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INCLUSIONS AMONG COMMUTATORS OF

ELEMENTARY SUBGROUPS

NIKOLAI VAVILOV AND ZUHONG ZHANG

Abstract. In the present paper we continue the study of the elementary com-
mutator subgroups [E(n,A), E(n,B)], where A and B are two-sided ideals of an
associative ring R, n ≥ 3. First, we refine and expand a number of the auxiliary
results, both classical ones, due to Bass, Stein, Mason, Stothers, Tits, Vaserstein,
van der Kallen, Stepanov, as also some of the intermediate results in our joint works
with Hazrat, and our own recent papers [40, 41]. The gimmick of the present paper
is an explicit triple congruence for elementary commutators [tij(ab), tji(c)], where
a, b, c belong to three ideals A,B,C of R. In particular, it provides a sharper coun-
terpart of the three subgroups lemma at the level of ideals. We derive some further
striking corollaries thereof, such as a complete description of generic lattice of com-
mutator subgroups [E(n, Ir), E(n, Is)], new inclusions among multiple elementary
commutator subgroups, etc.

1. Introduction

Let GL(n,R) be the general linear group of degree n ≥ 3 over an associative ring
R with 1. For an ideal AER we denote by GL(n,R,A) the principal congruence sub-
group of level A and by E(n,R,A) the corresponding relative elementary subgroup.
The study of commutator subgroups

[GL(n,R,A),GL(n,R,B)], [GL(n,R,A), E(n,R,B)], [E(n,R,A), E(n,R,B)]

and other related birelative groups has a venerable history. It goes back to the
beginnings of algebraic K-theory in the works of Hyman Bass [4, 5, 6], and was then
continued, at the stable level, by Alec Mason, Wilson Stothers [24, 23], and many
others.
The next breakthrough, for rings satisfying commutativity conditions, came with

the works by Andrei Suslin, Leonid Vaserstein, Zenon Borewicz and the first author,
Anthony Bak, Alexei Stepanov, and many others [32, 33, 7, 2, 31]. However, these
papers mostly addressed only the case where one of the ideals A or B was the ring R
itself. These results depended on new powerful localisation methods introduced by
Daniel Quillen and Suslin in connection with Serre’s problem, and their off-springs,
and also on remarkable geometric methods, see [3, 13] for a systematic description of
that stage.

Key words and phrases. general linear group, congruence subgroups, elementary subgroups, stan-
dard commutator formulae.
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The next stage started with our joint papers with Roozbeh Hazrat and Alexei
Stepanov [36, 19, 37], where we addressed the general case, first for GL(n,R) over
commutative rings, then over quasi-finite rings. Our works [14, 15, 20, 17, 30] address
generalisations to other groups, such as Chevalley groups and Bak’s unitary groups.
These results are systematically described in our surveys and conference papers [10,
11, 12, 18].
One of the pivotal results of our theory, initially established in a somewhat weaker

form by Hazrat and the second author in [20], and then stated in a more precise form
in our joint papers [16, 18], is a description of generators of [E(n,R,A), E(n,R,B)]
as a subgroup. In those papers it was proven over quasi-finite rings, and involved
three types of generators, the Stein—Tits–Vaserstein generators tji(c)tij(ab)tji(−c)
and tji(c)tij(ba)tji(−c), the elementary commutators [tij(a)tji(b)], where in both cases
i 6= j, a ∈ A, b ∈ B, c ∈ R, and also a third type of generators.
In 2018 we observed that the generators of the third type were redundant, see,

[34, 39]. Then in 2019 we noticed that even the elementary commutators should be
only taken for one root, and finally that this generation result holds over arbitrary

associative rings, see [40], Theorem 1 (which we reproduce below as Lemma 3). This
proof is then repeated in a slightly more transparent form in [41], § 5, as part of the
proof of the elementary multiple commutator formula
In turn, our proof of that result hinges on the following result, which is a stronger,

and more precise version of [40], Lemma 5. In this form, it is proven as [41], Lemma
11. Here we denote by A ◦ B = AB + BA the symmetrised product of two-sided
ideals A and B. For commutative rings, A ◦ B = AB = BA is the usual product of
ideals A and B.

Theorem A. Let R be an associative ring with 1, n ≥ 3, and let A,B be two-sided

ideals of R. Then for any 1 ≤ i 6= j ≤ n, any 1 ≤ k 6= l ≤ n, and all a ∈ A, b ∈ B,

c ∈ R, one has

yij(ac, b) ≡ ykl(a, cb) (mod E(n,R,A ◦B)) .

During the talks “commutators of relative and unrelative elementary subgroups”
presenting our papers [40]–[43], both at the algebraic group seminar at Chebyshev Lab
on October 22 (see http://chebyshev.spbu.ru/en/schedule/?week=1571605200), and
the at the Conference “Homological algebra, ring theory and Hochschild cohomology”
at EIMI on October 29 (see http://www.pdmi.ras.ru/EIMI/2019/CR/index.html)
the first author was invariably writing a ∈ A, b ∈ B, c ∈ C. During the second
talk, Pavel Kolesnikov, who was keeping notes, asked, what was that C? After a
little thinking, we decided that C should be C E R here, rather than R itself. Of
course, modulo a smaller subgroup E(n,R,ABC) the elementary commutator in the
left hand side will be congruent to a product of two other elementary commutators,
rather than to a single such commutator, as in the absolute case.

Theorem 1. Let R be an associative ring with 1, n ≥ 3, and let A,B,C be two-sided

ideals of R. Then for any three distinct indices i, j, h such that 1 ≤ i, j, h ≤ n, and
all a ∈ A, b ∈ B, c ∈ C, one has

yij(ab, c)yjh(ca, b)yhi(bc, a) ≡ 1 (mod E(n,R,ABC +BCA+ CAB)) .

http://chebyshev.spbu.ru/en/schedule/?week=1571605200
http://www.pdmi.ras.ru/EIMI/2019/CR/index.html
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Observe, that the ideal defining the congruence module is precisely

ABC +BCA+ CAB = A ◦BC +B ◦ CA + C ◦ AB.

This can be easily established in the same style as in our recent papers [40]–[43].
Morally, it is essentially the same computation by Mennicke [25] in the form given to
it by Bass—Milnor—Serre in [6], Theorem 5.4. Subsequently, it was used in virtually
each and every paper on bounded generation. Alternatively, one could use the Hall—
Witt identity. However, everywhere before C = R so that the last factor becomes
trivial.
Theorem 1, and its immediate consequence Theorem 6, the three ideals lemma

[E(n,AB), E(n, C)] ≤ [E(n,BC), E(n,A)] · [E(n, CA), E(n,B)],

are the high points of the present paper, the rest are either preparations to their proof,
or corollaries of the above trirelative congruence. However, a number of intermediate
results generalise classical results and are decidedly interesting in themselves. Let us
list other principal results of the present paper.

• Theorem 2: generators of partially relativised elementary subgroup E(n,B,A),
where A,B ER, generalising a classical result by Stein—Tits—Vaserstein.

• Theorem 3: reduced set of generators of E(n,R,A), in terms of the unipotent
radicals of two opposite parabolic subgroups, generalising results by van der Kallen
and Stepanov.

• Theorem 4: the three ideals lemma for partially relativised subgroups E(n,A,BC).

• Theorem 5: a stable version of the standard commutator formula,

[GL(n− 1, R, A), E(n,R,B)] = [E(n,A), E(n,B)],

for arbitrary associative rings.

• Propositions 2 and 3: new inclusions for multiple elementary commutators.

• Theorem 7: a complete description of the generic lattice of inclusions among
[E(n, Ir), E(n, Is)], for powers of one ideal I E R.

• Proposition 5: inclusion [E(n,A+B), E(n,A ∩B)] ≤ [E(n,A), E(n,B)].

• Proposition 6: an explicit example, where E(n,R,A∩B) is strictly smaller than
E(n,R,A) ∩ E(n,R,B).

The paper is organised as follows. In § 2 and § 3 we review some notation and briefly
recall the requisite facts on elementary subgroups in GL(n,R). The next six sections
are of a technical nature, they develop technical tools for the rest of the present paper.
Namely, in § 4 we consider partially relativised elementary subgroups E(n,B,A) and
prove Theorem 2, which gives their sets of generators. In § 5 we recall some basic facts
on intersections of parabolic subgroups with congruence subgroups, after which in § 6
we establish Theorem 3, which is a further strengthening of results by van der Kallen
and Stepanov, generation of E(n,R,A) in terms of unipotent radicals of two opposite
parabolic subgroups. In § 7 we prove a toy version of our main results, the three
ideals lemma for partially relativised elementary groups E(n, C,AB), Theorem 4. In
§ 8 we establish Theorem 5, which is a stable version of the standard commutator
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formula, valid for all associative rings. In § 9 we discuss the important special case,
behaviour of elementary commutators modulo relative elementary subgroups. The
core of the present paper is § 10, where we prove Theorem 1 and using that derive an
inclusion among birelative commutators, Theorem 6. This is kind of a three ideals
lemma, to be used in all subsequent results. The balance of this paper is dedicated
to applications. In § 11 we consider an application to the only outstanding case in
our multiple elementary commutator paper [41], quadruple commutators in GL(3, R),
and obtain some new inclusions among multiple elementary commutator subgroups.
In § 12 we obtain definitive results for the crucial case of the powers of one ideal
and prove Theorem 7. These results will be instrumental in the sequel of the present
paper dedicated to the case of Dedekind rings. In § 13 we compare the commutator
of two elementary subgroups of levels A and B with the commutator of elementary
subgroups of levels A ∩ B and A + B. In § 14 we construct a counter-example
concerning intersections of relative elementary subgroups. Finally, in § 15 we make
some further related observations, and state some unsolved problems.
Initially, we planned to include in this paper also explicit computations over Dede-

kind rings. But then we realised that the topic is so extensive that it would be more
appropriate to publish those results separately.

2. Notation

2.1. Commutators. Let G be a group. A subgroup H ≤ G generated by a subset
X ⊆ G will be denoted by H = 〈X〉. For two elements x, y ∈ G we denote by
xy = xyx−1 and yx = x−1yx the left and right conjugates of y by x, respectively.
Further, we denote by

[x, y] = xyx−1y−1 = xy · y−1 = x · yx−1

the left-normed commutator of x and y. Our multiple commutators are also left-
normed. Thus, by default, [x, y, z] denotes [[x, y], z], we will use different notation for
other arrangement of brackets. Throughout the present paper we repeatedly use the
customary commutator identities, such as their multiplicativity with respect to the
factors:

[x, yz] = [x, y] · y[x, z], [xy, z] = x[y, z] · [x, z],
and a number of other similar identities, such as

[x, y]−1 = [y, x], z[x, y] = [zx, zy], [x−1, y] = [y, x]x, [x, y−1] = [y, x]y,

usually without any specific reference. Iterating multiplicativity we see that the
commutator [x1 . . . xm, y] is the product of conjugates of the commutators [xi, y],
i = 1, . . . , m. Obviously, a similar claim holds also for [x, y1 . . . ym].
Further, for two subgroups F,H ≤ G one denotes by [F,H ] their mutual commu-

tator subgroup, spanned by all commutators [f, h], where f ∈ F , h ∈ H . Clearly,
[F,H ] = [H,F ], and if F,H E G are normal in G, then [F,H ] E G is also normal.
Similarly, for F,H,K ≤ G three subgroups of G their triple commutator [F,H,K]
is spanned by [f, h, k], where f ∈ F , h ∈ H and k ∈ K. We will use the following
version of the three subgroups lemma.



INCLUSIONS AMONG COMMUTATORS OF ELEMENTARY SUBGROUPS 5

Lemma 1. If F,H,K ≤ G be three subgroups of G. Assume that two of the subgroups

[F,H,K], [H,K, F ], [K,F,H ] are normal in G. Then the third of them is also normal

and

[F,H,K] ≤ [H,K, F ] · [K,F,H ].

Often times, elementary textbooks needlessly assume that the subgroups F,H,K
themselves are normal in G. This depends, of course, on the exact form of the Hall—
Witt identity one is using. In the correct form, the only conjugations occur outside
of the commutators, one such form is

[x, y−1, z−1]x · [z, x−1, y−1]z · [y, z−1, x−1]y = 1.

2.2. General linear group. Let R be an associative ring with 1, R∗ be the multi-
plicative group of the ring R. For two natural numbers m,n we denote by M(m,n,R)
the additive group of m × n-matrices with entries in R. By M(n,R) = M(n, n, R)
we denote the full matrix ring of degree n over R.
Let G = GL(n,R) = M(n,R)∗ be the general linear group of degree n over R. In

the sequel for a matrix g ∈ G we denote by gij its matrix entry in the position (i, j),
so that g = (gij), 1 ≤ i, j ≤ n. The inverse of g will be denoted by g−1 = (g′ij),
1 ≤ i, j ≤ n.
As usual we denote by e the identity matrix of degree n and by eij a standard

matrix unit, i. e., the matrix that has 1 in the position (i, j) and zeros elsewhere. An
elementary transvection tij(ξ) is a matrix of the form tij(c) = e+ ceij , 1 ≤ i 6= j ≤ n,
c ∈ R.
Further, let A be a two-sided of R. We consider the corresponding reduction

homomorphism

ρA : GL(n,R) −→ GL(n,R/A), (gij) 7→ (gij + A).

Now, the principal congruence subgroup GL(n,R,A) of level A is the kernel ρA,
For a commutative ring R we denote by SL(n,R) the corresponding general linear

group. All other subgroups are interpreted similarly. Thus, for instance, the principal
congruence subgroup SL(n,R,A) is defined as SL(n,R,A) = GL(n,R,A)∩SL(n,R).

3. Generation of relative elementary subgroups

The unrelative elementary subgroup E(n,A) of level A in GL(n,R) is generated by
all elementary matrices of level A. In other words,

E(n,A) = 〈eij(a), 1 ≤ i 6= j ≤ n, a ∈ A〉.
In general E(n,A) has little chances to be normal in GL(n,R). The relative elemen-

tary subgroup E(n,R,A) of level A is defined as the normal closure of E(n,A) in the
absolute elementary subgroup E(n,R):

E(n,R,A) = 〈eij(a), 1 ≤ i 6= j ≤ n, a ∈ A〉E(n,R).

The following lemma on generation of relative elementary subgroups E(n,R,A) is
a classical result discovered in various contexts by Stein, Tits and Vaserstein, see, for
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instance, [33] (or [18], Lemma 3, for a complete elementary proof). It is stated in
terms of the Stein—Tits—Vaserstein generators):

zij(a, c) = tij(c)tji(a)tij(−c), 1 ≤ i 6= j ≤ n, a ∈ A, c ∈ R.

Lemma 2. Let R be an associative ring with 1, n ≥ 3, and let A be a two-sided ideal

of R. Then as a subgroup E(n,R,A) is generated by zij(a, c), for all 1 ≤ i 6= j ≤ n,
a ∈ A, c ∈ R.

The following result is a generalisation of Lemma 2 to mutual commutator sub-
groups [E(n,R,A), E(n,R,B)] of relative elementary subgroups. a further type of
generators occur, the elementary commutators :

yij(a, b) = [tij(a), tji(b)], 1 ≤ i 6= j ≤ n, a ∈ A, b ∈ B.

In slightly less precise forms, Theorem A was discovered by Roozbeh Hazrat and
the second author, see [20], Lemma 12 and then in our joint paper with Hazrat [18],
Theorem 3A. The strong form reproduced above was only established in our paper
[40], Theorem 1, as an aftermath of our papers [34, 39].

Lemma 3. Let R be any associative ring with 1, let n ≥ 3, and let A,B be two-

sided ideals of R. Then the mixed commutator subgroup [E(n,R,A), E(n,R,B)] is
generated as a group by the elements of the form

• zij(ab, c) = tij(c)tji(ab)tij(−c) and zij(ba, c) = tij(c)tji(ba)tij(−c),

• yij(a, b) = [tij(a), tji(b)],

where 1 ≤ i 6= j ≤ n, a ∈ A, b ∈ B, c ∈ R. Moreover, for the second type of

generators, it suffices to fix one pair of indices (i, j).

Since all generators listed in Lemma 3 belong already to the commutator subgroup
of unrelative elementary subgroups, we get the following corollary, [40], Theorem 2.

Lemma 4. Let R be any associative ring with 1, let n ≥ 3, and let A,B be two-sided

ideals of R. Then one has
[

E(n,R,A), E(n,R,B)
]

=
[

E(n,R,A), E(n,B)
]

=
[

E(n,A), E(n,B)
]

.

Let us state also some subsidiary results we use in our proofs. The following level
computation is standard, see, for instance, [36, 37, 18], and references there.

Lemma 5. R be an associative ring with 1, n ≥ 3, and let A and B be two-sided

ideals of R. Then

E(n,R,A ◦B) ≤
[

E(n,A), E(n,B)
]

≤
[

E(n,R,A), E(n,R,B)
]

≤ GL(n,R,A ◦B).

However, when applying this lemma to multiple commutators, one should bear in
mind that the symmetrised product is not associative. Thus, when writing something
like A ◦B ◦C, we have to specify the order in which products are formed. Of course,
for commutative rings this dependence on the original bracketing disappears.
For quasi-finite rings the following result is [37], Theorem 5 and [18], Theorem 2A,

but for arbitrary associative rings it was only established in [41], Theorem 2.
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Lemma 6. Let R be any associative ring with 1, let n ≥ 3, and let A and B be

two-sided ideals of R. If A and B are comaximal, A+B = R, then

[E(n,A), E(n,B)] = E(n,R,A ◦B).

4. Partially relativised elementary subgroups

Actually, the recent work by Alexei Stepanov [28, 29, 30, 1] makes apparent that in
many contexts it is very useful to consider partially relativised subgroups. One such
context is relative localisation, as introduced in the papers by Roozbeh Hazrat and
the second author [19, 20], then expanded and developed in a series of our joint papers
with Hazrat, and reconsidered by Stepanov, see [14, 15, 17, 10, 11, 12, 18, 29, 30].
Namely, for two ideals A,B E R we denote by E(n,B,A) the smallest subgroup

containing E(n,A) and normalised by E(n,B):

E(n,B,A) = E(n,A)E(n,B).

In particular, when B = R we get the usual relative group E(n,R,A), as defined
above. Clearly, if B ≤ C, then E(n,B,A) ≤ E(n, C,A). It follows that

E(n,A) = E(n, 0, A) ≤ E(n,B,A) ≤ E(n,R,A)

On the other hand,
[

E(n,A), E(n,B)
]

≤ E(n,B,A) ∩ E(n,A,B).

Thus, Lemma 5 implies the following inclusion, which is a broad generalisation of [1],
Lemma 4.1, in the linear case.

Proposition 1. Let R be any associative ring with 1, let n ≥ 3, and let A,B be

two-sided ideals of R. Then one has

E(n,R,A ◦B) ≤ E(n,B,A) ∩ E(n,A,B).

Now, we start working towards a partially relativised generalisation of Lemma 2.

Lemma 7. Let R be any associative ring with 1, let n ≥ 2, and let A,B be two-sided

ideals of R. Then one has
〈

E(n,A), E(n,B)
〉

= E(n,A+B).

Proof. Clearly, the left hand side is contained in the right hand side. On the other
hand E(n,A + B) is generated by the elementary transvections tij(a + b), where
1 ≤ i 6= j ≤ n, a ∈ A, b ∈ B. But every tij(a+b) = tij(a)tij(b) ∈ E(n,A)E(n,B). �

In particular, even E(n,A)E(n,B) = E(n,A + B), if the left hand side is a sub-
group. But this is easy to remedy. Indeed, the above lemma implies that in the
definition of partially relativised subgroups one can assume that A ≤ B.

Corollary 1. Let R be any associative ring with 1, let n ≥ 2, and let A,B be two-

sided ideals of R. Then E(n,B,A) = E(n,A+B,A).

But since E(n,B,A) is normalised by both E(n,A) and E(n,B), it is normal in
E(n,A+B).
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Corollary 2. Let R be any associative ring with 1, let n ≥ 2, and let A,B be two-

sided ideals of R. Then

E(n,B,A)E(n,B) = E(n,A+B).

Passing to the normal closures in E(n,R) we get the familiar equality, see, in
particular, [36], Lemma 1.

Corollary 3. Let R be any associative ring with 1, let n ≥ 2, and let A,B be two-

sided ideals of R. Then

E(n,R,A)E(n,R,B) = E(n,R,A+B).

The following result is a generalisation of a classical result on generation of relative
elementary subgroups E(n,R,A), discovered in various contexts by Stein, Tits and
Vaserstein, see, for instance, [33]. It is stated in terms of the Stein—Tits—Vaserstein

generators):

zij(a, c) = tij(c)tji(a)tij(−c), 1 ≤ i 6= j ≤ n, a ∈ A, c ∈ R.

Essentially, its proof follows the proofs of Lemma 2 (as reproduced in [38], The-
orem 1 or [18], Lemma 3, for instance). But of course a posteriori we can take
advantage of the simplifications that result from Lemma 3.

Theorem 2. Let R be an associative ring with identity 1, n ≥ 3, and let A and B be

two-sided ideals of R. Then the partially relativised elementary subgroup E(n,B,A)
is generated the elements zij(a, b), for all 1 ≤ i 6= j ≤ n, a ∈ A, b ∈ B.

Proof. Clearly, E(n,B,A) is generated by yx with x ∈ E(n,A) and y ∈ E(n,B).
Since yx = [y, x] · x we get [y, x] ∈ [E(n,A), E(n,B)]. By definition, the factor x
is a product of elementary matrices tij(a) with i 6= j and a ∈ A. By Lemma 3 the
commutator subgroup [E(n,A), E(n,B)] is generated by E(n,R,A◦B) together with
the elementary commutators

yij(a, b) = [tij(a), tji(b)] = tij(a) · tji(b)tij(−a) = zij(a, 0)zij(a, b),

where 1 ≤ i 6= j ≤ n, a ∈ A and b ∈ B.
Thus, it only remains to show that the generators zij(ab, c) = tji(c)tij(ab) and

zij(ba, c) =
tji(c)tij(ba) of the relative elementary group E(n,R,A ◦ B) are products

of generators listed in the statement of the lemma. Here, as above, 1 ≤ i 6= j ≤ n,
a ∈ A, b ∈ B and c ∈ C.
We choose a h 6= i, j, then

tji(c)tij(ab) =
tji(c)[tih(a), thj(b)] = [tji(c)tih(a),

tji(c)thj(b)] =
[

[tji(c), tih(a)]tih(a), [tji(c), thj(b)]thj(b)
]

=
[

tjh(ca)tih(a), thi(−bc)thj(b)
]

=

tjh(ca)[tih(a), thi(−bc)thj(b)] · [tjh(ca), thi(−bc)thj(b)].

To finish the proof, we consider the two above commutators separately

u = [tih(a), thi(−bc)thj(b)], v = [tjh(ca), thi(−bc)thj(b)]
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The following computation shows that u is a products of generators listed in the
statement of the lemma.

u = [tih(a), thi(−bc)tkj(b)] = [tih(a), thi(−bc)] · thi(−bc)[tih(a), thj(b)] =

[tih(a), thi(−bc)] · thi(−bc)tij(ab) = [tih(a), thi(−bc)] · [thi(−bc), tij(ab)]tij(ab) =

[tih(a), thi(−bc)] · thj(−bcab)tij(ab) = tih(a) · thi(−bc)tih(−a)thj(−bcab)tij(ab),

A similar computation shows that the same holds also for v, which finishes the proof.
�

Lemma 8. Let R be an associative ring with identity 1, and let A, B, C and D be

its two-sided ideals. Then we have the following commutator formula for partially

relativised elementary subgroups

[E(n,B,A), E(n,D,C)] = [E(n,A), E(n, C)].

Proof. Combining the inclusions among partially relativised subgroups with Lemma
4, we get

[E(n,A), E(n, C)] = [E(n, 0, A), E(n, 0, C]] ≤ [E(n,B,A), E(n,D,C)] ≤
[E(n,R,A), E(n,R, C)] = [E(n,A), E(n, C)].

�

5. Parabolic subgroups

In this section and the next one we collect some results on generation of E(n,R,A)
by the elements in unipotent radicals, or their conjugates. We start with the absolute
case.

5.1. Standard parabolic subgroups. Denote by Rn the free right R-module con-
sisting of columns of height n with components from R. Similarly, nR denotes the free
left R-module, consisting of rows of length n with components from R. The module
nR is dual to Rn, with the pairing of nR and Rn defined by the multiplication of a row
by a column, nR × Rn −→ R, (v, u) 7→ vu ∈ R. The standard based of Rn and nR
will be denoted by e1, . . . , en and f1, . . . , fn, respectively. Recall that ei is the column
of height n, whose i-th component equals 1, while all other components are zeroes.
Similarly, fi is the row of length n, whose i-th component equals 1, while all other
components are zeroes. The base f1, . . . , fn is dual to e1, . . . , en, with respect to the
above pairing. The group G = GL(n,R) acts on Rn on the left, by multiplication of
a column u ∈ Rn by a matrix g ∈ G, (g, u) 7→ gu. By the same token, the group G
acts on nR on the right by multiplication: (v, g) 7→ vg for v ∈ nR, g ∈ G.
Denote by Pm the m-th standard maximal parabolic subgroup in G = GL(n,R).

From a geometric viewpoint the subgroup Pi, m = 1, . . . , n − 1, is precisely the
stabiliser of the submodule Vm in V , generated by e1, . . . , em. In matrix form Pm can
be thought of as the group of upper block triangular matrices

Pm =

{(

x y
0 z

)

| x ∈ GL(m,R), y ∈ M(m,n −m,R), z ∈ GL(n−m,R)

}

.
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Simultaneously we consider the opposite maximal parabolic subgroup P−
m

P−
m =

{(

x 0
w z

)

| x ∈ GL(m,R), w ∈ M(n−m,m,R), z ∈ GL(n−m,R)

}

.

These subgroups admit Levi decompositions Pm = Lm ⋌ Um and P−
m = Lm ⋌ U−

m

with common Levi subgroup

Lm =

{(

x y
0 z

)

| x ∈ GL(i, R), z ∈ GL(n−m,R)

}

,

and opposite unipotent radicals

Um =

{(

e y
0 e

)

| y ∈ M(m,n−m,R)

}

, U−
m =

{(

e 0
w e

)

| w ∈ M(n−m,m,R)

}

.

In particular, Lm, and thus all of its subgroups, normalise both Um and U−
m.

5.2. Generation by two opposite unipotent radicals. The following result as-
serts that E(n,R) is generated by the unipotent radicals of two standard parabolic
subgroups. It is obvious from the Chevalley commutator formula, and well known.
Actually, in more general settings this is the definition of elementary subgroups, see
the paper by Victor Petrov and Anastasia Stavrova [26] and references there1.

Lemma 9. Let R be an associative ring with 1, n ≥ 3, and 1 ≤ m ≤ n− 1. Then

E(n,R) = 〈Um, U
−
m〉.

What is important, is that both generators here are normalised by the Levi sub-
group Lm and all of its subgroups.
As usual, for m < n we consider the stability embedding

GL(m,R) −→ GL(n,R), g 7→
(

g 0
0 e

)

.

This embedding is compatible with elementary subgroups, congruence subgroups, rel-
ative elementary subgroups, etc. When we consider GL(m,R,A), etc., as a subgroup
of GL(n,R) we always mean its image under this embedding.

5.3. Unipotent radicals of level A. Now, let AER be an ideal of R. We denote
by Um(A) and U−

n (A) the intersections of Um and U−
m with GL(n,R,A):

Um(A) =

{(

e y
0 e

)

| y ∈ M(m,n−m,A)

}

,

U−
m(A) =

{(

e 0
w e

)

| w ∈ M(n−m,m,A)

}

.

The following lemma is a direct corollary of the Levi decomposition for Pm and its
opposite P−

m .

1Of course, with this advanced approach one has to prove that this definition is correct, in other
words that various parabolic subgroups lead to the same elementary subgroup. This is precisely
what is accomplished in [26].
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Lemma 10. Let R be an associative ring with 1, n ≥ 3, 1 ≤ m ≤ n−1, and let A,C
be two-sided ideals of R. Then one has

[GL(m,R,A), Um(C)] ≤ Um(AC), [GL(m,R,A), U−
m(C)] ≤ U−

m(CA).

Proof. Let g ∈ GL(m,R,A), y ∈ M(m,n −m,C), and w ∈ M(n−m,m,C). Then,
clearly,
[(

g 0
0 e

)

,

(

e y
0 e

)]

=

(

e (g − e)y
0 e

)

,

[(

g 0
0 e

)

,

(

e 0
w e

)]

=

(

e 0
w(g−1 − e) e

)

,

where y ≡ 0 (mod C) , w ≡ 0 (mod C) and g ≡ g−1 ≡ e (mod A) . Then all outer-
diagonal entries of the matrices in the right hand sides are congruent to 0 modulo
AC, as claimed. �

6. Limiting the set of generators for E(n,R,A)

Let us state a result by Wilberd van der Kallen, [21], Lemma 2.2. Morally, it is a
trickier and mightier version of Lemma 1, with a smaller set of generators.

Lemma 11. Let AER be an ideal of an associative ring, n ≥ 3. Then as a subgroup

E(n,R,A) is generated by E(n,A) and zin(a, d), for all 1 ≤ i ≤ n− 1, a ∈ A, d ∈ R

Generalisations of this result to unipotent radicals of parabolics in arbitrary Cheval-
ley groups were obtained by Alexei Stepanov in [28, 29, 30], (of course, in these papers
R was assumed commutative).
Below we extract the rationale behind these results by van der Kallen and Stepanov

and prove a still stronger version of their results, for the case of GL(n,R). Formally,
it is not necessary for the rest of the paper, Lemma 11 would suffice. Yet, it is so
natural in itself, that it will be certainly prove useful for future applications. Also,
it is a midget version of our main result, Theorem 1, with one ideal instead of three,
and with yij(ab, c) replaced by zij(a, d). Actually, in the next section we breed it up
to a life-size toy version of our main results. Eventually, we believe it should be taken
as the correct definition of relative elementary groups in more general settings, viz.,
for isotropic reductive groups, see [26, 27].
First, we reproduce the proof of Lemma 11 for GL(3, R).

Lemma 12. Let AER be an ideal of an associative ring, n ≥ 3, and let i, j, h be three

pair-wise distinct indices. Then if a subgroup E(n,A) ≤ H ≤ GL(n,R) contains

• either zih(a, d) and zjh(a, d),

• or zhi(a, d) and zhj(a, d),

for all a ∈ A, d ∈ R, then it also contains zij(a, d) and zji(a, d), for all such a and d.

Proof. We prove the desired inclusions for the first case, the second one is treated
similarly. Indeed,

zij(a, d) =
tji(d)tij(a) =

tji(d)[tih(a), thj(1)] = [tih(a)tjh(da), thj(1)thi(−d)].

Expanding the commutator with respect to the second factor, we see that

zij(a, d) = [tih(a)tjh(da), thj(1)] · thj(1)[tih(a)tjh(da), thi(−d)].
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Now, expanding both commutators with respect to the first factor, we see that

zij(a, d) =
tjh(da)[tih(a), thj(1)] · [tjh(da), thj(1)]·

thj (1)tih(a)[tjh(da), thi(−d)] · thj (1)[tih(a), thi(−d)].

Consider the four factors on the right hand side individually

• tjh(da)[tih(a), thj(1)] = tij(a)tih(−ada),

• [tjh(da), thj(1)] = tjh(da) · zjh(−da, 1),

• thj(1)tih(a)[tjh(da), thi(−d)] = tji(−dad)thi(−dad) · zjh(dada, 1),
• thj(1)[tih(a), thi(−d)] = tih(a)tij(−a) · thj (1)zih(−a,−d), but by Theorem A the last

factor only differs from zih(−a,−d) ∈ GL(2, R, A) by a factor from E(n,A).

We see that all factors only involve matrices from E(n,A) and elementary conju-
gates of the form zih(b, c) and zjh(b, c), for some b ∈ A, c ∈ R, as claimed. �

Theorem 3. Let R be an associative ring with identity 1, n ≥ 3, and let A be a two-

sided ideal of R. Fix an m, 1 ≤ m ≤ n − 1. Then the relative elementary subgroup

E(n,R,A) is generated by

U−
m(A) and uvu−1, where v ∈ Um(A), u ∈ U−

m.

Proof. Let H be the group generated by the above elements. First, observe that
E(n,A) ≤ H . Indeed, the following case analysis shows thatH contains all generators
of E(n,A):

• When i ≤ m and j ≥ m + 1, or when i ≥ m + 1 and j ≤ m, the generator
tij(a) = zij(a, 0) belongs to H by assumption.

• When i, j ≤ m take any h ≥ m+ 1. Then tij(a) = tih(a) · thj(1)tih(−a) ∈ H .

• When i, j ≥ m+ 1 take any h ≤ m. Then tij(a) =
tih(1)thj(a) · thj(−a) ∈ H .

Now, we are done by repeated application of Lemma 12. Indeed, zij(a, d) ∈ H by
assumption when i ≤ m, j ≥ m+ 1.

• When i, j ≤ m take any h ≥ m + 1. Then zih(a, d), zjh(a, d) ∈ H and thus
zij(a, d), zji(a, d) ∈ H by the first item of Lemma 12.

• When i, j ≥ m + 1 take any h ≤ m. Then zhi(a, d), zhj(a, d) ∈ H and thus
zij(a, d), zji(a, d) ∈ H by the second item of Lemma 12.

Finally, when i ≥ m+ 1 and j ≤ m, one has to distinguish two cases.

• If m ≥ 2, one can choose h ≤ m, h 6= j. Then zhj(a, d) ∈ H by assumption,
whereas zhi(a, d) ∈ H by the first item above. Thus, zij(a, d) ∈ H by the second item
of Lemma 12.

• If m ≤ n−2, one can choose h ≥ m+1, h 6= j. Then zih(a, d) ∈ H by assumption,
whereas zjh(a, d) ∈ H by the second item above. Thus, zij(a, d) ∈ H by the first item
of Lemma 12.

It remains only to refer to Lemma 2 — or Theorem 2, for that matter. �
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Corollary. Let R be an associative ring with identity 1, n ≥ 3, and let A be a two-

sided ideal of R. Fix an m, 1 ≤ m ≤ n − 1. Then the relative elementary subgroup

E(n,R,A) is generated by the group E(n,A) and the elements zij(a, d), for all i 6= j,
1 ≤ i ≤ m, m+ 1 ≤ j ≤ n. a ∈ A, d ∈ R.

7. Three ideals lemma for E(n, C,AB)

It is natural to ask, whether Theorem 2 admits a similar stronger version. Un-
fortunately, the above proof of Theorem 3 does not generalise immediately to the
partially relativised case.

Problem 1. Let R be an associative ring with identity 1, n ≥ 3, and let A, B be a

two-sided ideals of R. Fix an m, 1 ≤ m ≤ n−1. Is the partially relativised elementary

subgroup E(n,B,A) generated by

U−
m(A) and uvu−1, where v ∈ Um(A), u ∈ U−

m(B)?

Instead, we prove the following refinement of Lemma 12, which gives a full scale
generalisation of Proposition 1, and a toy version of our Theorems 1 and 6.

Theorem 4. Let R be an associative ring with identity 1, n ≥ 3, and let A,B,C be

a two-sided ideals of R. Then E(n, C,AB) is contained in any of the following three

spans:
〈

E(n,BC,A), E(n,B, CA)
〉

,
〈

E(n,A,BC), E(n, CA,B)
〉

,
〈

E(n,BC,A), E(n, CA,B)
〉

.

Proof. By Theorem 2 the group E(n, C,AB) is generated by the elementary commu-
tators zij(ab, c), where a ∈ A, b ∈ B, c ∈ C. Now we imitate the proof of Lemma 12,
but now monitor the levels of the occurring parameters of the zrs’s in the right hand
side, rather than their positions. As in Lemma 12 we take and h 6= i, j and rewrite
the generator zij(c, ab) as a commutator:

zij(ab, c) =
tji(c)tij(ab) =

tji(c)[tih(a), thj(b)] = [tih(a)tjh(ca), thj(b)thi(−bc)].

Expanding the commutator with respect to the second factor, we see that

zij(ab, c) = [tih(a)tjh(ca), thj(b)] · thj(b)[tih(a)tjh(ca), thi(−bc)].

Now, expanding both commutators with respect to the first factor, we see that

zij(ab, c) =
tjh(ca)[tih(a), thj(b)] · [tjh(ca), thj(b)]·

thj(b)tih(a)[tjh(ca), thi(−bc)] · thj(b)[tih(a), thi(−bc)].

Consider the four factors on the right hand side individually. Observe that by Lemma
4 the commutator subgroup [E(n,A), E(n,B)] and other such double commutators
are normal in E(n,R), so that we can ignore all occurring elementary conjugations.
Amazingly, the only problematic factor is the first one!

• Clearly, tjh(ca)[tih(a), thj(b)] = tij(ab)tih(−abca) belongs to

E(n,AB) ≤ E(n,A) ∩ E(n,B) ≤ E(n,BC,A) ∩ E(n, CA,B).
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• Further, [tjh(ca), thj(b)] belongs to

[E(n, CA), E(n,B)] ≤ E(n, CA,B) ∩ E(n,B, CA).

• Next, thj(b)tih(a)[tjh(ca), thi(−bc)] belongs to

[E(n, CA), E(n,BC)] ≤ E(n, CA,BC) ∩ E(n,BC,CA) ≤
E(n,A,BC) ∩ E(n,B, CA) ∩ E(n,BC,A) ∩ E(n, CA,B).

• Finally, thj (b)[tih(a), thi(−bc)] belongs to

[E(n,A), E(n,BC)] ≤ E(n,A,BC) ∩ E(n,BC,A).

We see that the third factor belongs to all four subgroups, and can be discarded,
whereas the other three factors are contained in two of the subgroups E(n,BC,A),
E(n,B, CA), E(n,A,BC), E(n, CA,B), each. Inspecting the cases listed in the
statement, we see that all of them contain all three factors. �

The other three possible combinations of the subgroups E(n,BC,A), E(n,B, CA),
E(n,A,BC), E(n, CA,B), do not seem to work in general. Thus, for instance,
〈

E(n,A,BC), E(n,B, CA)
〉

does not contain the first factor, and so on.

8. Stable version of the standard commutator formula

We start with a slightly more general form of [40], Lemma 3 and [41]. Lemma 9.
Essentially, it is a classical corollary of surjective stability for K1, but again we need
a birelative version.
The following lemma is what stays behind [40], Lemma 3, and [41], Lemma 9. Our

argument here is both much more general, and much easier, since it avoids all explicit
computations.

Lemma 13. Let R be an associative ring with 1, n ≥ 3, and let A be a two-sided

ideal of R. Then for any g ∈ GL(n− 1, R, A) and any x ∈ E(n,R) one has

xg ≡ g (mod E(n,R,A)) .

Proof. By Lemma 9 any x ∈ E(n,R) can be expressed as a product x = y1 . . . ym,
where yi alternatively belong to Un−1 or U−

n−1. Consider a shorts such product. We
argue by induction on m.
Let x = yz, where y ∈ E(n,R) is shorter than x, whereas z ∈ Un−1 or z ∈

U−
n−1. By Lemma 10 [g, z] ∈ Un−1(A) in the first case, and [g, z] ∈ U−

n−1(A) in
the first case. Since Un−1(A), U

−
n−1(A) ≤ E(n,A) ≤ E(n,R,A), this means that

zg ≡ g (mod E(n,R,A)) . This means that xg ≡ yg (mod E(n,R,A)) . But yg ≡
g (mod E(n,R,A)) by induction hypothesis. �

Of course, one would love to have a similar birelative lemma, asserting that for any
g ∈ GL(n− 1, R, A) and any x ∈ E(n,R, C) one has xg ≡ g (mod E(n,R,A)) . This
would give plenty of leverage, to establish very strong results, including Theorem 1,
with minimum direct calculations.
Unfortunately, it seems that such a lemma does not hold. What we can see easily, is

only the weaker congruence xg ≡ g (mod [E(n,A), E(n, C)]) . The following result is
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a version of the standard commutator formula that survives for arbitrary associative
rings. Various forms of this result are known for decades, since the groundbreaking
paper by Hyman Bass [4], and the refinements by Alec Mason and Wilson Stothers
[24], see our exposition in [18]. However, the proofs proceeded as follows. First, one
established a more sophisticated double relative version of Whitehead lemma, and
then invoked deep results, such as Bass—Vaserstein injective stability for K1. Our
proof below is entirely elementary, works for all associative rings, and only uses the
sharp generation results obtained in the previous sections.

Theorem 5. Let R be an associative ring with 1, n ≥ 3, and let A and C be two-sided

ideals of R. Then

[GL(n− 1, R, A), E(n,R, C)] = [E(n,A), E(n, C)].

Proof. Indeed, by Theorem 3 the group E(n,R, C) is generated by w ∈ U−
n−1(C) and

by uvu−1, where v ∈ Un−1(C), u ∈ U−
n−1. Take an arbitrary g ∈ GL(n − 1, R, A).

Then [g, w] ∈ E(n, CA) by Lemma 10. On the other hand, for the other type of
generators one has

[g, uvu−1] = [g, u] · u[g, v] · uv[g, u−1] = [g, u] · u[g, v] · u[v, [g, u−1]] · u[g, u−1].

Now, by Lemma 11 one has [g, v] ∈ E(n,AC), so that u[g, v] ∈ E(n,R,AC). Sim-
ilarly, [g, u−1] ∈ E(n,A), so that [v, [g, u−1]] ∈ [E(n,A), E(n, C)]. It follows from
Lemma 4 (but was known before, in fact), that [E(n,A), E(n, C)] is normal in
E(n,R). Thus, u[v, [g, u−1]] ∈ [E(n,A), E(n, C)].
By Lemma 5, one has E(n,R,AC) ≤ [E(n,A), E(n, C)] so that both central factors

belong to [E(n,A), E(n, C)]. On the other hand, u[g, u−1] = [g, u]−1. Again invoking
the fact that [E(n,A), E(n, C)] is normal in E(n,R) we see that the commutator
[g, uvu−1] belongs to [E(n,A), E(n, C)].
Since the elements uvu−1 generate E(n,R, C) and are themselves elementary, the

left hand side of the equality in the statement of the theorem is contained in the right
hand side. The other inclusion is obvious. �

Of course, when surjective stability holds for K1(n− 1, R, A), one has

GL(n,R,A) = GL(n− 1, R, A)E(n,R,A),

so that Theorem 4 implies the usual standard commutator formula

[GL(n,R,A), E(n,R, C)] = [E(n,A), E(n, C)].

Otherwise, we use Theorem 4 in the following form.

Corollary. Let R be an associative ring with 1, n ≥ 3, and let A and C be two-sided

ideals of R. Then for any g ∈ GL(n− 1, R, A) and any x ∈ E(n,R, C) one has

xg ≡ g (mod [E(n,A), E(n, C)]) .
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9. Elementary commutators modulo E(n,R,A ◦B)

In the present section we collect special cases of the previous results concerning
the behaviour of elementary commutators modulo the level.
Since the elementary commutator yij(a, b), where 1 ≤ i 6= j ≤ n, a ∈ A, b ∈ B, has

level A ◦B, we get the following result, which is [40], Lemma 3, and [41], Lemma 9.

Lemma 14. Let R be an associative ring with 1, n ≥ 3, and let A,B be two-sided

ideals of R. Then for any 1 ≤ i 6= j ≤ n, a ∈ A, b ∈ B, and any x ∈ E(n,R) one

has
xyij(a, b) ≡ yij(a, b) (mod E(n,R,A ◦B)) .

It is well known that the absolute elementary group E(n,R) contains all permuta-
tion matrices, maybe after correcting the sign of one entry. Thus, already this lemma
implies that elementary commutators yij(a, b) and yhk(a, b) are congruent modulo
E(n,R,A ◦ B). Of course, we still need Theorem A, since we need to move around
not only the indices, but also the parameters.
The following result is [41], Lemmas 10 and 12.

Lemma 15. Let R be an associative ring with 1, n ≥ 3, and let A,B be two-sided

ideals of R. Then for any 1 ≤ i 6= j ≤ n, a, a1, a2 ∈ A, b, b1, b2 ∈ B one has

yij(a1 + a2, b) ≡ yij(a1, b) · yij(a1, b) (mod E(n,R,A ◦B)) ,

yij(a, b1 + b2) ≡ yij(a, b1) · yij(a, b2) (mod E(n,R,A ◦B)) ,

yij(a, b)
−1 ≡ yij(−a, b) ≡ yij(a,−b) (mod E(n,R,A ◦B)) ,

yij(ab1, b2) ≡ yij(a1, a2b) ≡ e (mod E(n,R,A ◦B)) ,

yij(a1a2, b) ≡ yij(a, b1b2) ≡ e (mod E(n,R,A ◦B)) .

Together with Theorem A this lemma asserts that modulo E(n,R,A ◦ B) the
elementary commutators yij(a, b) do not depend on the choice of a pair (i, j), i 6= j,
and can be considered as symbols

σ : A/A(A+B)⊗R B/B(A +B) −→ [E(n,A), E(n,B)]/E(n,R,A ◦B), (1)

(a + A(A+B))⊗ (b+B(A +B)) 7→ y12(a, b) (mod E(n,R,A ◦B)) . (2)

Let us reiterate [40], Problem 1, and [41], Problem 2.

Problem 2. Give a presentation of
[

E(n,A), E(n,B)
]

/E(n,R,A ◦B)

by generators and relations. Does this presentation depend on n ≥ 3?

The following lemma is classically known and obvious. It follows from the fact that
in a Dedekind ring R for any two ideals A and B there exists an ideal C ∼= A such
that C +B = R.

Lemma 16. Let R be a Dedekind ring, A and B be ideals of R. Then

A/A(A+B) ∼= B/B(A+B) ∼= R/(A+B).



INCLUSIONS AMONG COMMUTATORS OF ELEMENTARY SUBGROUPS 17

Thus, in this case the above symbols σ can be considered as symbols

σ : R/(A +B)⊗R R/(A+B) −→ [E(n,A), E(n,B)]/E(n,R,A ◦B),

closely related to the usual Mennicke symbols. We intend to address Problem 2 for
Dedekind rings in a subsequent paper.

10. Proof of Theorem 1

Now, we are all set to prove the technical heart of the present paper, Theorem 1.

Proof. We take any h 6= i, j and rewrite the elementary commutator yij(ab, c) =
[

tij(ab), tji(c)
]

as

yij(ab, c) = tij(ab) · tji(c)tij(−ab) = tij(ab) · tji(c)
[

tih(a), thj(−b)
]

.

Expanding the conjugation by tji(b), we see that

yij(ab, c) = tij(ab) ·
[

tji(c)tih(a),
tji(c)thj(−b)

]

= tij(ab) · [tjh(ca)tih(a), thj(−b)thi(bc)
]

.

Expanding the commutator in the right hand side, using multiplicativity of the com-
mutator w.r.t. the second argument, we get

yij(ab, c) = tij(ab) ·
[

tjh(ca)tih(a), thj(−b)
]

· thj(−b)
[

tjh(ca)tih(a), thi(bc)
]

.

Expanding the first commutator in the right hand side, and using multiplicativity of
the commutator w.r.t. the first argument, we get
[

tjh(ca)tih(a), thj(−b)
]

= tjh(ca)
[

tih(a), thj(−b)
]

·
[

tjh(ca), thj(−b)
]

=

tij(−ab) · tih(abca) · yjh(ca,−b)

Now, the first factor cancels with tij(ab), the second factor belongs to E(n,ABC), and
can be discarded, so that the first commutator is congruent modulo E(n,R,ABC)
to yjh(ca,−b). By Lemma 14 one has

yjh(ca,−b) ≡ yjh(ca, b)
−1 (mod E(n,R, CA ◦B)) .

Next, we look at the second commutator in the right hand side of the formula for
yij(ab, c), and using multiplicativity of the commutator w.r.t. the first argument, we
get

thj(−b)
[

tjh(ca)tih(a), thi(bc)
]

= thj(−b)tjh(ca)
[

tih(a), thi(bc)
]

· thj (−b)
[

tjh(ca), thi(bc)
]

=

thj(−b)tjh(ca)yih(a, bc) · thj (−b)tji(cabc).

Now, the second factor belongs to E(n,ABC), and stays there after an elementary
conjugation, so it can be discarded. The first factor is congruent to yih(a, bc) modulo
E(n,R,A ◦BC) by Lemma 14. Again by Lemma 14 one has

yih(a, bc) ≡ yhi(bc,−a) ≡ yhi(bc, a)
−1 (mod E(n,R,A ◦BC)) .

Summarising the above, we see that

yij(ab, c)yjh(ca, b)yhi(bc, a) ≡ 1 (mod E(n,R,ABC +BCA+ CAB)) ,
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as claimed. Observe that since all factors are central in E(n,R) modulo the normal
subgroup E(n,R,ABC +BCA+ CAB), which equals

E(n,R,A ◦BC) ·E(n,R,B ◦ CA) · E(n,R, C ◦ AB),

their order does not matter. �

By the last remark in the proof of Theorem 1, the levels of all three commutators in
the next result are contained in the normal subgroup E(n,R,ABC +BCA+CAB).
Thus, Theorem 1 immediately implies the following result that can be interpreted as
a three ideals lemma.

Theorem 6. Let R be an associative ring with 1, n ≥ 3, and let A,B,C be two-sided

ideals of R. Then

[E(n,AB), E(n, C)] ≤ [E(n,BC), E(n,A)] · [E(n, CA), E(n,B)].

Modulo Lemma 14 on triple commutator subgroups, it becomes a special case of
the three subgroups lemma, at least in the commutative case. However, the proof
of Lemma 14 itself crucially depends on a version of Theorem A, Theorem 1, or a
similar calculation.

11. Applications to multiple commutators

Our proof of elementary multiple commutator formulas in [41] is an easy induction
that proceeds from the following two special cases, triple commutators, and quadruple
commutators. The following results are [41], Lemma 7 and Lemma 8, respectively.

Lemma 17. Let R be an associative ring with 1, n ≥ 3, and let A,B,C be two-sided

ideals of R. Then
[[

E(n,A), E(n,B)
]

, E(n, C)
]

=
[

E(n,A ◦B), E(n, C)
]

.

Lemma 18. Let R be an associative ring with 1, n ≥ 4, and let A,B,C,D be two-

sided ideals of R. Then
[[

E(n,A), E(n,B)
]

,
[

E(n, C), E(n,D)
]]

=
[

E(n,A ◦B), E(n, C ◦D)
]

.

These results were first proven for quasi-finite rings by Roozbeh Hazrat and the
second author, under assumption n ≥ 3, see [20]. However, in that paper the proof
was based on (a weaker version of) Theorem A and the usual (commutative!) local-
isation, so that there is no chance to make it work over arbitrary associative rings.
Here, for quadruple commutators we assume that n ≥ 4. The reason was that in [41]
the proof of Lemma proceeds as follows. By Theorem A and Lemma 3 one only has
to prove that

[yij(a, b), yhk(c, d)] ∈
[

E(n,A ◦B), E(n, C ◦D)
]

,

for 1 ≤ i 6= j ≤ n, 1 ≤ h 6= k ≤ n, a ∈ A, b ∈ B, c ∈ C, d ∈ D. By Lemma 13
conjugations by elements x ∈ E(n,R) do not matter, since they amount to extra
factors from the above triple commutators, which are already accounted for. Now,
for n ≥ 4 this finishes the proof, since in this case modulo E(n,R, C ◦D) we can move
yhk(c, d) to a position, where it commutes with yij(a, b), by Lemma 13 or Theorem A.
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Problem 3. Prove that Lemma 18 holds also for n = 3, or construct a counter-

example.

Actually, it seems to us that either way it will be non-trivial. To prove the
lemma one will have to verify that the commutator [yij(a, b), yih(c, d)] of two in-
terlaced elementary commutators belongs where it should, and that’s a non-trivial
calculation. On the other hand, since Lemma 18 holds for quasi-finite rings, none
of the usual counter-examples will work, so that one will have to construct a truly
non-commutative counter-example. But to imitate Gerasimov’s universal counter-
example would be an extremely troublesome business.
Observe that in fact the three subgroups lemma and Lemma 17 imply the following

poor man’s version of our Theorem 1. In the commutative case it is essentially a slight
generalisation of a result by Himanee Apte and Alexei Stepanov [1], Lemma 3.4.

Proposition 2. Let R be an associative ring with identity 1, n ≥ 3, and let A, B
and C be its two-sided ideals. Then

[E(n,A ◦B), E(n, C)] ≤ [E(n,A ◦ C), E(n,B)] · [E(n,A), E(n,B ◦ C)].

Proof. By the triple commutator formula of elementary subgroups

[E(n,A ◦B), E(n, C)] =
[

[E(n,A), E(n,B)], E(n, C)
]

.

By the three subgroups lemma
[

[E(n,A), E(n,B)], E(n, C)
]

≤
[

[E(n,A), E(n, C)], E(n,B)
]

·
[

E(n,A), [E(n,B), E(n, C)]
]

.

Now, applying the triple commutator formula of elementary subgroups to the factors
in the right hand side, we get

[

[E(n,A), E(n, C)], E(n,B)
]

=
[

E(n,A ◦ C), E(n,B)
]

,
[

E(n,A), [E(n,B), E(n, C)]
]

=
[

E(n,A), E(n,B ◦ C)]
]

.

�

By analogy, we can do the same applying the three subgroup lemma to a quadruple
commutator, and then combine it with Lemma 15 again. Of course, this might be
interesting only for the case n = 3.

Proposition 3. Let R be an associative ring with 1, n ≥ 3, and let A,B,C,D be

two-sided ideals of R. Then
[

[E(n,A), E(n,B)], [E(n, C), E(n,D)]
]

≤
[E(n, (A ◦B) ◦ C), E(n,D)] · [E(n, (A ◦B) ◦D), E(n, C)].

Proof. Indeed, by the three subgroups lemma one has
[

[E(n,A), E(n,B)], [E(n, C), E(n,D)]
]

≤
[[

[E(n,A), E(n,B)], E(n, C)
]

, E(n,D)
]

·
[[

[E(n,A), E(n,B)], E(n,D)
]

, E(n,D)
]

.

It remains to twice apply Lemma 15 to each factor. �
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However, it is not feasible to prove Lemma 16 using calculations at the level of
subgroups. Rather, one should go to the level of individual elements. We have a
blueprint how to do that by first applying the Hall—Witt identity, and then the
identity in Theorem 1 to both resulting factors. However, the calculations seem to
be formidable, and as of today we have not succeeded.

12. Inclusions among commutators for powers of one ideal

Let us state the following exciting special case of Theorem 6.

Proposition 4. Let I be an ideal of an associative ring R. Then

[E(n, Ir+s), E(n, I t)] ≤ [E(n, Ir), E(n, Is+t)] · [E(n, Is), E(n, Ir+t)].

In the case of an even exponent this gives an inclusion among two such commuta-
tors.

Corollary. Let I be an ideal of an associative ring R. Then

[E(n, I2r), E(n, I t)] ≤ [E(n, Ir), E(n, Ir+t)].

Iterated application of this proposition allows to establish all inclusions among the
commutator subgroups [E(n, Ir), E(n, Is)] of a given level. The following remark-
ably easy argument was suggested to the authors by Fedor Petrov. In the following
theorem we call inclusions that result from Proposition 4, generic. It is not only
interesting in itself, but also very relevant to obtain definitive results for Dedekind
rings. These inclusions hold for arbitrary associative rings. Of course, for a specific
ring some of them may become equalities.

Theorem 7. Let I be an ideal of an associative ring R, m ≥ 1. Then the generic

lattice of elementary commutator subgroups

H(r) = [E(n, Ir), E(n, Im−r)] ≤ E(n,R, Im), 0 ≤ r ≤ m,

of level Im is isomorphic to the lattice of divisors of m. In other words, generically,

[E(n, Ir), E(n, Im−r)] ≤ [E(n, Is), E(n, Im−s)] ⇐⇒ gcd(s,m)| gcd(r,m).

Proof. Let us understand r in the definition of H(r) modulo m. Then, clearly, one
has H(r) = H(m − r) = H(−r) and H(r + s) ≤ H(r)H(s). Indeed, for r, s ≤ m/2
this is precisely Proposition 4. When r > m/2 or/and s > m/2, we replace one or
both of them by m− r or/and m− s, and then apply Proposition 4.
In particular, this means that H(kr) ≤ H(r) for all k ∈ Z/mZ. Indeed, by

induction H(kr) ≤ H((k − 1)r)H(r) ≤ H(r). This establishes the second, and thus
also the first claim of the Theorem. �

• In particular, this theorem implies that

H(r) = H(s) ⇐⇒ gcd(r,m) = gcd(s,m)

and that

H(r) ≤ H(s1) . . .H(sl) ⇐⇒ gcd(gcd(s1, m), . . . , gcd(sl, m))| gcd(r,m).
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• At level Ip, where p is a prime, all non-trivial double commutators [E(n, Ir), E(n, Is)],
r + s = p, are equal.

• At level I4 one has

E(n,R, I4) ≤ [E(n, I2), E(n, I2)] ≤ [E(n, I3), E(n, I)].

The second claim of [24], Theorem 5.4 asserts that the second inclusion may be strict!
Actually, it is strict already in the simplest example, where R = Z[i] is the ring of
Gaussian integers, and I = p = (1 + i)Z[i] is the prime divisor of 2,

[E(n,Z[i], p2), E(n,Z[i], p2)] < [E(n,Z[i], p3), E(n,Z[i], p)],

of index 2. In other words,

[E(n,Z[i], p2), E(n,Z[i], p2)] = E(n,Z[i], p4),

whereas
[E(n,Z[i], p3), E(n,Z[i], p)] = SL(n,Z[i], p4).

• At level I6 one has

E(n,R, I6) ≤ [E(n, I3), E(n, I3)], [E(n, I4), E(n, I2)] ≤ [E(n, I5), E(n, I)],

and there are no obvious inclusions between [E(n, I3), E(n, I3)] and [E(n, I4), E(n, I2)].
However, the third claim of [24], Theorem 5.4 asserts in the above example of Gauss-
ian integers one has

[E(n,Z[i], p4), E(n,Z[i], p2)] = E(n,Z[i], p6),

whereas
[E(n,Z[i], p3), E(n,Z[i], p3)] = [E(n,Z[i], p5), E(n,Z[i], p)],

is strictly larger, being a proper intermediate subgroup between E(n,Z[i], p6) and
SL(n,Z[i], p6), both indices being equal to 2.

• At level I30, any of the three subgroups

[E(n, I6), E(n, I10)], [E(n, I6), E(n, I15)], [E(n, I10), E(n, I15)]

is contained in the product of the other two.

13. When [E(n,A +B), E(n,A ∩B)] = [E(n,A), E(n,B)]?

For the ideals themselves, one has an obvious inclusion

(A +B) ◦ (A ∩ B) = (A+B)(A ∩ B) + (A ∩ B)(A+B) ≤ AB +BA = A ◦B.

Only very rarely this inclusion is always an equality. In fact, it is classically known
that among commutative integral domains (A+B)(A∩B) = AB characterises Prfer
domains.
A Noetherian Prüfer domain is a Dedekind domain, so any Noetherian domain

that is not Dedekind provides a counterexample to the equality. Let, for instance,
R = K[x, y], A = xR, B = yR. Then A+B = xR+yR, whereas A∩B = AB = xyR,
since R is factorial and x and y are coprime. Thus,

(A+B)(A ∩B) = x2yR + xy2R < AB.
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The following inclusion can be verified in the style of the original proof of Lemma
7, see [37]. But it is also an immediate corollary of Lemmas 2–6.

Proposition 5. For any two ideals A,B E R, n ≥ 3, one has

[E(n,A+B), E(n,A ∩ B)] ≤ [E(n,A), E(n,B)]

Proof. Lemma 3 and the formula at the beginning of this section show that the level
of the left hand side is contained in the level of the right hand side,

E
(

n,R, (A+B) ◦ (A ∩B)
)

≤ E(n,R,A ◦B).

Thus, it only remains to prove that the elementary commutators yij(a+b, c), where
a ∈ A, b ∈ B, c ∈ A ∩ B, in the left hand side belong to the right hand side.
By Lemma 5, one has

yij(a+ b, c) ≡ yij(a, c) · yij(b, c) (mod E
(

n,R, (A+B) ◦ (A ∩ B)
)

) .

Thus, this congruence holds also modulo the larger subgroup E(n,R,A ◦B).
On the other hand, Lemma 4 implies that

yij(b, c) ≡ yij(c,−b) (mod E(n,R,A ◦B)) .

Combining the above congruences, we see that

yij(a+ b, c) ≡ yij(a, c) · yij(c,−b) (mod E(n,R,A ◦B)) ,

where both commutators in the right hand side belong to [E(n,A), E(n,B)], which
proves the desired inclusion. �

Of course, when A and B are comaximal, by Lemma 7 one has

[E(n,A +B), E(n,A ∩B)] = [E(n,A), E(n,B)].

Indeed, in this case A ∩ B = AB so that both sides are equal to E(n,R,AB). This
is also true in the opposite case, when A = B, as in all counter-examples listed in
[41]. But, as we’ve seen, in general it may break already as regards the levels of these
subgroups, since the level of the left hand side may be strictly smaller, than the level
of the right hand side. Thus, the question remains

Problem 4. When

[E(n,A+B), E(n,A ∩ B)] = [E(n,A), E(n,B)]?

In a subsequent paper we will show that this equality, and in fact much more
general statements, hold for Dedekind rings.

14. Intersections of elementary subgroups

Let A and B be two ideals of a commutative ring R, n ≥ 3. Clearly,

[E(n,A), E(n,B)] ≤ E(n,R,A) ∩ E(n,R,B)].

There is no obvious counter-example to the following stronger claim.

Problem 5. Is it true that for all ideals A,B E R, n ≥ 3, one has

[E(n,A), E(n,B)] ≤ E(n,R,A ∩ B)].
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This is obviously true when [E(n,A), E(n,B)] = E(n,R,AB). But in all examples
where [E(n,A), E(n,B)] > E(n,R,AB) we are aware of, one still has

[E(n,A), E(n,B)] ≤ E(n,R,A ∩B).

In these examples usually A = B, when the above inclusion is obvious.
Dually to the Corollary 3 of Lemma 3 one has

GL(n,R,A) ∩GL(n,R,B) = GL(n,R,A ∩ B),

this equality is classically known, and obvious. The same holds also for congruence
subgroups in SL(n,R).
However, a similar statement for sums of ideals is obviously false for GL(n,R,A),

already in the case R = Z. In other words, in general GL(n,R,A)GL(n,R,B) is
strictly smaller than GL(n,R,A + B), even for comaximal A and B. The trivial
reason is that R may have more invertible elements than just those that can be
expressed as products of invertible elements congruent to 1 modulo A or modulo B.
In fact, even for the easier case of SL(n,R) the equality

SL(n,R,A) SL(n,R,B) = SL(n,R,A+B)

only holds under some very strong assumptions, such as one of the factor-rings R/A
or R/B being semi-local2, see [5], Corollary 9.3, p. 267, or [24], Theorem 2.2.
Also the corresponding property for intersections of elementary subgroups fails in

general.

Proposition 6. For two ideals A,B E R the group E(n,R,A ∩ B) can be strictly

smaller than E(n,R,A) ∩ E(n,R,B).

Proof. Here is the smallest such example. Let R be the ring of integers of the

imaginary quadratic field Q
(√

−7
)

. Then R = Z[ζ ], where ζ =
1 + i

√
7

2
and

R∗ = µ(R) = {±1}.
Now, set p1 = ζR, and p2 = p1 = ζR. Since ζ + ζ = 1, the ideals p1 and p2 are

coprime (= comaximal, in this case). And since ζ · ζ = 2, one has 2 = p1p2 so that
the prime 2 completely decomposes in R.
Recall the formula of Bass–Milnor–Serre, [6] for the exponent of the p-part of the

order of SK1(R, I):

vp
(

| SK1(R, I)|
)

= min
p|p

[

vp(I)

vp(p)
− 1

p− 1

]

[0,vp(µ(R))]

.

Here the minimum is taken over all prime divisors of p in R, while [x][0,m] is the closest
integer in the interval [0, m] to the integer part [x] of x.
Now, set A = p21, B = p22. The ideals A and B are still comaximal, A+B = R. In

particular, A ∩B = AB.

2This is automatically the case, for instance, for non-zero ideals in Noetherian integral domains
of dimension 1. Say, for Dedekind rings.
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Now, this formula implies that SK1(R,A) = SK1(R,B) = 1, in other words,

E(n,R,A) = SL(n,R,A), E(n,R,B) = SL(n,R,B),

and thus

E(n,R,A) ∩ E(n,R,B) = SL(n,R,A) ∩ SL(n,R,B) = SL(n,R,AB).

On the other hand, SK1(R,A ∩ B) = SK1(R,AB) = {±1}, so that the subgroup
E(n,R,A ∩B) = E(n,R,AB) has index 2 in E(n,R,A) ∩ E(n,R,B). �

Of course, since A and B are comaximal, by Lemma 7 one has

[E(n,A), E(n,B)] = E(n,R,AB) = E(n,R,A ∩ B),

so that we do not get a counter-example to Problem 3. By the same token, there are
no such counter-examples for imaginary quadratic rings. On the other hand, Lemma
9 the last equality always holds for Dedekind rings of arithmetic type with infinite

multiplicative group, so that in this case there are no counter-examples to Problem
3 either.

15. Final remarks

It would be natural to generalise results of the present paper to more general
contexts.

Problem 6. Generalise Theorem 1 and other results of the present paper to Chevalley

groups.

We do not see any difficulties in treating the simply laced case. However, for doubly
laced systems and for type G2 one might get longer and fancier formulas, than those
in Theorem 1.

Problem 7. Generalise Theorems 1 and other results of the present paper to Bak’s

unitary groups.

It was a great experience to collaborate in this field with Roozbeh Hazrat and
Alexei Stepanov over the last decades. Also, we are very grateful to Pavel Kolesnikov
for his questions during our talk, and to Fedor Petrov for suggesting the above proof
of Theorem 6.
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