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ABSTRACT

Host organism offers an environment for a parasite, and this environment is heterogenous within the host,
variable among individual as well as between the hosts, and changing during the host’s lifetime. This
heterogeneity may act as a prerequisite for parasite species divergence. Intraspecific variability related to a
certain type of heterogeneity may indicate an initial stage of speciation, and thus poses an evolutionary
importance. Here we analysed genetic and morphologic variation of trematode metacercariae of
Microphallus piriformes (Trematoda, Microphallidae). Genetic variability of trematodes was assessed from
sequences of cytochrome c oxidase subunit 1 (COIl) and internal transcribed spacer region (ITS-1).
Morphological variation of metacercarial body shape was for the first time analysed using geometric
morphometrics. Parasites from the White Sea and the Barents Sea coasts demonstrated partial genetic
divergence (according to COIl sequence analysis) and had significantly different body shape. Neither genetic
nor morphological variation of metacercariae was related to intermediate host species. We discuss possible

causes of the observed genetic divergence of parasite populations in different geographic regions.

Key words: Microphallus piriformes, trematoda, paraxeny, molecular markers, geometric morphometrics,

developmental stability.

INTRODUCTION

Intraspecies variability (due to both genetic polymorphism and phenotypic plasticity) is a fundamental
attribute of living organisms, making them able to survive under variable conditions within species ranges
(Lewontin, 1957; Selander and Kaufman, 1973; Meyers and Bull, 2002). In turn, local adaptation is an
evolutionary important process, acting as a prerequisite for ecological speciation (both allo- and sympatric)
(Mayr, 1970; Thibert-Plante and Hendry, 2011; Lenormand, 2012; Nosil, 2012). Although the terminology of
ecological speciation and related concepts were developed mainly for free-living organisms, all this
reasoning is quite fair for parasites as well {Combes, 2001). Host organism acts as a first-order environment
for parasite (Pavlovsky, 1934; Dogiel, 1964). This environment is heterogenuous within a host, variable

among individual hosts, and changing during the host’s lifetime.

Some parasites, being at the same ontogenetic stage, are able to infect several host species. Such

taxonomically different hosts functionally similar for the life cycle of a parasite are called paraxenic, and the
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phenomenon is called paraxeny (Granovitch, 1996; 1999; 2009; 2016). Evidently, hosts belonging to
different species provide different conditions for a parasite (due to their ecological and physiological
dissimilarities) contributing to the general variability of parasites’ environment. Adaptation to a certain host
species represents the parasitic version of local adaptation. This might become a prerequisite for alloxenic
speciation (as adaptation to hosts of different species), a parasitic version of ecological speciation (Combes,
2001). Importantly, first-order environment for a parasite is not continuous but “patchy”, being comprised
of many individual hosts. Owing to this, a population of a parasite (all the individuals at all ontogenetic
stages within some geographical region, Combes, 2001) is hence subdivided by (a) host individuals
(infrapopulations, Margolis et al., 1982),(b) host species harboring the same parasitic stages ('paraxenic
hemipopulations' sensu Becklemishev, 1960; Granovitch, 1996 or 'xenopopulations' sensu Combes, 2001);
(c) host species harboring different ontogenetic stages of a parasite due to complexity of parasite life-cycle

('metaxenic hemipopulations', Granovitch, 1996).

On the other hand, geographically distant host populations can strongly differentiate due to either local
adaptation or neutral genetic shift or both; they will not be evenly matched as an environment for a
parasite. Such a host “non-equivalence” within a geographic range is expected to affect polymorphism in a
parasite population and might contribute to divergence processes in case of restricted gene flow between
parasite populations. Thus, polymorphism in a parasite population, which may be related to heterogeneity
of both the first-order (set of paraxenic hosts, their sex, age and immune competence etc.; e.g. Granovitch
etal., 1987; Granovitch and Gorbushin, 1995; Lively et al., 2004; Koehler and Poulin, 2012; Levakin et al.,
2013) and second-order environment (distant geographic regions, contrasting biotopes etc.; e.g. Iwagami
et al., 2000; Semyenova et al., 2006; Sithithaworn et al., 2007; Webster et al., 2007; Krapivin et al., 2018), is
important for understanding of how parasitic systems function in nature and what evolutionary processes

occur in them.

The trematode Microphallus piriformes (Odhner, 1905) (Plagiorchiida, Microphallidae) from the North
Atlantic intertidal has a dixenic life cycle. Five periwinkle species of the Littorina Ferussac, 1822 genus (L.
saxatilis (Olivi, 1792), L. arcana Hannaford Ellis, 1978, L. compressa leffreys, 1865, L. obtusata (Linnaeus,
1758), L. fabalis Turton, 1825) serve as paraxenic intermediate hosts; several seabird species (gulls, e.g.
Larus argentatus, eiders, most commonly Somateria mollissima, oystercatchers, e.g. Haematopus
ostralegus) are definitive hosts (Galaktionov et al., 2012). M. piriformes, like other species from “pygmeus”
group, does not have a free-living stage: metacercariae are formed within daughter sporocysts.
Metacercariae within mature daughter sporocysts look like adult worms which have not started egg
production yet. They have almost completely developed somatic organs, but do not possess a mature
reproductive system. This accelerates maturation and potentiates reproduction efficacy in case of definitive
host infection (Galaktionov, 1993; Galaktionov and Dobrovolskij, 2003). Fully matured metacercariae (at

the stage when they are ready to infect a definitive host) are remarkably variable in shape and proportion
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71 among hosts individuals. In addition, this trematode species has a high level of genetic diversity
72 (Galaktionov et al., 2004; Galaktionov et al., 2005; Galaktionov et al., 2008). We consider M. piriformes as a
73 convenient model to study genetic and morphological variation related to paraxeny and geographical

74  distribution, since this parasite is widely distributed along the coasts of the Northern Europe and infects
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75 several intermediate hosts.
76 MATERIAL and METHODS
77  Sampling. Sporocystae with metacercariae of Microphallus piriformes were sampled during summer
78  expeditions of 2017 and 2018 from wild populations at 4 geographic locations (Fig._1; Table_1). In total 72
79 samples were collected.
80 Table_1. Information on sampling sites. Only M. pygmeaus which was used for genetic analysis as an outgroup was collected in
81 the Yakovleva inlet.
Collection sites Water area Year Coordinates
Korga-Islet in the Levina inlet, Kandakaksha Bay, 2018 66°18'04.09"N
vicinities of Sredniy Island White Sea 33°27'27.02"E
Yakovleva inlet, Kandakaksha Bay, 2018 66°18'50.01"N
vicinities of Sredniy Island White Sea 33°50'20.06"E
Vicinities of Dalnie Zeletsy Barents Sea 2017 63°06'56"N
36°04'10"E
L . Varanger Fjord, 70°17'07”"N
Vicinities of Kiberg 2017
Barents Sea 30°59'53"E
iciniti 69°40'58”"N
Vicinities of Tromsg Norway Sea 2018
18°56'34"E
82
Barents Sea
Tromsg o.‘“: Dalnie Zelentsy
O Sredniy
White Sea
83
84 Fig_1. The map of the study region (image: TerraMetrics, map data: Google). Sample collection sites (Troms# city, Kiberg
85 settlement, Dalnie Zeletsy settlement, Sredny Island) are shown.
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Identification and photography. Adult individuals of littorinid snails L. arcana, L. compressa, L. fabalis, L.
obtusata and L. saxatilis were collected from intertidal area and transported to the laboratory. For sample
preparation snails were dissected under MBI-10 binocular microscope to identify species, sex and possible
trematode infection. Infected hepatic tissues were separated and soaked in distilled water, where parasites
were carefully washed out from host tissues using glass pipettes. Washed parasites were used for (1)
temporary preparations for identification and photographing; (2) fixation in 96% ethanol, final DNA

isolation and molecular analysis.

To complete spreading of metacercariae on temporary preparation, glass slides were heated in a drop of
distilled water for 2 minutes at 70 °C using heating table (Galaktionov, 1980, 1993). Photographic pictures
were taken with MBI-10 binocular microscope coupled with MFU photo adapter and Canon EOS 1200D

camera; camera settings remained unaltered throughout the study.

Molecular markers analysis. DNA isolation was performed using minispin collumns for genomic DNA
extraction (ExtractDNA Blood, Evrogen) following recommendations of the manufacturer

(http://evrogen.ru/kit-user-anuals/ExtractDNA_Blood.pdf). DNA samples were stored at -20 °C until use.

Two molecular markers: fragments of the mitochondrial cytochrome oxidase subunit | {COI) and internal
transcribed spacer (ITS-1) were used for the analysis. The primer sequences used for amplification are in
Table_2

Table_2. Sequences of primers used for amplification of molecular markers.

. . Fragment
Direction Marker Sequence 5’ -> 3’ Tm °C Reference
length

Fw col TTTITTTGGGCATCCTGAGGTTTAT Bowles et al., 1992
368 bp

Rev col TAAAGAAAGAACATAATGAAAATG Bowles et al., 1992

Galaktionov et al.,

Fw ITS-1 ACACCGCCCGTCGCTACTA
347 bp 2012

Rev ITS-1 TGGACGAAACTGCGCGCTTC Authors

Ready PCR mixture (iQTM SYBR® Green Supermix, Bio-Rad) was used for amplification following
manufacturer’s recommendations. PCR was performed using Veriti 96-Well Thermal Cycler (ThermoFisher
Scientific). Amplification method was initial denaturation at 95 °C for 3 min, cycle denaturation at 95 °C for
30 sec, primers annealing at 56 °C for 30 sec, cycle elongation at 72 °C for 30 sec, final elongation at 72 °C

for 4 min; 30 cycles.

Presence of PCR products of the expected length was assessed by 1%-agarose gel electrophoresis in Tris-
acetate-EDTA buffer, pH 8.3 (TAE, Evrogen); SYBR green (50x SYBR® Green | for PCR, Evrogen) was added to
samples while in-gel loading for visualization; electrophoregram was visualized with BioRad ChemiDoc MP

at wavelength 497 nm.
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Amplicons were sequenced by Sanger in both directions using 3500xL Genetic Analyzer (ThermoFisher
Scientific) and BigDyeTM Terminator v3.1 Cycle Sequencing Kit (ThermoFisher Scientific) with technical
support of Alexey Masharsky. Sequencing results were analyzed using ChromasPro v.1.7.4 software
(Technelysium Pty Ltd); sequence alighment was performed with MEGA X v.10.0.4 software (Kumar et al.,

2018).

Phylogenetic analysis. We used Bayesian inference for phylogenetic reconstruction in MrBayes v.3.2
software (Ronquist et al., 2012). Nucleotide substitution model was GTR+G+l| (Lanave et al., 1984). Optimal
nucleotide substitution model was assorted using PAUP4 (Swofford, 2002) and MrModeltest v.2.3
(Nylander, 2004) software packages. Analysis was performed as two independent runs, five chains in each
(four heated and one cold; the first 25% samples from the cold chain were discarded) for 15 000 000
generations with a sample frequency of 1000, print frequency of 1000 and diagnostics calculated every
1000 generations. The convergence between two runs was tested by comparison of statistical parameters
in the Tracer Software (Rambaut et al., 2018). 64 COl sequences of 72 were used for analysis, as we failed
to get sequences of acceptable quality for other 8 samples. We also used sequences of Microphallus
pygmaeus (Levinsen, 1881), Microphallus triangulatus Galaktionov, 1984 and Microphallus similis
(Jagerskiold, 1900) as outgroups in our analysis. Results of phylogenetic analysis were visualized using

FigTree v.1.4.3 software (Rambaut, 2009).

M. piriformes haplotypes network was constructed according to TCS algorithm (Clement et a/., 2000) using

PopART software (Leigh and Bryant, 2015).

Geometric morphometrics. Tps-software package (Rohlf, 2004; The Stony Brook Morphometrics) was used
for geometric morphometrics analysis. Two-dimensional images were compiled to tps format using tpsUtil
v.1.74, the coordinate locations of landmarks and semilandmarks were digitised in tpsDig2 v.2.3. We used
nine landmarks to model metacercarial body shape: two along middle body line at anterior and posterior
poles, two at edges of most wide part of posterior body compartment, two at edges of most narrow body
part (at the transition between anterior locomotory and posterior generative body parts), one at the gut
bifurcation, and two on the body edges at the level of the gut bifurcation. Additionally, 22 semilandmarks
forming four curves were used to describe the contour of the body (Fig_1). Images of 46 clones {clone =
metacercariae from different daughter sporocysts within 1 host individual) were analyzed (10

metacercariae from each clone).
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Fig_2. Scheme of landmarks and semilandmarks on the metacercarial body.

To minimize the effect of allometric variability only fully formed metacercariae with all anatomical details
visible were used in the analysis. These metacercariae are characterized by completely formed type I
marita glands (the final stage of maturation, no morphogenic changes are known after this stage up to
maritogony process starting in the final host; Galaktionov, 1991, 1993). These stages do not differ from

adults in size.

Statistical analysis. A geometric morphometric analysis was carried outin R (R v.3.5.3; R Core Team, 2019)
using geomorph (Adams et al., 2019) and albbind (Plate, Heiberger, 2016) packages. Shape variables were
derived from a Generalized Procrustes Analysis (GPA; Gower, 1975), which superimposes and aligns
landmark configurations (through translation, rotation and isometric scaling) removing the information not
related to shape. Aligned procrustes coordinates were subjected to Principal Component Analysis (PCA) to
visualize shape variation of metacercariae. Proportion of variance explained by each principal component

was computed from eigenvalues.

Non-parametric Multivariate Analysis of Variance (perMANOVA; Anderson, 2001) on the matrix of
procrustes coordinates was used (1) to compare the shape of metacercariae from L. saxatilis and L.
obtusata from the White and Barents Seas; and (2) to test for possible allometric relationships of shape and
size of metacercariae. The design included the effect of the host individual nested within a particular
species to account for non-independence of the observations belonging to the same clone of
metacercariae. We tested significance of shape variations using randomized residual permutation

procedure (RRPP; Collyer, Adams, 2018, 2019; RRPP package v.0.4.2). Post-hoc pairwise comparisons were
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held using perMANOVA,; p-values were corrected using Holm-Bonferroni procedure (Holm, 1979).
Morphological disparity was assessed using morphol.disparity () function from the geomorph
package for groups of meracercariae from different host species and sampling locations. Relative

morphological disparity was computed as a percentage of the sum of within-group disparities.

To compare centroid size of metacercariae from different hosts and sites, we applied a General Linear
Mixed Model with Gaussian error distribution (GLMM; Pinheiro, Bates, 2000) using 1me4 package (Bates et
al. 2015). The model included one fixed predictor (group of metacercariae defined by host species and site)
and one random effect (host individual). The model assumptions were checked visually on the plots of
residuals. Effect significance was tested with Likelihood Ratio Test (LRT). Intraclass Correlation Coefficient
(ICC) was used to assess the size variability of metacercariae from an individual snail. Tukey’s test was used

for post hoc comparisons (Quinn, Keough, 2002).

The results of analysis were visualized using ggplot2 (Wickham, 2016) and cowplot (Wilke, 2019)

packages. Tables were produced using knitr (Xie, 2019) and huxtable (Hugh-Jones, 2019) packages.

RESULTS

Genetic polymorphism in populations of M. piriformes. ITS-1. All analyzed ITS-1 sequences were identical.

This supports, on one hand, the unity of M. piriformes as a species and, on the other, it justifies the
affiliation of all the samples to the same species. P-distance between sequences of M. piriformes and

closely related species M. pygmaeus was 3.75% (12 SNP, 1 indel).

Genetic polymorphism in populations of M. piriformes. COI. COI gene proved to be rather polymorphicin

M. piriformes: among 64 samples sequenced we have found 29 different haplotypes of COIl fragment; three
were observed most often. The Bayesian inference based on COl-sequences (Fig_3) implies a limited gene
flow between populations of the White and Barents Seas, as there are several location-specific clades on
the tree, e.g., clades including samples exclusively from ether Korga-islet (White Sea) or Kiberg (Barents

Sea).
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Fig_3. Bayesian inference based on COIl sequence (369 bp); 15000000 generation; GTR+|+G substitution model; A posteriori
probabilities are indicated by node shapes; sample name includes parasite species (pir — M. piriformes, pyg — M. pygmaeus, tri— M.
triangulatus, sim — M. similis), sample number, geographic region and location (WSk — White Sea, Korga-Islet; WSy — White Sea,
Yakovleva; DZe — Barents Sea, Dal’nie Zelentsy; Kib - Barents Sea, Kiberg; Tro - Barents Sea, Tromsg), host species (sax — L. saxatilis;
arc — L. arcana, comp — L. compressa, obt — L. obtusata, fab — L. fabalis). Branch color reflects geographic region.

Strong effect of geographic location on haplotypes distribution is obvious also in the haplotypes network
(Fig_4A): although most often haplotypes were detected in all three examined regions, there were also
many location-specific haplotypes, including several singletons, clustering according geographic region. As

evidenced by both the Bayesian inference (Fig_3) and haplotypes network (Fig_4B) there was no detectable
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population subdivision based on host species: haplotypes of M. piriformes parasitizing hosts of different

species were interspersed after both analyses.
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Fig_4. Haplotype networks, COl sequence (369 bp); TCS algorithm; dashes correspond to mutations. A: color reflects sampling
location. B: color reflects host species.

Number of samples

10

Intrapopulational polymorphism of metacercarial body shape. Parasite samples from L. saxatilis and L.
obtusata hosts only, collected at the White and Barents (Kiberg and Dalnie Zelentsy) Sea shores, were used
for analysis: there were five groups in comparison (L. saxatilis was the only host in Dalnie Zelentsy
populations). Metacercarial body shape variation related to sampling site and host species is visible on the
PCA ordination plot (Fig_5); PerMANOVA accounting for intraclonal variability confirmed the effects of the
factors “location” and “host species” (p < 0.01) on metacercarial body shape. Significant differences were
found between all combinations of locations (except samples from Dalnie Zelentsy vs Kiberg, L. obtusata as

a host), but there were no differences in body shape between metacercariae from different hosts within
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the same location; this result is also visible on the general PCA-ordination plot (Fig_6,

Supplementary_Tablel).
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Fig_5: PCA-ordination of individual M. piriformes metacercariae body shapes grouped by host species. PC1 can be interpreted as
a deepness of a “waist” between locomotory and generative body parts; PC2 can be interpreted as a width of locomotory body
part. B: Pairwise post-hoc comparison; significant value are shown as bold (considering Holmes correction for multiple comparison);
host species: sax — L. saxatilis; obt — L. obtusata; sampling site: Kib - Barents Sea, Kiberg; Kor — White Sea, Korga-Islet; Zel — Barents
Sea, Dalnie Zelentsy.
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Fig_6. A: PCA-ordination of individual M. piriformes metacercariae body shapes. Ellipses show 95%-confidence intervals for the
five groups in comparison. B: Mean body shapes of M. piriformes according to sampling site and host species. Transformation
grids reflect deviation from the overall mean body shape.
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Morphological disparity of metacercariae within the same hemipopulation and within the same
infrapopulation at different sampling sites (separately for different host species) was also assessed. This
analysis revealed that metacercarial body shape varied most strongly within the White Sea hemipopulation;
this was fair for the both host species. The same tendency was observed in case of infrapopulations. The
metacercarial body shape variability was comparatively low within the Barents Sea hemi- and

infrapopulations (both Kiberg and Dalnie Zelentsy) (Fig_7, Supplementary Table 2, 3).
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Fig_7. Variability of metacercarial body shape within hemipopulations and infrapopulations of M. piriformes. A: Absolute and
relative morphological disparity (MD) of metacercariae within hosts of the same species. B: Distribution of morphological disparity
(MD) within individual snails grouped by host species and sampling location.

Interactions of metacercarial body shape and size. Theoretically, differences in body shape might originate
from allometry —j.e. age-related changes in proportions of the whole body and particular organs during
ontogenesis (Klingenberg, 1996; Klingenberg, 2016). To avoid allometry effects, only metacercariae with
completely formed anatomical structures (see methods) were included into analysis. Nevertheless, the
question of changes in body shape proportions after maturation (when metacercariae are ready to infect a

final host and when transition to adult worm occurs) is still vague.

With respect to this, we evaluated interactions between body shape and size (using centroid size as a
proxy) in M. piriformes metacercariae and found no significant allometric effect (perMANOVA). However,
metacercarial body size varied significantly between the hosts species and locations (LRT = 39.5, df =4, p <
0.01). Notably, the size of metacercariae from different hosts within the same location did not significantly
differ (Fig_8, Supplementary Table 3). High intraclass correlation coefficient (ICC = 0.71) implies that
metacercariae of the same infrahemipopulation are of very similar size; this fits well with data on

synchrony of microphallid development within daughter sporocysts (Galaktionov, 1993).
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DISCUSSION

In this study we evaluated genetic and morphological intraspecific variability in metacercariae of
Microphallus piriformes at several levels of variability: between populations (effects of different geographic
locations), between paraxenic hemipopulations (xenohemipopulations) (effects of intermediate host

species), between clones (effect of a host individual), and between individuals (intraclonal variability).

Geography-related genetic polymorphism within M. piriformes populations. Our results indicate some

gene flow limitations between populations of different geographic regions (strong between the White and
Barents Sea populations; moderate between the two populations from the Barents Sea). Both intermediate
(periwinkles) and final (birds) hosts of M. piriformes are widely distributed along the Northern Atlantic sea
coasts. Hypothetically, gene flow between spatially disconnected populations might be maintained by bird
migrations. Consistently, isolates of M. piriformes from the Vaygach Island (Barents Sea) and Iceland coast
(straight distance exceeds 3000 km) demonstrated almost identical UP-PCR fingerprinting patterns
(Galaktionov et al., 2008), while UP-PCR fingerprinting did not reveal any geography-related subdivision in
any other species of the “pygmaeus” group (Galaktionov et al., 2005). This might be a consequence of a
bird migration-maintained gene flow. Shown in our study prevalence of limited number of haplotypes
shared by all studied populations agrees well with such a scenario. On the other hand, some heterogeneity

of M. piriformes populations related to sampling site was also recorded in previous studies. In particular,
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genetic differences between several populations of M. piriformes from the White Sea were detected by
RAPD approach (Khalturin et al., 2000). Similarly, genetic divergence between populations from the White
and Barents seas (but not between the White and Norwegian seas) was demonstrated with UP-PCR
approach (Galaktionov et al., 2004). Thus, our results agree well with the earlier data. Some irregularity in
the patterns of population genetic differentiation, in our opinion, might be explained by migratory activity
of final host birds funneled to specific routes. Gulls, eiders and waders regularly migrate along the North
Atlantics shore (Anker-Nilssen et al., 2000; Noskov et al., 2016). The schemes of bird migratory routes,
reconstructed from published data, are presented in the Supplementary Fig. 1. Obviously, not all the
populations of M. piriformes can be connected via bird migration, but only those lying along migratory
routes. Locations of bird settlement sites are another factor, exacerbating genetic breach between parasite
populations: wintering sites at the coasts of the White and Barents seas were recorded for gulls and eiders
(Koryakin and Kondratiev, 1983; Kohanov and Shkliarevitch, 1985; Shkliarevitch, 1979; Cramp and
Simmons, 1983; Scott and Rose, 1996). Final host settlement provides an opportunity for a year-round
autonomous sustainability of local parasite populations, and as a consequence, their divergence from each
other. Short adult longevity (no longer than 10 days) also strongly limits transmission capacity via bird
migrations (Belopol’skaya, 1983; Galaktionov, 1993; Galaktionov and Dobrovolskij, 2003). Thus, spatially
limited and transient connection of parasite populations by hosts migrations cause partial differentiation of

the former along the geographical range.

Evidence of partial isolation between different geographic regions was detected by the mitochondrial
marker (COI) only, not the nuclear one (ITS-1). Mitochondrial genomes are expected to be more strongly
affected by the factors discussed below. Although adaptive neutrality and clonality of mitochondrial
genomes were questioned during the last decade, these are still expected to evolve faster than nuclear
ones due to haploidy and maternal germline bottleneck, and thus are better indicators of shallow

evolutionary events (rev. in Zink and Barrowclough, 2008; Galtier et al., 2009).

Host species-related genetic polymorphism within M. piriformes populations was not observed in this

study. Importantly, 3 species (Littorina arcana, L. compressa, L. fabalis) were relatively rarely detected as
hosts of M. piriformes due to their low densities. Therefore, no informative conclusions on genetic
specialization of the parasites to these hosts may be done. Most of data were gathered for parasites

obtained from L. saxatilis and L. obtusata hosts, and will be discussed in detail below.

All the five species of paraxenic hosts of M. piriformes belong to the subgenus Littorina (Neritrema Recluz,
1869) (Littorinidae, Caenogastropoda). They are phylogenetically closely related and comparatively recently
diverged from each other (estimated divergence time does not exceed 5 Ma) (Reid, 1996; Reid, 2012).
These species differ in several sets of morphological, physiological and ecological characters. Thus,
geographic ranges of Littorina arcana and L. compressa are narrower and more patchy compared to other

species; they were not recorded from several regions where L. saxatilis, L. fabalis and L. obtusata are
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present, e.g. the White and North Seas, the Iberian Peninsula coast, etc. (Reid, 1996). There are also
differences in the microbiotopic distribution, e.g. L. compressa, L. fabalis and L. obtusata inhabit the fucoid
area only, while L. saxatilis and L. arcana can live in the upper part of the intertidal where fucoids are
absent; L. fabalis occupies lower intertidal and upper subtidal area and more often is associated with Fucus
serratus, in contrast to L. obtusata usually preferring F. vesiculosus and Ascophyllum nodosum (Reid, 1996;
Sergievsky et al., 1997; lastchenko and Granovitch, 2002; Granovitch et al., 2004; 2013). Littorina spp. also
exhibit functional differences in tolerance to low salinity, desiccation and other stressors, as well as
physiological plasticity (e.g. Todd, 1964; Clarke et a/., 2000; Sokolova et a/., 2000; Maltseva et al., 2016;
2019; Muraeva et al., 2017). Altogether, these differences might form preconditions for host-related
speciation among xenopopulations of parasites. It is known that subdivision of trematode populations at
the genetic level may emerge owing to paraxeny after expansion of host range via either new host species
invasion (usually phylogenetically closely related) or cospeciation (e.g. Lo Verde et a/., 1985; Theron and
Combes, 1988; Semenova et al., 1995; Koskella and Lively, 2007; Galaktionov et al., 2008, Koehler et al.,
2011).

Nevertheless, the most probable divergence scenario of the microphallids from the “pygmaeus” species
group assumes final host species and geographic isolation as drivers, and not the intermediate host species
(Galaktionov et al., 2012). Particularly, the common ancestor of M. piriformes and other “pygmaeus”
species expanded to the North Atlantic from the North Pacific between 3.5 Myr to 2.4 Myr BP (together
with the Littorina (Neritrema) species and gull hosts) and infected several available Neitrema species
(ancestors of the “obtusata” and “saxatilis” groups had already been diverged by then, Reid, 1996; Reid et
al., 2012). The northern communication between Arctic-Atlantic and Pacific via Bering Strait closed again,
and this promoted speciation of M. piriformes in the North Atlantic and M. calidris in the North Pacific; the
branch leading to other “pygmaeus” species specified due to switch to seaducks species as final hosts
(Galaktionov et al., 2012). Speciation of L. compressa, L. fabalis and L. arcana occurred in the North Atlantic
after the Bering Landbridge emergence (Reid, 1996), and this did not cause partitioning of M. piriformes,
which is able to successfully infect all those species. Accordingly, no evidence of the intermediate host-
related subdivision in modern populations of M. piriformes was revealed in this study, while there was an
evidence for geography-related subdivision. It is also worth mentioning, that some Neritrema species are
very similar at the both genetic and functional levels, e.g. L. saxatilis and L. arcana with indirect evidence of
regular hybridization (Mikhailova et al., 2008, 2009; Granovitch et al., 2013; Maltseva et al., 2016, 2019,
2020), therefore hardly providing any background for parasite differentiation. Additionally, some facts
suggest that this species is rather sensitive to host’s physiological properties, which in turn is a prerequisite
for host-driven speciation. In comparison to other species, M. piriormes is characterized by relatively
narrow range of intermediate hosts: it has never been recorded to infect individuals of Littorina (Littorina),
the sister subgenus to the Littorina (Neritrema) or other genera. In contrast, e.g. M. pygmaeus heavily

infects L. littorea (Linnaeus, 1758) (Werding, 1969; Pohley, 1976; Lauckner, 1984}, while M.
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pseudopygmaeus Galaktionov, 2009 in known to infect a set of hosts of several families and orders
(Galaktionov, 2009; Galaktionov et al., 2012). Since only two markers were used in this study, our
conclusion that there is no intermediate host species related subdivision may not be approved by further

whole-genome scans.

Affirming this, previous studies detected paraxenia-related genetic variability of M. piriformes. Trematodes
from either L. saxatilis or L. obtusata (the hosts significantly different at both ecological and functional
levels) collected from the same geographic location demonstrated distinct RAPD patterns depending on
host species (Khalturin et al., 2000). Our findings are not necessarily inconsistent with this data due to the
lesser sensitivity of our approach; instead, together these results suggest that geography-related

differences are more profound than those related to the intermediate host species.

Metacercarial body shape variability. Data on metacercariae (and also other ontogenetic stages) body
shape variability in M. piriformes are scarce. Significant variability of the metacercarial body shape was
shown for M. pseudopygmaeus which is closely phylogenetically related to M. piriformes, yet, there was no
clear relations to different host species (represented by a rather diverse set of L. saxatilis, Onoba aculeus,
Margarites helicinus, Solariella varicosa, Epheria vincta, Lacuna neritoides, Cryptonatica clausa) with
exception of metacercariae from M. groenlandicus, which were relatively distinct in their body shape.
Noteworthy, the same study revealed that the body shape of metacercariae from M. groenlandicus tended
to correlate with geographic location {Dalnezelenetskaya bay vs Kolguev Island; Galaktionov, 1993). Still,
the author stressed that the variability revealed was not constrained to discrete variants but rather
continuous with all kinds of intermediate states. This is congruent to our results: there was a metacercarial
body shape continuum, and those from either different host species or geographic locations tended to
form certain variants more often with no break between these variants (fig. 5-6). The physiological and

genetic background of this body shape variability is completely unclear.

Quite interestingly, not only the variability in body shape per se was revealed in our study, but also the
differences between geographic locations in the degree of morphological disparity: it was maximal within
the White Sea hemi- and infrapopulations. Our genetic data do not allow to suspect a higher genetic
diversity of the White sea population (compared to the other two from the Barents Sea) as a possible
explanation for an increased level of inter-hemipopulational variability. The higher degree of intraclonal
shape variability (based on identical or very similar genetic background) might be interpreted similar to
fluctuating asymmetry. Generally, there are two fundamental properties of any organism development
restricting its phenotypic variation: canalization (among individuals) and developmental stability (within
individuals) (Waddington, 1942; Schmalhausen, 1949; Debat and David, 2001; Willmore et al., 2007). Itis
well known that under pressure of environmental stressors the accuracy of the molecular and physiological
background for both canalization and developmental stability may be compromised, which in turn, would

cause an increase in phenotypic variation within and among individuals {e.g. Scharloo, 1991; Parsons, 1997;
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Hoffmann and Hercus, 2000; Lazic et al., 2015). The increase in both types of phenotypic variation was
detected in the White Sea population which might indicate some kind of disturbance. Importantly, high
level of phenotypic variation was accompanied with decreasing of the average body size, which might be
due to the same reason. The organism size is a function of the growth rate and duration, which depend on
temperature, nutrition and oxygen availability in ectotherms (rev. in Shingleton, 2011). The White Sea has a
relatively low salinity (24-28 ppm), high seasonal salinity variation in the surface layer, long ice cover period
(up to 8 month) (Naumov and Fediakov, 1993). These conditions are likely not optimal for periwinkles, the
M. piriformes intermediate hosts Littorina saxatilis and L. obtusata (L. compressa and L. arcana are absent
in this area), as evidenced by the sizes of these snails from the Barents and White Sea populations
(Granovitch et al., 2004). Temperature together with oxygen availability (which solubility in water depends
on temperature) form a latitudinal gradient shaping the size increase at high latitudes demonstrated in
different groups of marine invertebrates, e.g. benthic amphipod crustaceans (Chapelle and Peck 1999),
benthic gastropods of the Turridae family (McClain and Rex 2001) and oceanic nematodes (Soetaert et al.
2002). Body size reducing effects of hypoxia on growth were also described in not aquatic insects, e.g.
Drosophila (rev. in Shingleton, 2011). The size differences in the Littorina snails between the Barents and
White Sea populations are fully in line with such reasoning, as the White Sea population is the most
southern among the studied. Suboptimal functioning of hosts at the White Sea is expected to affect
parasite, since it raises basal metabolic costs (rev. in Sokolova, 2013). M. piriformes metacercarial body size
forms a trend collinear with latitude increase (Fig. 8). This trend also corresponds well to the hosts’ size
distribution on one hand, and to degree of metacercarial shape disparity within hemi- and infrapopulations
on the other. Altogether, our results imply that fundamental environment-development interaction
patterns known for free-living organisms are also legitimate for parasites, and that phenotypic variationin a

parasite may act as an indicator of host functioning.

CONCLUSION

In our study we applied both genetic and morphometric approach to evaluate the degree of populations
subdivision of the dixenic trematode M. piriformes. Both methods showed consistent results: there were
signs of gene flow restriction between parasite populations from remote locations where genetic exchange
is limited due to both absence of regular bird migration and short parasite lifetime within the bird.
Additionally, a strongly increased level of intra- and interclonal metacerarian body shape disparity in the
White Sea region together with a reduced mean body size were revealed using geometric morphometrics.
Most probably these are the consequences of a restricted nutrient supply, development destabilization and
decanalization emerging from suboptimal environmental conditions for the intermediate hosts in that
region. We failed to find any differences related to the intermediate host species, which contrasts with
some earlier data (Khalturin et al., 2000). This implies, that inter-region differences are more pronounced

than those between paraxenic hemipopulations; more sensitive methods are needed to detect the latter.
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