к решению такой многокритериальной задачи состоит
в использовании метода анализа иерархий [4], который включает два основных ша-
га. Сначала для матриц Ak парных сравнений альтернатив по каждому критерию k,
а также матрицы C парных сравнений критериев находят главные собственные век-
торы. Затем все векторы нормируются и вычисляется вектор индивидуальных рей-
тингов альтернатив в виде взвешенной суммы главных собственных векторов матриц
парных сравнений альтернатив с элементами главного собственного вектора матрицы
парных сравнений критериев в роли соответствующих весов.

Рассмотрим известный пример оценки рейтингов средних школ из работы [4].
Предположим, что проведен сравнительный анализ трех средних школ A, B и C по
шести неравнозначным критериям: качество обучения основным предметам, друзья
(количество знакомых), школьная жизнь (мероприятия для школьников), качество
профессионального обучения, уровень подготовки к колледжу и возможность обуче-
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ния музыке. Требуется оценить индивидуальный рейтинг каждой школы для обосно-
вания и поддержки принятия решения о наиболее предпочтительном выборе школы.

Результаты парных сравнений школ по каждому критерию заданы матрицами

A1 =

⎛⎝1 1/3 1/2
3 1 3
2 1/3 1

⎞⎠ , A2 =

⎛⎝1 1 1
1 1 1
1 1 1

⎞⎠ , A3 =

⎛⎝ 1 5 1
1/5 1 1/5
1 5 1

⎞⎠ ,

A4 =

⎛⎝ 1 9 7
1/9 1 1/5
1/7 5 1

⎞⎠ , A5 =

⎛⎝1 1/2 1
2 1 2
1 1/2 1

⎞⎠ , A6 =

⎛⎝ 1 6 4
1/6 1 1/3
1/4 3 1

⎞⎠ .

(2)

Сравнение значимости критериев дает матрицу парных сравнений критериев
в виде

C =

⎛⎜⎜⎜⎜⎜⎜⎝
1 5 7 5 3 1

1/5 1 3 1/5 1/6 1/6
1/7 1/3 1 1/4 1/5 1/5
1/5 5 4 1 1/5 1/6
1/3 6 5 5 1 1
1 6 5 6 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

В результате применения метода анализа иерархий получают вектор индиви-
дуальных рейтингов школ [4]

x ≈ (
0.40 0.36 0.25

)T
, (4)

который ранжирует школы в порядке A � B � C.
В п. 4 описывается подход к решению рассматриваемой многокритериальной за-

дачи с помощью log-чебышевской аппроксимации матриц парных сравнений согласо-
ванной матрицей. В п. 6 представлены формулировка задачи в терминах тропической
математики и ее решение на основе методов и результатов тропической оптимизации.

4. Минимаксная аппроксимация в логарифмической шкале. Опишем
подход к решению многокритериальной задачи оценки альтернатив с использованием
минимаксной взвешенной аппроксимации матриц парных сравнений в чебышевской
метрике в логарифмической шкале, предложенный и изученный в работах [15–18,
24, 25].

Рассмотрим матрицу парных сравнений A = (aij) с положительными элемента-
ми. Будем решать задачу (1) аппроксимации этой матрицы согласованной матрицей
X = (xij). Учитывая, что элементы матриц A и X положительны, а логарифм с осно-
ванием большим единицы монотонно возрастает, в качестве меры ошибки аппрокси-
мации можно взять величину maxi,j | log aij−logxij | = log maxi,j max{aij/xij , xij/aij}.

В силу того, что элементы согласованной матрицы X определяются соот-
ношением xij = xi/xj , где xi — компоненты некоторого вектора x, вы-
ражение под знаком логарифма принимает вид maxi,j max{aij/xij , xij/aij} =
maxi,j max{aijxj/xi, xi/aijxj}.

Свойство монотонности позволяет свести минимизацию логарифма к минимиза-
ции его аргумента, что приводит к задаче нахождения вектора x, который обеспечи-
вает

min
x

max
1�i,j�n

max{aijxj/xi, xi/aijxj}. (5)

Если A — обратно симметрическая матрица с элементами aij = 1/aji, то, в силу
равенства xj/ajixi = aijxj/xi задачу (5) можно записать так:
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min
x

max
1�i,j�n

aijxj/xi. (6)

Рассмотрим задачу оценки рейтингов n альтернатив на основе парных сравнений
по m критериям с неотрицательными весами w1, . . . , wm. Пусть в результате сравне-
ний получают матрицу Ak = (a(k)

ij ) для каждого критерия k = 1, . . . ,m. Чтобы найти
вектор x = (xi), который одновременно аппроксимирует все матрицы с учетом весов,
минимизируем по x максимальную по всем критериям k взвешенную ошибку в виде
wk maxi,j max{a(k)

ij xj/xi, xi/a
(k)
ij xj} = maxi,j(wk max{a(k)

ij xj/xi, xi/a
(k)
ij xj}).

Получим следующую минимаксную задачу log-чебышевской аппроксимации:

min
x

max
1�k�m

max
1�i,j�n

(wk max{a(k)
ij xj/xi, xi/a

(k)
ij xj}), (7)

которая в случае, когда все матрицы Ak обратно симметрические, принимает форму

min
x

max
1�k�m

max
1�i,j�n

(wka
(k)
ij )xj/xi. (8)

Заметим, что задачи (7) и (8) могут быть сведены соответственно к задачам (5) и (6).
Например, с помощью матрицы D = (dij) с элементами dij = maxk wka

(k)
ij задача (8)

принимает вид задачи (6), где матрица A заменяется на D.
Описанный подход можно рассматривать как аналог метода анализа иерар-

хий, в котором вместо метода главного собственного вектора используется log-
чебышевская аппроксимация, а вектор рейтингов альтернатив находится путем ре-
шения задачи минимаксной аппроксимации взвешенных матриц парных сравнений
по всем критериям.

Предположим, что в результате решения задач (5) и (6) (или (7) и (8)) получен
не единственный (с точностью до положительного множителя) вектор рейтингов,
а некоторое множество S векторов. Чтобы охарактеризовать множество S, опреде-
лим векторы, которые являются в определенном смысле наихудшим и наилучшим
решениями. В качестве наихудшего решения возьмем вектор, который минимально
различает (дифференцирует) альтернативы с высшим и низшим рейтингами, а в ка-
честве наилучшего — вектор, который максимально различает эти альтернативы
(см. [18, 24, 25]).

Наихудший и наилучший дифференцирующие векторы рейтингов находятся пу-
тем минимизации и максимизации максимального отношения между компонента-
ми вектора x = (xi), которое имеет следующий вид: maxi xi/minj xj = maxi xi ×
maxj(1/xj). Тогда задачи нахождения наихудшего и наилучшего решений записы-
ваются в форме

min
x∈S

max
1�i�n

xi × max
1�j�n

(1/xj), max
x∈S

max
1�i�n

xi × max
1�j�n

(1/xj). (9)

Рассмотренные задачи оптимизации будут представлены ниже как задачи тро-
пической оптимизации, для которых находятся прямые решения в явном виде.

5. Элементы тропической математики. Тропическая математика изучает
алгебраические структуры с идемпотентными операциями [10–14]. Для формулиров-
ки и решения задач оптимизации будем использовать вещественное идемпотентное
полуполе Rmax = (R+,max,×, 0, 1), где R+ = {x ∈ R | x � 0}, которое называют
max-алгеброй. В полуполе Rmax операция сложения определена как max и ниже обо-
значается знаком ⊕, а операция умножения определена и обозначается, как обычно.
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Операции сложения и умножения являются ассоциативными и коммутативными
с нейтральными элементами 0 и 1. Сложение обладает свойством идемпотентности:
x ⊕ x = x для любого x ∈ R+. Умножение дистрибутивно относительно сложения
и обратимо, т. е. для любого x �= 0 существует обратный элемент x−1 такой, что
xx−1 = 1.

Матрицы и векторы над R+ вводятся обычным путем. Множество матриц, со-
стоящих из m строк и n столбцов, обозначается через R

m×n
+ . Операции сложения

и умножения матриц подходящего размера выполняются по стандартным правилам
с заменой арифметического сложения на операцию ⊕. Операция умножения матрицы
на скаляр выполняется как обычно. Нулевая и единичная матрицы имеют стандарт-
ную форму и обозначаются 0 и I. Матрица без нулевых элементов является положи-
тельной.

Матрица, состоящая из одного столбца или строки, образует вектор. Множество
векторов-столбцов размера n обозначается через Rn+. Векторы-столбцы, все элементы
которых равны 0 или 1, обозначаются соответственно 0 или 1.

Рассмотрим квадратные матрицы из множества R
n×n
+ . Целая неотрицательная

степень любой матрицы A ∈ R
n×n
+ определяется обычным путем: A0 = I, Am =

AAm−1, где m — натуральное число. След матрицы A вычисляется по формуле

trA = a11 ⊕ · · · ⊕ ann.

Спектральным радиусом матрицы A называется скаляр

λ = trA ⊕ · · · ⊕ tr1/n(An).

Если для A выполняется условие λ � 1, можно построить матрицу (матрицу Клини)

A∗ = I ⊕ A ⊕ · · · ⊕ An−1.

Для любой ненулевой матрицы A = (aij) ∈ R
m×n
+ существует мультипликативно

сопряженная матрица A− = (a−ij) ∈ R
n×m
+ , где a−ij = a−1

ji , если aji �= 0, иначе a−ij = 0.
Квадратная матрицаA ∈ R

n×n
+ является обратно симметрической, еслиA− = A.

Любому ненулевому вектору-столбцу x = (xi) ∈ R
n
+ сопоставляется мультипли-

кативно сопряженный вектор-строка x− = (x−i ), где x−i = x−1
i , если xi �= 0, иначе

x−i = 0.
Согласованная матрица X имеет вид X = xx−, где x — положительный вектор.
Вектор b ∈ Rn+ линейно зависит от векторов a1, . . . ,am ∈ Rn+, если его можно

представить как линейную комбинацию b = x1a1 ⊕ · · · ⊕ xmam с коэффициентами
x1, . . . , xm ∈ R+. Вектор b коллинеарен a, если существует такой скаляр x, что b = xa.

6. Применение методов тропической оптимизации. Представим многокри-
териальную задачу оценки альтернатив на основе минимаксной log-чебышевской ап-
проксимации матриц парных сравнений в виде ряда задач оптимизации в терминах
тропической математики и опишем их решение.

6.1. Оценка рейтингов альтернатив на основе парных сравнений. Рас-
смотрим однокритериальную задачу оценки рейтингов n альтернатив по матрице
парных сравнений A ∈ R

n×n
+ . Будем решать задачу аппроксимации (1) с измерением

ошибки аппроксимации в метрике Чебышева в логарифмической шкале.
Если обратная симметричность матрицыA не предполагается, то задача (1) при-

нимает вид (5), которая в терминах полуполя Rmax записывается так:

min
x

x−(A ⊕ A−)x. (10)
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Полное решение задачи, которое определяет вектор рейтингов альтернатив x,
дает следующий результат [15, 17].

Теорема 1. Пусть A — ненулевая матрица и μ — спектральный радиус мат-
рицы D = A ⊕ A−. Тогда минимум в задаче (10) равен μ, а все положительные
решения имеют вид x = (μ−1D)∗u, где u > 0.

Если матрица A обратно симметрическая, то имеем задачу (6). Записывая ее
в терминах Rmax, получим

min
x

x−Ax. (11)

Решение задачи обеспечивает следствие теоремы 1 (см. также [15, 16]).
Следствие 1. Пусть A — обратно симметрическая матрица со спектральным

радиусом λ. Тогда минимум в задаче (11) равен λ, а все положительные решения
имеют вид x = (λ−1A)∗u, где u > 0.

Предположим, что имеется m критериев с весами w1, . . . , wm ∈ R+, а также m
матриц A1, . . . ,Am ∈ R

n×n
+ , полученных в результате парных сравнений альтернатив

по указанным критериям. Применение минимаксной log-чебышевской аппроксимации
приводит к задаче (7) или к эквивалентной задаче тропической оптимизации

min
x

x−(w1(A1 ⊕ A−
1 ) ⊕ · · · ⊕ wm(Am ⊕ A−

m))x. (12)

Приведем теорему из [17], которая дает решение такой задачи.
Теорема 2. Пусть Ai — ненулевая матрица для всех i = 1, . . . ,m и μ — спек-

тральный радиус матрицы D = w1(A1 ⊕A−
1 )⊕ · · · ⊕wm(Am⊕A−

m). Тогда минимум
в (12) равен μ, а все положительные решения имеют вид x = (μ−1D)∗u, где u > 0.

Когда все матрицы Ai обратно симметрические, получим задачу

min
x

x−(w1A1 ⊕ · · · ⊕ wmAm)x. (13)

Следствие 2. Пусть Ai — обратно симметрические матрицы для всех i =
1, . . . ,m и μ — спектральный радиус матрицы D = w1A1 ⊕ · · · ⊕ wmAm. Тогда
минимум в (13) равен μ, а все положительные решения имеют вид x = (μ−1D)∗u,
где u > 0.

6.2. Наихудшее и наилучшее дифференцирующие решения. При оцен-
ке рейтингов альтернатив с помощью выше приведенных результатов решение за-
писывается как x = (μ−1D)∗u, здесь D — матрица, полученная из матрицы пар-
ных сравнений в однокритериальных задачах, или взвешенная сумма таких матриц
в многокритериальных задачах, μ — спектральный радиус матрицы D, а u — вектор
параметров. В общем случае множество решений, которое представляет собой тропи-
ческую линейную оболочку столбцов матрицы (μ−1D)∗, может включать различные
решения.

Чтобы охарактеризовать все множество решений при помощи векторов, которые
минимально и максимально дифференцируют альтернативы с наибольшим и наи-
меньшим рейтингами, требуется решить задачи (9) минимизации и максимизации
максимального отношения между компонентами вектора решений x = (xi). Исполь-
зуя операции полуполя Rmax, запишем это отношение в виде⊕

1�i�n
xi

⊕
1�j�n

x−1
j = 1Txx−1.
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С учетом множества решений S = {x| x = (μ−1D)∗u, u > 0} задачи (9) нахож-
дения наихудшего и наилучшего дифференцирующих решений представим как

min
x∈S

1Txx−1, max
x∈S

1Txx−1. (14)

Полное решение задач (14) дают следующие результаты (см. также [18, 25, 26]).
Лемма 1. Пусть D — матрица со спектральным радиусом μ и δ = 1T(μ−1D)∗1.

Тогда минимум в задаче минимизации (14) равен δ, а наихудший дифференцирую-
щий вектор имеет вид x1 = (δ−111T ⊕ μ−1D)∗u1, где u1 � 0.

Лемма 2. Пусть B = (bj) — матрица, полученная из (μ−1D)∗ вычеркива-
нием столбцов, линейно зависимых от остальных, а Bsk — матрица, полученная
из B = (bij) обращением в нуль всех элементов, кроме bsk. Тогда максимум в задаче
максимизации (14) равен Δ = 1TBB−1, а наилучший дифференцирующий вектор
имеет вид x2 = B(I⊕ B−

skB)u2, где u2 > 0, а индексы k и s находятся из условий

k = arg max
j

1Tbjb−
j 1, s = arg max

i
b−1
ik .

7. Процедура решения многокритериальной задачи принятия решений.
Представленные выше результаты используются для построения многокритериаль-
ной процедуры оценки рейтингов альтернатив на основе парных сравнений.

Пусть A1, . . . ,Am — матрицы парных сравнений альтернатив относительно m
заданных критериев, C — матрица парных сравнений этих критериев. Предлагаемая
процедура оценки рейтингов альтернатив, которая может рассматриваться как тро-
пический аналог метода анализа иерархий, состоит из следующих шагов (см. также
[24–26]).

1. По матрице C определяется вектор весов критериев

w = (μ−1C)∗u, u > 0, μ = trC⊕ · · · ⊕ tr1/m(Cm).

2. Если полученный вектор не единственный (с точностью до положительного
множителя), то находятся наихудший дифференцирующий вектор весов

w1 = (δ−111T ⊕ μ−1C)∗v1, v1 > 0, δ = 1T(μ−1C)∗1,

и наилучший дифференцирующий вектор весов

w2 = P(I ⊕ P−
skP)v2, v2 > 0,

для которого матрица P = (pj) получена из матрицы (μ−1C)∗ вычеркиванием столб-
цов, линейно зависимых от остальных, матрица Psk — из матрицы P = (pij) обра-
щением в нуль всех элементов, кроме psk, а индексы k и s определяются, исходя из
условий

k = arg max
j

1Tpjp−
j 1, s = arg max

i
p−1
ik .

3. С помощью векторов w1 = (w(1)
i ) и w2 = (w(2)

i ) составляются взвешенные
суммы матриц парных сравнений (или только одна сумма, когда векторы весов сов-
падают)

D1 = w
(1)
1 A1 ⊕ · · · ⊕ w(1)

m Am, D2 = w
(2)
1 A1 ⊕ · · · ⊕ w(2)

m Am.
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4. Вычисляется наихудший дифференцирующий вектор рейтингов альтернатив

x1 = (ν−1
1 D1)∗u1, u1 > 0, ν1 = trD1 ⊕ · · · ⊕ tr1/n(Dn

1 ).

5. Если полученный вектор не единственный, то вместо него берется вектор

x1 = (δ−1
1 11T ⊕ ν−1

1 D1)∗u1, u1 > 0, δ1 = 1T(ν−1D1)∗1.

6. Вычисляется наилучший дифференцирующий вектор рейтингов альтернатив

x2 = (ν−1
2 D2)∗u2, u2 > 0, ν2 = trD2 ⊕ · · · ⊕ tr1/n(Dn

2 ).

7. Если этот вектор не единственный, то вместо него берется вектор

x2 = Q(I⊕ Q−
skQ)u2, u2 > 0,

где матрица Q = (qj) получена из матрицы (ν−1
2 D2)∗ вычеркиванием столбцов, ли-

нейно зависимых от остальных, матрица Qsk — из матрицы Q = (qij) обращением
в нуль всех элементов, кроме qsk, а индексы k и s определяются, исходя из условий

k = arg max
j

1Tqjq−
j 1, s = arg max

i
q−1
ik .

8. Решение задачи выбора школы.Применим предложенную процедуру к ре-
шению рассмотренной выше задачи выбора школы из работы [4].

8.1. Вычисление вектора весов критериев. По матрице парных сравнений
критериев C в виде (3) найдем вектор весов критериев с помощью следствия 1. После
вычисления спектрального радиуса μ матрицы C и матрицы μ−1C будем иметь

μ = 21/431/2 ≈ 2.06, μ−1C = μ−1

⎛⎜⎜⎜⎜⎜⎜⎝
1 5 7 5 3 1

1/5 1 3 1/5 1/6 1/6
1/7 1/3 1 1/4 1/5 1/5
1/5 5 4 1 1/5 1/6
1/3 6 5 5 1 1
1 6 5 6 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Затем построим матрицу Клини

(μ−1C)∗ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 25μ/6 25/2 15/μ2 3/μ 5/2μ

3/7μ2 1 3/μ μ/5 μ/14 3/5μ2

1/7μ μ/3 1 6/5μ2 3/7μ2 1/5μ
5μ/42 5/μ 5μ2/6 1 5/14 μ/6
25/42 25/μ2 25μ/6 5/μ 1 5/6
5/7 5μ2/3 5μ 6/μ 15/7μ 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (15)

Для определения наихудшего дифференцирующего вектора весов по лемме 1
необходимо найти

δ = 25/2, δ−111T ⊕ μ−1C = μ−1

⎛⎜⎜⎜⎜⎜⎜⎝
1 5 7 5 3 1

1/5 1 3 1/5 1/6 1/6
2μ/25 1/3 1 1/4 1/5 1/5
1/5 5 4 1 1/5 1/6
1/3 6 5 5 1 1
1 6 5 6 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Составим матрицу Клини, порождающую наихудший дифференцирующий век-
тор:

(δ−111− ⊕ μ−1C)∗ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 25μ/6 25/2 5μ2/6 3/μ 5/2μ

6/25μ 1 3/μ μ/5 μ2/25 3/5μ2

2/25 μ/3 1 6/5μ2 6/25μ 1/5μ
6/5μ2 5/μ 5μ2/6 1 μ/5 μ/6
μ/3 25/μ2 25μ/6 5/μ 1 5/6
2μ/5 5μ2/3 5μ 6/μ 6/5 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Нетрудно проверить, что все столбцы полученной матрицы коллинеарны. На-
пример, умножение на 25μ/6 первого столбца дает второй столбец. Тогда в качестве
вектора весов, который наихудшим образом различает критерии с наибольшим и наи-
меньшим весами, можно взять любой столбец матрицы. Выбор второго столбца дает
вектор весов

w1 =
(
25μ/6 1 μ/3 5/μ 25/μ2 5μ2/3

)T
v, v > 0. (16)

С помощью леммы 2 определим вектор весов, который максимально различает
критерии с наибольшим и наименьшим весами. Рассмотрим матрицу (15) и удалим
столбцы, которые линейно зависят от остальных. Получим матрицу

P =

⎛⎜⎜⎜⎜⎜⎜⎝
1 25μ/6 3/μ

3/7μ2 1 μ/14
1/7μ μ/3 3/7μ2

5μ/42 5/μ 5/14
25/42 25/μ2 1
5/7 5μ2/3 15/7μ

⎞⎟⎟⎟⎟⎟⎟⎠ .

Теперь найдем индекс k, при котором достигается максимум 1Tpkp−
k 1, а также

индекс s, обеспечивающий максимум величины p−1
sk . Сравнивая результаты вычисле-

ний

1Tp1p−
1 1 = 7μ ≈ 14.42, 1Tp2p−

2 1 = 25/2 ≈ 12.5, 1Tp3p−
3 1 = 7μ ≈ 14.42,

заключаем, что следует положить k = 1 или k = 3.
Пусть сначала k = 1. Определим максимальную из величин

p−1
11 = 1, p−1

21 = 7μ2/3 ≈ 9.90, p−1
31 = 7μ ≈ 14.42,

p−1
41 = 42/5μ ≈ 4.08, p−1

51 = 42/25 ≈ 1.68, p−1
61 = 7/5 ≈ 1.40.

Учитывая, что максимум равен p−1
31 , положим s = 3 и найдем матрицы

P31 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 0 0

1/7μ 0 0
0 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , P(I ⊕ P−
31P) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 7μ2/3 3/μ

3/7μ2 1 μ/14
1/7μ μ/3 3/7μ2

5μ/42 15/μ 5/14
25/42 25μ2/6 1
5/7 5μ2/3 15/7μ

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Первый и второй столбцы последней матрицы коллинеарны. Отбрасывая один из них,
например второй, запишем наилучший дифференцирующий вектор весов в виде

w2 =
(

1 3/7μ2 1/7μ 5μ/42 25/42 5/7
3/μ μ/14 3/7μ2 5/14 1 15/7μ

)T

v, v > 0. (17)

Рассуждая аналогично, нетрудно показать, что при k = 3 вектор весов колли-
неарен последнему столбцу матрицы P(I ⊕ P−

31P), а потому новых решений не дает.
8.2. Наихудший дифференцирующий вектор. Найдем наихудший диффе-

ренцирующий вектор, соответствующий вектору весов (16). При v = 1/5μ имеем век-
тор

w1 =
(
5/6 1/5μ 1/15 1/μ2 5μ/18 μ/3

)T
.

Составим взвешенную сумму матриц (2)

D1 =
5
6
A1 ⊕ 1

5μ
A2 ⊕ 1

15
A3 ⊕ 1

μ2
A4 ⊕ 5μ

18
A5 ⊕ μ

3
A6 =

⎛⎝5/6 2μ 4μ/3
5/2 5/6 5/2
5/3 μ 5/6

⎞⎠ .

Обозначим спектральный радиус матрицы D1 через ν1. Последовательно найдем

ν1 = (5μ)1/2 ≈ 3.21, ν−1
1 D1 =

⎛⎝5/6ν1 2ν1/5 4ν1/15
5/2ν1 5/6ν1 5/2ν1
5/3ν1 ν1/5 5/6ν1

⎞⎠ .

Вычислим матрицу Клини, столбцы которой порождают решение:

(ν−1
1 D1)∗ =

⎛⎝ 1 2ν1/5 1
5/2ν1 1 5/2ν1
5/3ν1 2/3 1

⎞⎠ .

Нетрудно проверить, что первые два столбца полученной матрицы коллинеарны. Со-
храняя один из них, например первый, запишем множество решений в виде

x =

⎛⎝ 1 1
5/2ν1 5/2ν1
5/3ν1 1

⎞⎠u, u > 0.

Теперь воспользуемся леммой 1, чтобы построить наихудшие решения, которые
соответствуют матрице ν−1

1 D1. Для этого вычислим

δ1 = 2ν1/5 ≈ 1.28, δ−1
1 11T ⊕ ν−1

1 D1 =

⎛⎝5/2ν1 2ν1/5 4ν1/15
5/2ν1 5/2ν1 5/2ν1
5/2ν1 5/2ν1 5/2ν1

⎞⎠
и найдем матрицу Клини

(δ−1
1 11T ⊕ ν−1

1 D1)∗ =

⎛⎝ 1 2ν1/5 1
5/2ν1 1 5/2ν1
5/2ν1 1 1

⎞⎠ .

Первые два столбца матрицы коллинеарны. Отбрасывая второй столбец, запишем

x1 =

⎛⎝ 1 1
5/2ν1 5/2ν1
5/2ν1 1

⎞⎠u, u � 0.
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После умножения первого столбца на 1/(1 + 5/ν1), а второго на 1/(2 + 5/2ν1),
получим два наихудших решения, которые нормированы в обычном смысле:

x′
1 ≈ (

0.40 0.30 0.30
)T
, x′′

1 ≈ (
0.36 0.28 0.36

)T
.

Первое решение дает порядок предпочтений A � B ≡ C, а второе — A ≡ C � B.
8.3. Наилучший дифференцирующий вектор. Для определения наилучше-

го дифференцирующего вектора рейтингов альтернатив будем использовать найден-
ный вектор весов (17), который максимально дифференцирует критерии.

Сначала выберем первый столбец матрицы (17) в качестве вектора весов

w2 =
(
1 3/7μ2 1/7μ 5μ/42 25/42 5/7

)T
.

Составим взвешенную сумму матриц

D2 = A1 ⊕ 3
7μ2

A2 ⊕ 1
7μ

A3 ⊕ 5μ
42

A4 ⊕ 25
42

A5 ⊕ 5
7
A6 =

⎛⎝1 30/7 20/7
3 1 3
2 15/7 1

⎞⎠ .

Вычислим спектральный радиус этой суммы

ν2 = (90/7)1/2 ≈ 3.59

и найдем матрицы

ν−1
2 D2 =

⎛⎝1/ν2 30/7ν2 20/7ν2
3/ν2 1/ν2 3/ν2
2/ν2 15/7ν2 1/ν2

⎞⎠ , (ν−1
2 D2)∗ =

⎛⎝ 1 ν2/3 1
3/ν2 1 3/ν2
2/ν2 2/3 1

⎞⎠ .

Учитывая коллинеарность первого и второго столбцов полученной матрицы Клини,
достаточно рассмотреть решение вида

x = Qu, Q =

⎛⎝ 1 1
3/ν2 3/ν2
2/ν2 1

⎞⎠ , u > 0.

Обозначим через qj столбцы матрицы Q = (qij) и найдем наилучший вектор
рейтингов, используя лемму 2. Чтобы определить индексы k и s, сначала получим

1Tq1q−
1 1 = ν2/2, 1Tq2q−

2 1 = ν2/3,

из чего вытекает, что k = 1. Сравнение величин

q−1
11 = 1, q−1

21 = ν2/3 ≈ 1.20, q−1
31 = ν2/2 ≈ 1.78

показывает, что s = 3. Осталось вычислить матрицы

Q31 =

⎛⎝ 0 0
0 0

2/ν2 0

⎞⎠ , Q(I⊕ Q−
31Q) =

⎛⎝ 1 ν2/2
3/ν2 3/2
2/ν2 1

⎞⎠ .

Столбцы последней матрицы коллинеарны, что приводит к такому решению:

x2 =

⎛⎝ 1
3/ν2
2/ν2

⎞⎠u, u > 0.
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При u = 1/(1 + 5/ν2) имеем наилучший дифференцирующий вектор рейтингов

x2 ≈ (
0.42 0.35 0.23

)T
.

Согласно этому решению, школы располагаются в порядке A � B � C.
Аналогичным образом проверяется, что выбор второго столбца матрицы в (17)

в качестве вектора весов приводит к такому же результату.
В заключение сравним полученные результаты с решением по методу анализа

иерархий (4), который устанавливает порядок школ A � B � C.
Рассмотрим найденные выше решения. После нормирования наихудшие и наи-

лучший дифференцирующие векторы рейтингов альтернатив записываются в виде

x′
1 ≈ (

0.40 0.30 0.30
)T
, x′′

1 ≈ (
0.36 0.28 0.36

)T
, x2 ≈ (

0.42 0.35 0.23
)T
.

Вектор x2 упорядочивает школы так же, как и известное решение в [4], вектор x′
1

задает порядок A � B ≡ C, а вектор x′′
1 — порядок A ≡ C � B.

В результате применения описанного подхода окончательное решение, как и при
использовании традиционного метода анализа иерархий, принимается в пользу шко-
лы A, а наилучшее решение дает рейтинги, близкие к полученным обычным методом.

9. Заключение. В работе представлен минимаксный подход к решению много-
критериальных задач оценки рейтингов альтернатив на основе их парных сравнений
по нескольким критериям. Наиболее распространенным инструментом решения та-
ких задач является метод анализа иерархий, который сначала находит рейтинги аль-
тернатив относительно каждого критерия с помощью метода главного собственного
вектора, а затем определяет абсолютный рейтинг альтернатив путем прямого вычис-
ления взвешенной суммы нормированных главных собственных векторов. В отличие
от этого метода используемый подход опирается на аппроксимацию матриц в смысле
метрики Чебышева в логарифмической шкале и находит абсолютные рейтинги аль-
тернатив одновременно с аппроксимацией матриц за счет минимизации взвешенного
максимума функций log-чебышевской ошибки аппроксимации по всем матрицам.

Учитывая, что логарифмическая шкала удобна для манипуляции с данными, ко-
торые могут принимать значения из широкого диапазона, ее применение при аппрок-
симации матриц парных сравнений, элементы которых взаимно обратны, представ-
ляется вполне оправданным. Решение задачи путем перехода от многокритериальной
целевой функции к взвешенному максимуму функций критериев, который обычно
называют чебышевской скаляризацией задачи, является достаточно обоснованным.

Задача аппроксимации формулируется в терминах тропической математики, что
позволяет решить исходную задачу оценки рейтингов альтернатив как задачу тро-
пической оптимизации, используя новые методы и результаты в этой области. Пред-
ставлено аналитическое решение задачи в явном виде в замкнутой форме, которая
удобна как для дальнейшего анализа, так и для непосредственных вычислений.

Решением задачи оптимизации может быть единственный набор (вектор) рейтин-
гов альтернатив или множество различных наборов. Неединственное решение в виде
нескольких оптимальных наборов рейтингов альтернатив расширяет возможности
принятия решений, однако может вызвать трудности при выборе подходящих реше-
ний на практике. Для анализа неединственного решения использован метод с при-
менением тропической оптимизации для определения таких векторов рейтингов аль-
тернатив, которые наилучшим и наихудшим образом различают альтернативы с наи-
большим и наименьшим рейтингами, а потому хорошо представляют весь диапазон
решений.
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Полученные результаты расширяют область приложений тропической математи-
ки и предлагают полезные практические инструменты, способные дополнить суще-
ствующие средства решения рассматриваемых многокритериальных задач.

Дальнейшие исследования могут включать сопоставление и сравнение резуль-
татов, полученных с помощью рассмотренного подхода, с результатами применения
других известных методов, а также изучение свойств векторов решений, включая
влияние на решение степени несогласованности матриц. Вызывает интерес разработ-
ка вариантов подхода, при которых сначала решаются задачи минимаксной аппрок-
симации матрицы по каждому критерию, а затем вычисляется взвешенная (обычная
или тропическая) сумма определенных на первом этапе векторов.

Авторы благодарят рецензентов за весьма полезные замечания и предложения,
которые были учтены при работе над текстом статьи.
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14. Butkovič P. Max-linear systems. London: Springer, 2010. 274 p. (Springer Monographs in
Mathematics) https://doi.org/10.1007/978-1-84996-299-5

15. Кривулин Н. К., Гладких И. В. Построение согласованной матрицы парных сравнений
в маркетинговых исследованиях на основе методов тропической математики // Вестн. С.-Петерб.
ун-та. Сер. 8. Менеджмент. 2015. Вып. 1. P. 3–43.

16. Krivulin N. Rating alternatives from pairwise comparisons by solving tropical optimization
problems // 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).
IEEE, 2015. P. 162–167. https://doi.org/10.1109/FSKD.2015.7381933

17. Krivulin N. Using tropical optimization techniques to evaluate alternatives via pairwise
comparisons // 2016 Proceedings 7th SIAM Workshop on Combinatorial Scientific Computing. SIAM,
2016. P. 62–72. https://doi.org/10.1137/1.9781611974690.ch7

Вестник СПбГУ. Прикладная математика. Информатика... 2019. Т. 15. Вып. 4 485



18. Кривулин Н. К., Агеев В. А., Гладких И. В. Применение методов тропической оптимиза-
ции для оценки альтернатив на основе парных сравнений // Вестн. С.-Петерб. ун-та. Прикладная
математика. Информатика. Процессы управления. 2017. Т. 13. Вып. 1. C. 27–41.

19. van Laarhoven P. J. M., Pedrycz W. A fuzzy extension of Saaty’s priority theory // Fuzzy Sets
and Systems. 1983. Vol. 11. N 1–3. P. 229–241. https://doi.org/10.1016/S0165-0114(83)80082-7

20. Ногин В. Д. Упрощенный вариант метода анализа иерархий на основе нелинейной свертки
критериев // Журн. вычислит. математики и матем. физики. 2004. Т. 44. № 7. С. 1261–1270.

21. Kubler S., Robert J., Derigent W., Voisin A., Le Traon Y. A state-of the-art survey
and testbed of fuzzy AHP (FAHP) applications // Expert Syst. Appl. 2016. Vol. 65. P. 398–422.
https://doi.org/10.1016/j.eswa.2016.08.064

22. Ahn B. S. The analytic hierarchy process with interval preference statements // Omega. 2017.
Vol. 67. P. 177–185. https://doi.org/10.1016/j.omega.2016.05.004

23. Podinovski V. V. Interval articulation of superiority and precise elicitation of priorities //
European J. Oper. Res. 2007. Vol. 180. N 1. P. 406–417. https://doi.org/10.1016/j.ejor.2006.01.046

24. Krivulin N., Sergeev S. Tropical optimization techniques in multicriteria decision making
with analytical hierarchy process // UKSim-AMSS 11th European Modelling Symposium on Computer
Modelling and Simulation (EMS 2017). IEEE. 2017. P. 38–43. https://doi.org/10.1109/EMS.2017.18

25. Krivulin N. Methods of tropical optimization in rating alternatives based on pairwise compari-
sons // Operations Research Proceedings 2016. Cham: Springer, 2018. P. 85–91.
https://doi.org/10.1007/978-3-319-55702-1_13

26. Krivulin N., Sergeev S. Tropical implementation of the analytical hierarchy process decision
method // Fuzzy Sets and Systems. 2019. Vol. 377. P. 31–51. https://doi.org/10.1016/j.fss.2018.10.013

27. Krivulin N. Tropical optimization problems // Advances in Economics and Optimization. New
York: Nova Sci. Publ., 2014. P. 195–214. (Economic Issues, Problems and Perspectives)

Статья поступила в редакцию 21 ноября 2018 г.
Cтатья принята к печати 7 ноября 2019 г.

К о н т а к т н а я и нформац и я:

Кривулин Николай Кимович — д-р физ.-мат. наук, проф.; nkk@math.spbu.ru

Агеев Владимир Анатольевич — студент; vladimir.ageev@me.com

Methods of tropical optimization in multicriteria problems of raiting
alternatives from pairwise comparisons∗

N. K. Krivulin, V. A. Ageev

St. Petersburg State University, 7–9, Universitetskaya nab.,
St. Petersburg, 199034, Russian Federation

For citation: Krivulin N. K., Ageev V. A. Methods of tropical optimization in multi-
criteria problems of raiting alternatives from pairwise comparisons. Vestnik of Saint Pe-
tersburg University. Applied Mathematics. Computer Science. Control Processes, 2019, vol. 15,
iss. 4, pp. 472–488. https://doi.org/10.21638/11702/spbu10.2019.405 (In Russian)

The paper deals with the application of methods and results of tropical mathematics, which
focuses on the theory and applications of algebraic systems with idempotent operations, to
the development of a multicriteria decision-making procedure. A problem is considered to
evaluate ratings of alternatives from pairwise comparisons of the alternatives under several
criteria, and from pairwise comparisons of the criteria. To solve the problem, a decision-
making procedure is proposed based on the Chebyshev approximation, in logarithmic scale,
of pairwise comparison matrices by reciprocally symmetrical matrices of unit rank (consistent
matrices), which determine the elements in the vectors of weights of criteria and ratings of
alternatives. First, the approximation problem for the matrix of pairwise comparison of
criteria is solved to find the weights of criteria. Then, the weighted pairwise comparison
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matrices of alternatives are approximated by a common consistent matrix, which gives
the required vector of ratings of alternatives. If the result is not unique (up to a positive
factor), an additional problem of analyzing the solutions is solved to find vectors that can
be considered, in a sense, as the worst and best solutions. In the framework of the proposed
procedure, the problems of approximation and analysis of solutions are formulated as tropical
optimization problems, which have direct analytical solutions in a compact vector form. An
example of the application of the procedure to solve the known problem by T. Saaty on
selecting a school is given.
Keywords: idempotent semifield, tropical optimization, pairwise comparison matrix, matrix
approximation, log-Chebyshev metric, multicretiria decision making problem.
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